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Abstract. Recently and due to the advances in sensor technology and
Internet-of-Things, the operation of machinery can be monitored, using
a higher number of sources and modalities. In this study, we demonstrate
that Multi-Modal Translation is capable of transferring knowledge from
a modality with higher level of applicability (more usefulness to solve an
specific task) but lower level of accessibility (how easy and affordable it
is to collect information from this modality) to another one with higher
level of accessibility but lower level of applicability. Unlike the fusion of
multiple modalities which requires all of the modalities to be available
during the deployment stage, our proposed method depends only on the
more accessible one; which results in the reduction of the costs regard-
ing instrumentation equipment. The presented case study demonstrates
that by the employment of the proposed method we are capable of re-
placing five acceleration sensors with three current sensors, while the
classification accuracy is also increased by more than 1%.

Keywords: Induction Motor · Broken Rotor Bar · Fault Diagnosis ·
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1 Introduction

Induction motors, mainly due to their affordable operational and maintenance
costs alongside their reliability, are the most frequently used type of motors for
industrial use cases [21]. The significance of their use in comparison to other
equipment can be better understood by their share in energy consumption; they
are estimated to consume up to 68% of the total energy in industrial sector,
worldwide [2]. Therefore, optimizing the uptime of induction motors is of vital
importance. Various faults can be expected to occur over the lifetime of this
type of machinery. In particular, Broken Rotor Bar (BRB) problem – which
is a partial crack, or a complete breakage, of the rotor bar – is categorized as
one of the major faults of rotors [9]. Such an occurrence brings up different
consequences, from increased power consumption [14] to unbalanced current in
remaining rotor bars [9]. BRB can be detected by monitoring and analyzing a
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wide range of physical properties, with motor current and machinery vibrations
considered to be among the most effective ones [7].

In recent years, enabled by the developments in the field of Internet-of-Things
(IoT), we have witnessed an exponential growth in the amount of information
that is being collected [18]. It has transformed the predictive maintenance (PdM)
field, since the IoT is now the tool to collect, process and distribute large amounts
of streaming data. The growth in the available information is not limited to the
volume of data, but it also includes the variety of information being collected,
in terms of different sources and sensor types [18, 13].

On the one hand, employing more modalities to solve any given problem is
likely to improve the performance due to the inherent increase in the amount
of available information. However, it is not always cost efficient, as the multi-
source data is likely to include notable level of redundancy, potentially making
the investment into additional equipment questionable. It has been shown that
fusion of the data from different sources is not always helpful and extraction
of high level features from key sources is often more important [18]. Moreover,
multiple modalities are likely to vary from both accessibility (how easy it is
to collect an arbitrary modality) and applicability (how useful this modality
is to implement the in-hand task) point of view; therefore it can be logical to
transfer knowledge from more applicable modality to more accessible modality
to optimize the accessibility-applicability trade-off.

The contribution of this paper is an extension of our previous study [23],
where we have compared vibrations against phase currents for BRB detection,
and demonstrated that the former offer higher level of classification accuracy.
Unfortunately, due to higher price and stricter requirements of proper sensors
installation, vibrations is a less accessible modality in production environments.
Building on these results, in this paper we demonstrate the possibility of em-
ploying modality embedding translation techniques to transfer knowledge from
source (vibrations) to target (currents) modality in fault diagnosis case stud-
ies. We establish the effectiveness of this approach by showing that transferring
the knowledge from vibrations to currents leads to increase in BRB detection
accuracy.

Remaining of this paper is organized as follow: in Section 2, a number of
previous studies preserving similarities to the present study are discussed. Af-
terwards, in Section 3, we introduce the proposed methods used in this study
in details. Consecutively, in Section 4, experimental setups to evaluate the effec-
tiveness of the proposed method is reported. Finally, yet importantly in Section
5 results from 4 is discussed and conclusions of this study is provided.

2 Related Works

2.1 Intelligent BRB Detection

Application of intelligent methods for detection and severity assessment of BRB
problem have been studied in depth. For example, in [3], Empirical Mode Decom-
position combined with an Adaptive Linear Network, alongside Feed Forward
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Neural Network are employed to diagnose various types of defects in motor (in-
cluding the BRB problem) based on motor current signal. Similarly, in [20],
Wavelet Packet Decomposition is used to extract highly abstract set of features
from stator current signals. The extracted feature set is next provided to a Multi-
Layered Perceptron to classify the number of broken rotor bars in the induction
motor. Besides stator current, machinery vibrations is also a great source of
information for intelligent BRB detection. In [17], Sparse Representation is uti-
lized to extract features from vibrations signals and these features are then used
to evaluate the machinery health state, from BRB problem point of view. Like-
wise, in [19] the feature set extracted by Wavelet Discrete Transform is employed
alongside K-Nearest Neighbors to not only detect complete BRB problem, but
also to classify the severity of partial BRB. The methodology presented in that
study is applicable to different levels of loading condition. Moreover, they had
also considered the noise robustness of the proposed method.

Similar to the referenced studies, in this study we employ frequency domain
signals of both vibrations three-phase currents to diagnose a squirrel cage induc-
tion motor, according to BRB problem.

2.2 Contrastive Representation Learning

When it comes to supervised learning of deep classification networks, cross-
entropy loss is the most frequently used loss function [10]; alternatively, we may
consider extraction of a feature set with optimum separability of classes as the
objective of a learning process. A set of strategies known as Contrastive Repre-
sentation Learning (CRL) are concerned with the construction of feature space,
where different classes are sufficiently separable. CRL can be defined as learn-
ing by comparing the data [12]. Taking advantage of CRL strategies, one can
be able to unlock higher level of classification accuracy, when compared with
conventional baselines. For example, in [23], one step CRL-based pre-training
turned out to be noticeably more effective for BRB classification. Moreover,
the application of CRL-based pre-training is not limited to only classification
tasks; in [15] contrastive pre-training is employed to learn de-noised sequence
representations in both language and language-vision domains, based on self-
supervised approaches. Similarly in [26], contrastive pre-training is utilized for
event extraction in an unsupervised manner.

In our previous work [23], we showed that the application of CRL-based pre-
training is an effective approach to overcome loading variation problem; there-
fore, in the presented work we also use this technique.

2.3 Multi-Source Fault Diagnosis

With the advances in IoT and sensors technology, information from more di-
verse sources is available. This has resulted in the application of Multi-Modal,
or Multi-Source, techniques to PdM use cases. For instance, in [25], the tra-
ditional fusion of Multi-Source information is replaced by considering multiple
sensors as different channels of the input fed to a Convolutional Neural Network.
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This network is used to diagnose bearing faults, given time-domain vibration
signals collected from three different locations. Moreover, in [1] a novel Hybrid
Deep Neural Network is used to firstly extract two sets of features, temporal and
spatial, respectively using Long Short Term Memory (LSTM) and Convolutional
Neural Network (CNN) branches; subsequently, a fully-connected network is em-
ployed to fusion these two sets of features. The proposed architecture is used for
remaining useful life estimation problem. Although fusion is beneficial in most
cases, however, it is not always the best approach to take; mainly because of
redundancy in multi-source datasets, or the added noise that comes from addi-
tional sensors. Therefore, a set of techniques is concerned with the maximization
of the similarity over the representations derived from different modalities, or
sources. As an example, in [16] a Deep Coupling Autoencoder is used to derive
a joint representation from vibration and acoustic emission signals to capture
the correlation between these two different modalities. The referenced method-
ology is shown to provide superior performance in comparison with traditional
approaches, in bearing and gearbox fault diagnosis case studies.

Multi-Modal Translation, defined as the task to transfer or translate knowl-
edge from a source modality to a target one [22], enables one to learn a mapping
from a source modality to a target one. Multi-Modal Translation includes vari-
ety of applications, such as Image Captioning [8] (generation of a textual rep-
resentation from an image) and Multi-Modal Speech synthesis [22] (generating
audio given its textual representation). It is worth mentioning that Multi-Modal
translation where the target modality is high-dimensional can get extremely chal-
lenging; one way to respond to this challenge is translating to a low-dimensional
representation of the target modality containing higher level of semantic informa-
tion in comparison with the input belonging to the source modality [27]. Taking
this approach also saves the need to re-learn the latent space representation from
its reconstructed version; making the implementation of consequent tasks, such
as classification, easier.

3 Method

We propose a method that is based on Hybrid Classification, i.e., utilizing con-
trastive pre-training to derive the low-dimensional representation of the target
modality. That embedding is then reconstructed, using a Pseudo-Autoencoder
for Modality Embedding Translation, directly from the source modality. The
whole process of extraction of low-dimensional representation and implementa-
tion of the modality embedding translation is demonstrated in Figure 1. Finally,
in Section 3.3, we present the Centered Kernel Alignment which we use to high-
light the similarity of representations learned by different networks.

3.1 Hybrid Classification

Siamese neural networks are one way to implement a contrastive pre-training. As
the name suggests, a Siamese network is made of two exactly identical networks;
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not only using the same architecture, but also sharing parameters. During its
training process, the network is fed with positive pairs (both instances belong
to same class) and negative pairs (instances belong to different classes). It is
trained to aggregate all the observations sharing a class in the same region
of the latent feature space it reconstructs (embedding); and simultaneously, to
project observations from different classes to separate regions. Different options
are available to train a Siamese network, including Contrastive Loss, defined as:

ContrastiveLoss = (1 − Y )D2
w + (Y )

1

2
(max{0,m−Dw})2, (1)

where Y is the label of a given pair, either 0 (for negative pairs) or 1 (for positive
pairs), Dw is the similarity of the embedding of the observations in a pair and
the m is the margin used to set a base value for the desired distance between
negative pairs.

As mentioned earlier, access to a low-dimensional representation of the target
modality is essential for the modality embedding translation task. In our pre-
vious work, we demonstrated that the application of contrastive pre-training is
capable of improving the classification accuracy [23]. We use the same approach
here, by first training a hybrid classifier and then re-using the low-dimensional
representation created this way to train a Pseudo-AE network. Training the hy-
brid classifier involves two steps; first, we train a feature extractor network using
contrastive learning approaches; second, a softmax layer is added to the feature
extractor and the whole network is trained as a classifier. It is noteworthy that we
divide the training dataset into two distinct portions, Contrastive and Regular.
They are used during pre-training and actual training, respectively. The process
of training the hybrid classifier and extracting the representation (embedding)
is demonstrated in the Figure 1a.

3.2 Pseudo-AE for Modality Embedding Translation

Modality embedding translation is implementable using different methods, in-
cluding an Autoencoder-like network, pseudo-AE for short. Such a network can
be used to learn a mapping from source modality to a lower dimensional rep-
resentation of the target modality. Autoencoders are networks capable of re-
constructing a given input at its output, with the constraint of learning a lower
dimensional representation of the input in its bottle-neck. Similarly, a pseudo-AE
can be defined as a network capable of reconstructing an arbitrary but some-
how related representation from a given input. Taking such an approach, we are
able to reconstruct a representation, originally extracted from target modality,
using only the source modality. A pseudo-AE can be trained using a similarity
maximizing loss function, such as a Mean Squared Error.

In our previous work [23], we showed that vibrations offer a significantly
higher classification performance, compared to current. On the other hand, the
collection of multi-point vibrations from an induction motor is far more chal-
lenging compared with three-phase currents; in most cases, it requires invasive
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(a) Training procedure for creating the Hybrid Classifier.

(b) Pseudo-AE Training and Post-training Procedure

Fig. 1: Visual Demonstration of the Proposed Method
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measurements which do not suit practical online monitoring use cases. More-
over, current sensors are likely to be more affordable in comparison with their
vibration counterparts. Last but not least, in the case study presented here, by
taking advantage of the modality embedding translation technique, we would
be able to decrease the number of required sensors from 5 (number of vibrome-
ters) to 3 (number of current sensors), resulting in a more affordable technical
infrastructures for data collection and storage.

To perform the modality embedding translation, we assume that we have
access to synchronously measured signals from both modalities. Moreover, we
also assume that we have access to the corresponding superior (task-specific)
embeddings of the target modality (vibrations), for every observation of the
source modality. In section 3.1, we have explained the procedure used to extract
such superior embedding.

Using the Pseudo-AE network, we are able to learn a mapping from three
phase currents FFT spectra towards the latent space of vibrations embedding.
Having access to such a mapping, we will be able to reconstruct the correspond-
ing vibration embedding, given an arbitrary observation in the three-phase cur-
rent spectra. Once the mapping is learned, we are adding a softmax layer on top
of the Pseudo-AE network and post-training it – utilizing Categorical Cross-
Entropy loss function. This way, the network can be used for induction motor
health state diagnosis, from BRB point of view, based only on the currents input
data. Having the currents to vibrations embedding mapping learned sufficiently
well, we are able to improve the performance of current-only dependent BRB
detection classifier beyond what is possible by learning directly from raw data.

3.3 CKA for Representation Similarity Comparison

The effectiveness of a network in the fulfillment of a modality translation task,
can be done by comparing the representations learned by the network at each
layer. In the modality embedding translation task, an ideal translator should
have representations similar to the ones from the source modality network in the
early layers, while the final layers should be more similar to those of a network
trained on the target modality. This way, we can make sure that a mapping from
the source modality to the desired subspace of the target modality is learned well.

A number of techniques from a field known as Representational Similarity
can be used to capture and quantify the similarity between two arbitrary em-
beddings. Among various proposed metrics, all possess different advantages and
disadvantages; however, Centered Kernel Alignment (CKA) is considered as the
current state of the art [4]. CKA not only enables measuring similarity between
representations derived by different layers of the same network, but is also ca-
pable of quantifying the similarity between representations at different layers of
different networks [11].

CKA mainly relies on the idea that the similarity of two sets of representa-
tions can be measured by calculating the similarity between every pair of exam-
ples in each set separably and comparing the similarity structures. Consider X
and Y as two matrices including representations derived from n examples. Dot
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product can be used to evaluate the level of similarity between the representa-
tions, as demonstrated in the Equation 2:

⟨vec(XXT ), vec(Y Y T )⟩ = tr(XXTY Y T ) = ∥Y TX∥2F (2)

Assuming that X and Y are centered, it implies Equation 3:

1

(n− 1)2
tr(XXTY Y T ) = ∥cov(XT , Y T )∥2F (3)

By employment of the Hilbert-Schmidt Independence Criterion [6], Equa-
tions 2 and 3 can be generalized to inner products from kernel Hilbert spaces;
moreover, squared Forbenius norm of the cross-covariance matrix turns into the
squared Hilbert-Schmidt norm of the cross-covariance operator [11]. Consider-
ing Kij = k(xi, yj) and Lij = l(xi, yj) where k and l are two kernels, empirical
estimator of HSIC can be defined as:

HSIC(K,L) =
1

(n− 1)2
tr(KHLH), (4)

where H is the centering matrix Hn = In − 1
n11T . A normalization step can

make it invariant to isotropic scaling S(X,Y ) ̸= S(αX, βY ) for all α, β ∈ R+.
Normalized HSIC is known as Centered Kernel Alignment:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
) (5)

In this work, we employ CKA to compare the representations derived by the
vibration embedding modality translator network, given corresponding current
observation (curr2vib for short). This way, we would be able to investigate the
goodness of the mapping learned by modality latent space translator in trans-
forming input from the source modality (currents frequency spectra) to the latent
space originally derived from the target modality (vibrations frequency spectra).

4 Experiments

Three different experiments are carried out in this study. This section starts
with introducing the dataset and the pre-processing procedure. Next, in Section
4.2, we present results of training hybrid classifiers directly on the raw data of
different modalities. This is followed, in Section 4.3, with the demonstration of
improvements provided by training the Pseudo-AE model. Last but not least, in
Section 4.4, we employ CKA to compare the similarity of representations derived
from different networks and modalities.

4.1 Dataset and Pre-processing Procedure

Data is the essential ingredient of every data-driven study and ours is not an
exception. We took advantage of the experimental dataset for detecting and
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diagnosing rotor broken bar in a three-phase induction motor [24] to carry out
our case study. This dataset provides us with both electrical (phase voltages and
currents) and mechanical (multi point vibrations) signals. Five different states
from BRB problem point of view (from zero to four broken rotor bars), over
eight different levels of mechanical torque as loading conditions are available in
this dataset. In this study, we consider four distinct levels of mechanical torque
to consider the various loading condition, corresponding to 12.5%, 50%, 62.5%
and 100% of nominal load. The classification problem we take into account in
this study is to predict the number of broken rotor bars (from zero to four ones),
over a balanced training and testing dataset, from both loading conditions and
number of broken rotor bars.

The original time-domain signals are split into shorter ones, using 1024 and
6667 points-long windows for vibrations and currents signals, respectively. More-
over, Fast Fourier Transform (FFT) is employed to map time domain signals to
frequency domain signals, resulting in 512 and 3333 points long vibrations and
currents signals, in frequency domains. The 5 point vibration signals collected
from different location and three phase currents are then concatenated hori-
zontally to form 2560 and 9999 points long signals for vibrations and currents
modalities.

The whole dataset is randomly split into training (75%) and testing (25%)
sets. In addition to that, min-max scaling is used to normalize the feature
space.The fact that by the application of min-max scaling every frequency com-
ponents in frequency spectrum is regarded as an individual feature, makes this
scaling strategy an optimal choice for the problem in hand.

4.2 Hybrid Classification by Contrastive Pre-training

As mentioned in Section 3.1, we employ contrastive pre-training to train a hy-
brid vibrations classifier. This classification network is used to extract a 64-
dimensional representation of the original vibrations input (2560 long space); we
believe it is a reasonable size to compress the original 2560-dimensional space.
The referenced low dimensional representations are derived from the last layer
of the classification network, excluding the softmax layer (since this layer is ex-
pected to contain the feature set with the highest level of abstraction). This
latent subspace would be later used to learn a mapping from currents to the
vibrations embedding latent subspace. This process is discussed in more detail
in Section 4.3.

To train the hybrid vibration classification network, we start with splitting
the training vibrations dataset into regular and contrastive portions, with a ratio
of 25% contrastive to regular. Afterwards, 10 pairs are created per observation in
the contrastive portion of the training dataset, consisting of five positive and five
negative ones. These pairs are used to conduct a contrastive pre-training pro-
cess for the feature extractor of the hybrid vibration classification network. The
feature extractor utilizes a multi-layered perceptron architecture with 2560-1280-
640-580-512-256-128-64 neurons per layer. All the layers use hyperbolic tangent
as the activation function. During the contrastive pre-training Contrastive Loss
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is used as the loss function, number of epochs is 100 and learning rate is 0.00001.
It is worth mentioning that, the choice of learning rate and epoch, not only for
this specific experiment but also for all the experiments carried out in this paper,
is done to 1) keep training process properly smooth by using relatively low learn-
ing rate and 2) achieving the best possible model parameters by the employment
of surpass number of epochs. Having the pre-training process finished, a softmax
layer is added to the feature extractor to form a classification network and the
remaining 75% portion of the training data is used to post-train the classifica-
tion network. During the post-training process Categorical Cross-entropy – as
the most frequent choice of loss function in multi-class classification problems– is
used as the loss function, number of epochs is 400 and learning rate is 0.000001.
Having the whole network post-trained, the latent space required to conduct the
modality embedding translation process is now extractable. This can be done
by extracting the representations available in the last layer of the classification
network before softmax layer, corresponding to all the vibrations observations
available in the training dataset.

Similarly, a hybrid classifier utilizing currents as the input is implemented,
also using hyperbolic tangent as the activation function and following 9999-
7500-6000-4500-3000-1500-750-500-250-50 architecture. For the contrastive pre-
training of this network, four pairs are created per each observation in the con-
trastive portion. Moreover, the choices of hyperparameters such as loss function,
number of epochs and learning rate for both contrastive pre-training and cate-
gorical cross-entropy post-training are kept the same as the ones used for hybrid
vibrations classifier. To account for the randomness, experiments are conducted
5 times and mean of the classification accuracy is used as the metric to evaluate
the performance, as it is the most frequent metric to evalueate the performance
of a classifier in balanced classification problems. Results regarding the classi-
fication performance of hybrid classifiers on the testing dataset are shown in
the first two rows of Table 1. As it is clearly observable, both modalities are
offering +90% accuracy in classification of the BRB detection problem. Addi-
tionally, vibrations are offering significantly higher performance in comparison
with current.

Table 1: Average (AVG) and Standard Deviation (STD) of classification accuracy
of each network.

Network AVG STD

Currents 0.9096 0.0070

Vibrations 0.9769 0.0033

curr2vib 0.9204 0.0041
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4.3 Modality Embedding Translation using Pseudo-AE

Different approaches are available for Modality Embedding Translation; in this
study, we employ a Pseudo-AE network, utilizing a Multi-Layered Perceptron
with the architecture of 9999-6000-3000-750-250-150-50-64. In the proposed ar-
chitecture, the last layer before the output is kept to a lower-dimensional com-
pared with the output to preserve the constraint of learning the lowest dimen-
sional representation in the middle layers of network. Moreover, in all the neu-
rons of this network, hyperbolic tangent is used as the activation function. Be-
sides, Logarithmic Mean Squared Error, 100 and 0.0000001 are used as the loss
function, number of epochs and learning rate during the Seq2Seq reconstruction
training of the Pseudo-AE network. Once the mapping from current to vibrations
embedding is learned, we need a post-training process to make a classification
network out of the Pseudo-AE network. This is done by addition of a softmax
layer to the Pseudo-AE network and employment of Categorical Cross-entropy as
the loss function of the whole classification network. Categorical Cross-Entropy
is chosen, as it is the most frequent option to use for multi-class classification
tasks. Moreover, 0.0000001 and 2000 are employed as the learning rate and num-
ber of epochs for the implementation of the post-training process. It is worth
mentioning that the whole training dataset is employed to learn the mapping
from current to vibrations embedding, however, similar to the Section 3.1 only
75% of the training dataset is used during the post-training process.

In the final row of Table 1, the performance of the proposed method (curr2vib)
is presented. When compared with the performance of current-based hybrid clas-
sifier, we managed to increase the classification performance by more than 1%
due to taking advantage of the modality embedding translation technique and
the vibrations embedding. Moreover, lower STD of the curr2vib classifier in com-
parison with hybrid current classifier demonstrates the higher level of stability
of this approach.

4.4 Using CKA to Evaluate the Effectiveness of Pseudo-AE to
Translate Modality Embedding

Comparison of the representations learned by neural networks at different lay-
ers can be used to quantify the similarities between the set of features learned
at each layer. In particular, in this study we employ CKA – current state of
the art tool to investigate the similarities between representations learned by
different networks at different layers – to evaluate the effectiveness of our pro-
posed method in the extraction of features similar to the target modality, given
the source modality as the input. Representations extracted for these compar-
isons are derived from observations included in the testing dataset. Moreover,
we employed the implementations1 provided by authors of [11].

Using the heatmaps present in Figure 2, we are able to compare the similarity
of the representations learned by different models, pairwise. The color which has

1 https://cka-similarity.github.io/
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filled the cells of these heatmaps is an indicator of the similarity scores, measured
using CKA technique. In the Figure 2a, the similarity between representations
extracted from Vibrations Classifier and Currents Classifier is demonstrated.
As it is expected, representations at the initial layers are not similar, since the
two networks are fed with information belonging to different modalities as input.
Moreover, significant increase in the similarities of the representations is observed
among those extracted from fourth and further layers; clearly, in these layers both
networks are able to extract related, highly-abstract feature sets. Besides that,
in Figure 2b, representations extracted from Currents Classifier, and curr2vib
Classifier are compared. Unlike the previous figure, in this figure, a noticeable
level of similarity is found between first three layers of the networks; this makes
intuitive sense, as they are fed with identical inputs. Moreover, we experience
significant reduction in the similarity from the fourth layer, showing that the
features learned by two networks in these layers differ, which is the reason for
the gap between these two networks in the classification of BRB problem.

(a) Hybrid Vibrations
Classifier and Hybrid
Currents Classifier

(b) Hybrid Current Clas-
sifier and curr2vib Classi-
fier

(c) Hybrid Vibrations
Classifier and curr2vib
Classifier

Fig. 2: Plots of CKA values of pairwise comparisons of the three networks.

Last but not least, in Figure 2c, representations from Hybrid Vibrations Clas-
sifier and curr2vib Classifier are compared. Again, as in Figure 2a, the initial
layers are not similar as the inputs belong to different modalities. Moreover,
significant increase in the similarities is noticeable from the fourth layers to
the end of the networks; this increase happens in the similar region where the
Figure 2b experienced the drop in the similarity, demonstrating that the trans-
formation of the representations available in the fourth layer to the rest of the
network extracted by the curr2vib Classifier is making them more similar to
the ones extracted by the Hybrid Vibrations Classifier. Being more similar to
the representations extracted from Hybrid Vibrations Classifier, rather than the
ones extracted from Hybrid Currents Classifier, can be considered as the reason
behind the improvement in the classification performance.
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5 Discussion and Conclusion

Comparison of the similarity of the representations learned by source-only based
classifier (currents classifier), target-only based classifier (vibrations classifier)
and Multi-Modal Embedding Translation classifier (curr2vib classifier), showed
that the proposed method is capable of learning, using only the weaker source
modality, representations similar to those coming from the stronger target modal-
ity. Therefore, this approach exploits some of the principles underlying Knowl-
edge Distillation; a set of techniques and approaches to transfer what a superior
model (teacher), or ensemble of them, has learned, to an inferior one (student)
[5]. Knowledge Distillation is mainly concerned with improving the performance
of a model with the help of another model. According to the above definition,
vibration classifier is the teacher model and the curr2vib is the student model;
Moreover, as the teacher model in this study is kept non-trainable during the
knowledge transfer process, curr2vib utilizes an offline distillation scheme.

This study applies Modality Embedding Translation – as a Multi-Modal ap-
proach – to transfer knowledge from source modality (with high classification
performance but expensive to collect) to the target one (cheaper, but with lower
performance). As shown in the case study investigated, employment of such strat-
egy is capable of improving the performance, when compared against conven-
tional approaches learning on raw data in target modality separately. Although
both modalities are required during the training process, in the deployment stage
only the target modality is needed; therefore this approach is considerably more
affordable in comparison with sensor fusion. Using the proposed strategy, we
are able to replace expensive instrumentation pieces of equipment with more
affordable ones while the performance is kept within acceptable range. One limi-
tation is that the implementation of the proposed method requires having access
to synchronously measured signals from both modalities, which can be hard to
provide. Although measuring signals from both modalities simultaneously tends
to reduce the data collection time, however, it is not always cost efficient to
record both modalities at the same time, as it would require data acquisition
equipment with higher capacities. The future works on this topic can be directed
towards development of strategies to eliminate this constraint.
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