
Ex. 9, Symbolic vs. Numerical Programming

Stefan Karlsson

May 12, 2014

1 Introduction

In this exercise we will use symbolic programming. To introduce this topic let’s
consider the following irrational expression, which we can not express exactly
using regular numerical representation.

β =
1 +
√

2

3
≈ 0.8

To get a numerical approximation, we can use matlab directly by simply typing:

betaNumeric = (1 + sqrt(2))/3

The numeric variable betaNumeric is clearly just an approximation. The
numerical precision of the computer quickly becomes evident if we try to express
the relation:

β2 − 2
β

3
− 1

9
= 0

by the following Matlab code:

betaNumeric^2 - 2*betaNumeric/3 -1/9

To express the irrational β exactly, we need to resort to symbolic program-
ming. This is very different from numerical programming, and can be a very
powerful tool to avoid numerical errors, and perform common mathematical op-
erations(such as derivation) in an exact way. This will be familiar to those who
have had experience in environments such as Mathematica, Maple and MuPad.
To use symbolics, we need to declare our variables specifically as symbolic first:

betaSymbolic = sym('(1 + sqrt(2))/3')

Notice how betaSymbolic is now echoed as a symbolic and its expression
is not evaluated numerically. To get a symbolic expression to be evaluated
numerically we write:

eval(betaSymbolic) %yields the same value as "betaNumeric"

1

With the symbolic variable, lets again see if we can get Matlab to deduce
that β2 − 2β3 −

1
9 = 0, by

symbolicExpression = betaSymbolic^2 - 2* betaSymbolic/3 -1/9

This should get you a long expression of symbolics, seemingly no closer to
zero. If you were to simplify this expression with pen and paper (don’t do
that!) you would find it to actually equal zero. In order to make Matlab do this
simplification for you:

simplify(symbolicExpression) %simplifies to zero

And there you have it, zero! In the above example, its quite obvious what
the simplest form of the expression is (it is 0). It is not always obvious what
expression is a simplification however, and may depend on what you are trying
to achieve. While simplify is the most useful and general-purpose function for
this, there exists a range of other symbolic simplifier functions, such as simple,
factor, collect, expand and horner.

1.1 Algebraic Symbols

Even more powerful than previous example is to use algebraic expression with
unknown variables. We are used to having variables in Matlab, but we have so
far only encountered numerical variables, not algebraic ones. First we need to
declare variables as symbols for this to work. A fast way to do that is by:

syms t a b c d %declares symbolic variables t, a, b, c and d

These symbols represent any number, and can be used in most Matlab func-
tions. With symbolic expressions of one or more variables we can perform many
of the mathematical operations such as differentiation (using diff) and inte-
gration (using int):

diff(t^2)

int(cos(t)) %also known as "anti-derivative"

To really see the use of this, consider more complicated functions, such as:(
t+
√
t− t2

)2
Consider doing differentiation and integration of above function. Tedious by

hand, but with symbolic programming:

int ((t+sqrt(t)-t^2)^2) %anti-derivative

diff((t+sqrt(t)-t^2)^2) %first order derivative

diff((t+sqrt(t)-t^2)^2, 2) %second order derivative

diff((t+sqrt(t)-t^2)^2, 10) %tenth order derivative

Taking tenth order derivative would take alot of time for a human, also
notice how horribly long the expression turned out. Lets simplify it:

simplify(diff((t+sqrt(t)-t^2)^2,10))

If this is the first time you encounter functions like these, you may feel like
you missed out during your calculus studies...

2

1.2 Symbolic Matrices

Matrices and symbolic variables work well together in Matlab:

A = [a b; ... %defines a 2 by 2 symbolic matrix

c d;]

The regular matrix functions of trace, determinant and inverse will all work
on matrix A, yielding symbolic expressions:

trace(A)

det(A)

inv(A) %not recommended for larger symbolic matrices

1.3 Assumptions

For a variable a > 0 we have equality for:

√
a2 = a

notice that this only holds if we assume the variable is positive. Lets see
what happens in Matlab with our symbolic variable a:

sqrt(a^2) %will not equal "a", even if we simplify

We would like to include the assumptions on a in our calculations, and an
easy way to do that is in the definition of a:

syms a positive; %a is now assumed positive

sqrt(a^2)

sqrt(b^2) %b is NOT assumed positive

2 Differentiation

We saw some simple examples of differentiation and integration symbolically(which
we call analytically in math) in section 1.1. Lets see how we could do differ-
entiation numerically. In numerical differentiation, we work with samples of
the function, instead of an analytical description. Instead of doing analytical
differentiation we do elementwise differences in the numerical case. We use the
function gradient for this purpose:

x = 1:4;

gradient(x) %linear input, should give constant output of 1

We have worked with sampled functions previously (audio/music exercises),
so lets take the familiar cosinus function as an example. We know that the
derivative of cos(t) is equal to −sin(t), and can remind ourselves by:

3

syms t;

diff(cos(t))

lets try to estimate this numerically, by sampling the function over the range
[0, 2π]:

Fs = 3; %sampling frequency

Ts = 1/Fs; %length between samples

t = 0: Ts :2*pi; %sample the range

f = cos(t);

df = gradient(f,Ts); %estimate derivative, need "lenght between samples"

plot(t,f); hold on

plot(t,df,'r');

plot(t,-sin(t),'g');

legend('cos(t)', 'numerical derivative', 'exact derivative');

As we can see, the numerical derivative comes pretty close to the exact one
in this case. The accuracy depends on how richly we describe the function.
Try increasing and decreasing the sampling frequency to see the impact on the
precision. More samples means better accuracy.

3 Integration (anti-derivatives)

For numeric integration we have to approximate using sums. We can use the
cumsum function to simply sum the values of the vector together, but a bet-
ter approximation is through the trapezoidal method which is implemented in
cumtrapz:

c = ones(1,4);

cumtrapz(c) %constant input, should give linear output

We know that the anti-derivative of cos(t) is equal to sin(t), and can remind
ourselves by:

syms t;

int(cos(t))

lets try to estimate this numerically, by sampling the function over the range
[0, 2π]:

Fs = 3; %sampling frequency

Ts = 1/Fs; %length between samples

t = 0: Ts :2*pi; %sample the range

f = cos(t);

F = cumtrapz(f)*Ts; %estimate anti-derivative, we need to multiply with Ts

%because cumtrapz assumes unit length between samples

plot(t,f); hold on

plot(t,F,'r');

plot(t,sin(t),'g');

legend('cos(t)', 'numerical anti-derivative', 'exact anti-derivative');

4

As with the derivatives, accuracy depends on how richly we describe the
function - Higher sampling frequency means better accuracy. However, there
is one additional problem with the approach of the above snippet. Recall from
elementary calculus that∫ t

0

f(x)dx = F (t)− F (0) = F (t) + C (1)

where F (t) is the anti-derivative. To use a summation approximation (as we
have done in above snippet) means that we have assumed F (0) = 0. Since we
know before-hand that F (0) = sin(0) = 0, our assumption is true. If we change
the analyzed function, we run into trouble as below snippet illustrates:

Fs = 10;

Ts = 1/Fs;

P = pi/10; %phase shift of the function(moving it to the right)

t = 0: Ts :2 * pi;

f = cos(t - P); %define function with phase shift

C = 0; %the initial value

F = cumtrapz(f)*Ts + C; %include initial value

plot(t,f); hold on

plot(t,F,'r');

plot(t,sin(t-P),'g');

%legend with the phase shift information:

legend(['cos(t - ' num2str(P,2) ')'], ...

'numerical anti-derivative' , ...

'exact anti-derivative');

If you change the initial value C, you will modify the solution which can be
tuned to a reasonable result. In above example, the correct value is C = -sin(P),
make sure you understand why! If in doubt, inspect Equation 1.

4 Taylor series

Many functions can be expressed through a Taylor polynomial expansion around
a point of interest t = a:

fa(t) = f(a) +
ḟ(a)

1!
(x− a)1 +

f̈(a)

2!
(x− a)2 + . . .

In Matlab we can do this by the function taylor. Lets approximate sin(t)
around the point of interest a = 0, up to order of 6:

syms t;

TaylorOrder = 6;

sinApprox = taylor(sin(t),'ExpansionPoint',0, 'Order',TaylorOrder);

%use "ezplot" to plot symbolic expressions:

h1 = ezplot(sin(t));

hold on

5

h2 = ezplot(sinApprox);

set(h1, 'Color','r');

ylim([-1.5 2])

legend('sin(t)',['Taylor Order:' num2str(TaylorOrder)])

5 Equation solving

We had experience solving equations numerically, lets take a look at the powerful
symbolic approach to it. Consider the following equation:

ax2 + bx+ 3 = 0

with 2 solutions

x = − b

2a
±
√
b2 − 12a

2a

In Matlab we solve this by:

syms a b x

sols = solve(a*x^2+b*x+3)

This gives a vector sols of 2 symbolic expressions (one for each solution). If
we wish to assign some specific values to any symbolic expression, we use subs.
Say we wish to know solutions for a=1 and b=2:

subs(sols,[a b],[1 2])

Notice how this does not provide a numberical solution, even though we
replaced the symbolic variables a and b.

6 Differential equations

The differential equation:
dy

dt
= 1 + y2

has solution y = tan(C + t), for a constant C. To check that this is true, we
write:

syms t C

y = tan(C + t);

simplify(diff(y)==y^2+1)

To find a solution from the start, we use dsolve:

syms y

dsolve('Dy=1+y^2')

This will give us 3 solutions: the real solution y = tan(C + t) and two
imaginary solutions y = ±ı. To restrict to real numbers:

6

syms y real

dsolve('Dy=1+y^2')

The constant in the equation can be resolved if we provide more constraints.
The most common constraint is an initial condition (e.g. y(0) = 1):

syms y real;

dsolve('Dy=1+y^2' , 'y(0)=1')

For a third order example, we will solve the following equation:

d3y

dx3
= y

To solve a third order differential equation we need 3 initial conditions. We
use:

y(0) = 1

dy

dx
= −1

d2y

dx2
= π

Which looks like:

syms y real;

dsolve('D3y=y' , ... %the equation

'y(0)=1' , ... %first constraint...

'Dy(0)=-1' , ... %second...

'D2y(0)=pi', ... %third

'x') %indicate the independent variable

The solution is easy to verify in theory. I don’t recommend you carry out
the calculations by yourself however. This is what we have computers for.

7 Systems of differential equations

2 or more simultaneous differential equations form a system, and is extremely
important in engineering and science. An example system of 2 linear equations
looks like:

ẋ1(t) = −3x1(t) + 2x2(t)

ẋ2(t) = −4x1(t) + x2(t)

with initial conditions:

x1(0) = 0

x2(0) = 1

In Matlab we use the same versatile dsolve for systems of equations:

7

syms t reals

[x1,x2] = dsolve(...

'Dx1=-3*x1+2*x2', ... % the system, first line ...

'Dx2=-4*x1+x2' , ... % second line.

'x1(0)=0' , ... % initial conditions ...

'x2(0)=1' , ...

't'); % the independent variable

x1 = simplify(x1) % simplify solutions if possible

x2 = simplify(x2)

%Plot the solutions using ezplot:

h1 = ezplot(x1,[0,2*pi]); hold on;

h2 = ezplot(x2,[0,2*pi]);

set(h2, 'Color','r');

legend('x1','x2');

ylim([-0.4,1.3])

8

Tasks

Solutions that do not fill the following requirements EXACTLY, PRECISELY
AND TO THE LETTER will not be considered:

• Send your solutions by email to:

stefan.karlsson@hh.se

subject: Matlab, Exercise X, YourNames

• Send all the files that are requested, no more and no less, in one single zip
file per exercise, with NO sub-folders in the zip file. All the files, for all
the tasks should be bundled into one zip file.

• Put the Names of the authors, in remarks, at the top of every m-file.

• Send the solutions within 2 weeks of every exercise session. That is, you
have a two week deadline to hand it in.

• You will get 2 chances to send it in to me correctly.

9

Task 1

Write an m-file e9_1.m that proves that rotation matrices (for 2D rotations
in the plane) are invertible by their transpose. Use symbols of the symbolic
toolbox in Matlab. The m-file should output in a nice format:

1. The definition of a rotation matrix: R

2. The transpose of a rotation matrix: RT

3. The inverse of a rotation matrix: R−1

4. Proof that: RTR = I (identity matrix), R−1R = I and RT − R−1 = 0
(the 2-by-2 zero matrix)

Hint: use simplify

10

Task 2

Write an m-file e9_2.m that solves the following equation system consisting of
3 differential equations:

ẋ1(t) = x1(t) + x2(t)− 2x3(t)

ẋ2(t) = 2x1(t)− 2x3(t)

ẋ3(t) = −2x1(t) + 2x2(t) + x3(t)

Make a plot of the solutions in the interval 0-2 sec. Assume the following
initial conditions: x1(0) = 2, x2(0) = 1 and x3(0) = 1

11

Task 3(optional for grade 4)

Create an m-file e9_3.m that has a user interface (create with GUIDE). The
GUI should have 3 buttons performing integration(anti-derivative using int),
differentiation and Taylor polynomial when pressed. When pressing any of the
buttons, the resulting function should be plotted in an axes object in the GUI,
together with the original function. Thus, always there should be two graphs
plotted, the original function in blue, and the new function (through integration,
differentiation or Taylor) in red.

The function is given in a text box in the GUI, and is a function of x.
For the Taylor approximation, its expansion point and its order should be

given in two text boxes in the GUI.
The GUI should look like the figure below, with appropriate default values.

The default function is cos(x):

Figure 1: Appearance of the GUI for Task 3

12

	Introduction
	Algebraic Symbols
	Symbolic Matrices
	Assumptions

	Differentiation
	Integration (anti-derivatives)
	Taylor series
	Equation solving
	Differential equations
	Systems of differential equations

