
Pytorch with Lightning

Why

• Full flexibility
• Try any ideas using raw PyTorch without the boilerplate.

• Reproducible + Readable
• Decoupled research and engineering code enable reproducibility and

better readability.

• Simple multi-GPU training
• Use multiple GPUs/TPUs/HPUs etc... without code changes.

• Built-in testing

Torch Model

Torch Training Loop

Ok… Someone told me LR scheduler helps
training

Perhaps I should clip my gradients

Let’s speed up the training and accumulate
gradients

Oh.. I found this github repo with something
interesting

Ups, I forgot to log my metrics and losses

Wait my training loop isn’t working…

Where is the bug

Nice we got a GPU, lets update the code!

But wait… What if I want to use more than 1
GPU?

Lets simplify it with

The main principle
You do the cool staff

Lightning takes care of the boilerplate

How about data?

We have it all, lets train!

Can we finally use multiple GPUs?
Or even a TPU?

Lets see a full example

Package to interact with the Operating System

Pytorch package

Pytorch submodule with the Neural Network layers
Pytorch submodule for tensor manipulation
Torchvision submodule with dataset transformations
Torchvision submodule with predefined datasets
Class used to load a dataset

How Lightning is organised

A LightningModule will help us organise our code into 6 sections:

• Initialisation
• Train Loop
• Validation Loop
• Test Loop
• Prediction Loop
• Optimizers and LR Schedulers

Encoder Decoder in Pytorch

Lets wrap it up with

For this example we only need the training step
and the optimizers

Lets define the dataset and the training

What is happening under the hood

Validation and Testing

test_step function How to test the model?

Imports

Validation and Testing

validation_step function How to use the validation slipt?

Saving and Loading Checkpoints

Defining the root directory for the checkpoints

How to load from a checkpoint

	Slide 1: Pytorch with Lightning
	Slide 2: Why ⚡
	Slide 3: Torch Model
	Slide 4: Torch Training Loop
	Slide 5: Ok… Someone told me LR scheduler helps training
	Slide 6: Perhaps I should clip my gradients
	Slide 7: Let’s speed up the training and accumulate gradients
	Slide 8: Oh.. I found this github repo with something interesting
	Slide 9: Ups, I forgot to log my metrics and losses
	Slide 10: Wait my training loop isn’t working… Where is the bug
	Slide 11: Nice we got a GPU, lets update the code!
	Slide 12: But wait… What if I want to use more than 1 GPU?😫
	Slide 13: Lets simplify it with ⚡
	Slide 14: The main principle
	Slide 15: How about data?
	Slide 16: We have it all, lets train!
	Slide 17: Can we finally use multiple GPUs? Or even a TPU?
	Slide 18: Lets see a full example
	Slide 19: How Lightning is organised
	Slide 20: Encoder Decoder in Pytorch
	Slide 21: Lets wrap it up with⚡
	Slide 22: Lets define the dataset and the training
	Slide 23: Validation and Testing
	Slide 24: Validation and Testing
	Slide 25: Saving and Loading Checkpoints

