HALMSTAD
UNIVERSITY

CUDA C Presentation & Dem D

TS

Embedded Intelligent Systems Languages and Tools: Oral
Presentation

31.01.2024

Table of Content

* Introduction

* Heterogenous Computing

* Blocks

* Threads

* Indexing

* Shared Memory and Sync Threads

* Device Management
CUDA Demo

H HALMSTAD
UNIVERSITY

What is CUDA!
= CUDA Architecture

1 Expose GPU computing for general purpose.

 Retain performance.

= CUDA C

(] Based on industry-standard C.
d Small set of extensions to enable heterogenous programming.

Straightforward APIs to manage devices and memory.

W» HALMSTAD
UNIVERSITY

Table of Content

* Introduction

* Heterogenous Computing
* Blocks

* Threads

* Indexing

* Shared Memory and Sync Threads
* Device Management

CUDA Demo

“ HALMSTAD
UNIVERSITY

Heterogenous Computing

* Hardware Terminologies
O Host: The CPU and its memory (host memory).

d Device: The GPU and its memory (device memory).

Host Device

" Processing Flow

(Serial part of the code usually run on the Host, but not necessary.

d To utilize the GPU’s full performance potential, the parallel part of the code is run over the
Device.

(d Nvidia compiler nvcc is used to compile C/CUDA-based programs.

W» HALMSTAD
UNIVERSITY

CUDA C Programming Sample

* C Programming * CUDA C Programming
int main (void) { __global void newkernel (void) ({
printf ("Hello World'\n"“); }
return O;
} int main(void) {
newkernel<<<1l,1>>>() ;
@ printf ("Hello World'\n"“);
@ return O;

Called from the host and
executed on the device

H HALMSTAD
UNIVERSITY

Memory Management

= Simple CUDA APIs for handling device memory
| cudaMalloc (), cudaFree (), cudaMemcpy ()
* Allocate space for device copies assigned variables

| cudaMalloc ((void **)ga, size);

= Copy inputs to device
Q cudaMemcpy (d _a, &a, size, cudaMemcpyHostToDevice) ;

* Cleanup

d cudaFree(d a);

“ HALMSTAD
UNIVERSITY

Table of Content

* Introduction

* Heterogenous Computing

* Blocks
* Threads
* Indexing
* Shared Memory and Sync Threads

* Device Management
CUDA Demo

H HALMSTAD
UNIVERSITY

Running in Parallel

® The 244 () kernel
__global void add(int *a, int *b, int *c) {

*c = *a + *b;

}

" Instead of executing add()once, execute N times in parallel on the
device

add<<< 1, 1 >>>();

add<<< N, 1 >>>();

H HALMSTAD
UNIVERSITY

Block-based Parallelism

* With 2qq () running in parallel we can do vector addition

__global void add(int *a, int *b, int *c) ({
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

* By using viockrax.x to index into the array, each block handles a
different element of the array

* On the device, each block can execute in parallel:

Block O Block 1
c[0] = al0] + b[0]; c[l] = all] + b[1l];
Block 2 Block 3
cl[2] = alZ2] + b[Z2]; c[3] = al3] + b[3];

W» HALMSTAD
UNIVERSITY

Table of Content

* Introduction

* Heterogenous Computing
* Blocks

e Threads

* Indexing
* Shared Memory and Sync Threads

* Device Management
 CUDA Demo

H HALMSTAD
UNIVERSITY

CUDA Threads

* A block can be split into parallel threads
" Let’s change -44()to use parallel threads instead of parallel blocks

__global void add(int *a, int *b, int *c) {
c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}

= We use threadrax. x Instead of viockrax. x

= We can execute -=q4() with N threads

add<<< 1, 1 >>>();
N threads

add<<< 1, N >>>();

H HALMSTAD
UNIVERSITY

1 block

Table of Content

* Introduction

* Heterogenous Computing
* Blocks

* Threads

* Indexing
* Shared Memory and Sync Threads

* Device Management
 CUDA Demo

H HALMSTAD
UNIVERSITY

Indexing using Blocks and Threads

" Let’s adapt =aq()to use both threads and blocks at the same time
" Use the built-in variable v10cx0in. « for threads per block

__global void add(int *a, int *b, int *c) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
c[index] = a[index] + b[index];

}
" For proper indexing, changes need to be made in zin()

#define N (256 * 256)
#define THREADS PER BLOCK 16
add<<< N/THREADS PER BLOCK, THREADS PER BLOCK >>> () ;

H HALMSTAD
UNIVERSITY

Table of Content

* Introduction

* Heterogenous Computing
* Blocks

* Threads

* Indexing

* Shared Memory and Sync Threads

* Device Management
 CUDA Demo

“ HALMSTAD
UNIVERSITY

Cooperating Threads

" Use :harea to declare a variable or array in shared memory
= Data is shared between threads in a block
* Not visible to threads in other blocks

" Use syncthreads()as a barrier

= Used to prevent data hazards

W» HALMSTAD
UNIVERSITY

Implementation with Shared Memory

* Example:

#define BLOCK SIZE 16

__global void add(int *a, int *b, int *c) {
__shared int temp[BLOCK SIZE];
int index 1 = threadIdx.x + blockIdx.x * blockDim.x;
int index 2 = threadIdx.x;
//Read input elements into shared memory
temp[index 1] = in[index 2];

//Synchronize, ensure all the data 1is available
__syncthreads() ;

H HALMSTAD
UNIVERSITY

Table of Content

* Introduction

* Heterogenous Computing
* Blocks

* Threads

* Indexing

* Shared Memory and Sync Threads

* Device Management
 CUDA Demo

“ HALMSTAD
UNIVERSITY

Coordinating Host and Device

* Kernel launches are asynchronous

* Control returns to the CPU immediately
* CPU needs to synchronize before consuming the results

cudaMemcpy ()

cudaMemcpyAsync ()

cudaDeviceSynchronize ()

- Blocks the CPU until the copy is complete.

- Copy begins when all preceding CUDA calls
have completed.

- Asynchronous, does not block the CPU.

- Blocks the CPU until all preceding CUDA calls
have completed.

H HALMSTAD
UNIVERSITY

Device Management

= Application can query and select GPUs

= cudaGetDeviceCount (int *count)
" cudaSetDevice (int device)
" cudaGetDevice (int *device)

= cudaGetDeviceProperties (cudaDeviceProp *prop, 1nt device)

= Multiple host threads can share a device

= A single host thread can manage multiple devices

» cudaSetDevice (i) to select the current device

» cudaMemcpy (..) for peer-to-peer copies

H HALMSTAD
UNIVERSITY

Table of Content

* Introduction

* Heterogenous Computing

* Blocks

* Threads

* Indexing

* Shared Memory and Sync Threads

* Device Management

CUDA Demo

H HALMSTAD
UNIVERSITY

Demo R

Grid 1
" Grids Jomd—— TS To o
= Blocks | ?m ?:011:;(1‘.1; ?;o:l;
" Threads A,
. Kernel ———
* We prepared 2 kernels for adding 2112 1l
Block (1, 1)

and multiplying 2 matrices

* Compare performance of running
these 2 kernels on a GPU vs. CPU

" gpu matrixadd(int *a, int *b, int *c, int N)

" gpu _matrixmult(int *a, int *b, int *c, int N) GPU Hardware General Architecture

H HALMSTAD
UNIVERSITY

Thank you!

“ HALMSTAD
UNIVERSITY

	Slide 1: CUDA C Presentation & Demo
	Slide 2: Table of Content
	Slide 3: What is CUDA?
	Slide 4: Table of Content
	Slide 5: Heterogenous Computing
	Slide 6: CUDA C Programming Sample
	Slide 7: Memory Management
	Slide 8: Table of Content
	Slide 9: Running in Parallel
	Slide 10: Block-based Parallelism
	Slide 11: Table of Content
	Slide 12: CUDA Threads
	Slide 13: Table of Content
	Slide 14: Indexing using Blocks and Threads
	Slide 15: Table of Content
	Slide 16: Cooperating Threads
	Slide 17: Implementation with Shared Memory
	Slide 18: Table of Content
	Slide 19: Coordinating Host and Device
	Slide 20: Device Management
	Slide 21: Table of Content
	Slide 22: Demo
	Slide 23

