
Ex. 10, Simulink

Stefan Karlsson

May 14, 2014

1 Introduction

Figure 1: Appearance of simulink

In this exercise we will get familiar with Simulink (version 8.1.). Simulink is
the biggest “side-product” to Matlab. It is a block-based application that sim-
ulates systems. It sees a lot of use in systems modeling and engineering. There
is a huge amount of applications of Simulink, with alot of extra functionalities
and extensions. This exercise will give you only a very basic introduction. Now,
to get started:

simulink;

There will be a number of windows opening. One will be Simulink Library
Browser. There we can see some of the sublibraries with different applications
including Control Theory, Fuzzy logic, Signal Processing, Image Processing and
Telecommunication. Create a simulink model file(CTRL+N).
Have both windows open (Simulink Library Browser and model file) without
any overlap looking something like figure 1.

1

1.1 Setup Model Configuration

In the toolbar of the simulink model view, click the icon , or click Model
Configuration Parameters in the menu. There will be a settings dialog,
chose the option Solver. In Solver Options, change from ”Variable-step” to
”fixed-step”. For option Solver chose ”discrete”, and for the sample time, chose
0.01. You should see the following when done:

With these settings, simulink will behave in a very predictive way (as we
will see soon). However, for general system simulations, these are usually not
the best settings.

2 Standard useful blocks

With the configuration settings of section 1.1, make a simulink model by the
following steps. First, enter Simulink Library Browser → Simulink and
click on Sinks. There is a symbol named Scope which is used to visualize
signals being processed at any time in simulations. Click it, and drag and drop
in your model view. Get a signal source. Enter Simulink → Sources and
choose Pulse Generator, click and drag the symbol onto your model as be-
fore. The only thing that remains to be done is to connect the Pulse Generator
with Scope. Press the left mouse button and drag from the arrow on the Pulse
Generator to the input on the Scope. The result should look like:

2

We have a pulse generator connected to a scope, but how does the signal

look like? Run the simulation by clicking the little black arrow icon (or
menu: Simulation → Run). After you have run it, you can double click the
scope to see what the signal looks like. It seems to be a square wave pulse.

Lets set the period to 1/5 seconds, and amplitude to 2 of the pulse being
generated. This is achieved by double clicking on the block for the pulse gener-
ation. Run the simulation again, double click on Scope to see how it looks like
now. It seems to be rather many pulses. Use the tools menu of the scope figure
to get a good view of the signal. There are ways to zoom, pan and scale the
figure interactively.

Now, get a Signal Generator and connect it like previously:

Double click on it. Different signals in the Signal generator are available
like square wave, sawtooth and sine wave. Choose a sine wave with the default
parameters, then run the simulation. This gives you a nice sinus wave in the
scope.

Now, change the amplitude of the wave to 2 and frequency to 100 Hz, and
run the simulation again. The output in the scope should look weird, cluttered.
That’s because we dont have enough sampling frequency for our wave(our sam-
pling time is too high). The sampling time in our simulation is called ”step-size”,

and you can access it by the button , as in section 1.1. In solver options,
change ”Fixed-step size” to 0.0001, and change stop-time to 0.1 second. Run

3

the simulation again, there should now be a nice sinus, covering the simulation
time 0-0.1 seconds.

NOTE, that when we leave the model configurations in their default settings,
Simulink will be able to modify the step size automatically to fit the problem.
We will let Simulink do that most of the time (and not do the changes of section
1.1).

2.1 Defining signal sources

Make a new model that has default settings for model configurations (do NOT
do the changes of section 1.1). In it add a ”Signal Builder” block as a source.
Open it and construct a signal like Figure below. Can be done by click and drag
with the mouse button.

This allows you to custom-make signals graphically, but even more useful is
to generate your own input signals is by creating a Matlab function. This can be
done by getting Interpreted Matlab Fcn from the library Simulink→User-
defined Functions. Put it together with a Scope in, choose ramp as input.
This block is found in the directory Simulink→Sources→Ramp. The result-
ing model should look as follows:

Double clicking the block, you will see something like the following example:

4

In the MATLAB function edit box you can write any matlab expression,
and access your own function if you like (assuming that your function inputs 1
argument, and outputs 1). For now, try out the function u− u2 + 0.1u3

Click on the ramp source (a linearly increasing input). The block contains,
slope, start time and initial output.

If we want to input a nice ”linear time signal” into our function, set slope=1
and start time= 0 in our Ramp source. Then run the simulation. Double click
the scope and see the output.

2.2 Math Blocks, routing and output

Extend the model from previous example by adding a Gain block and an Abs
block (both found in the Math Operations sub-library), and construct it ac-
cording to:

5

It should be clear that Gain multiplies the signal, and abs takes magnitude.
Next, use the Derivative and the Integrator blocks from the Continuous

sub-library, to construct the following model:

The symbol on the integrator block (1
s) may confuse you if you have never

seen ”transfer functions”. We will not cover this topic in this course, so you
can ignore the symbol on the block1. From your perspective and background,
a symbol like (

∫
u) may seem more logical, and correspond to how you should

consider what the block does: it accumulates value over time.
Now, Change the input signal (Matlab Function block in your model) to

u2. The three scopes should contain the original signal, its derivative, and its
integration respectively.

Next, lets see how we can merge links using a Mux block from Signal
Routing. Add Mux block first, then double click it. In the field Number of
inputs type in 3. You should notice that this updates the visual block in the
model, to have 3 connectors on its left side. Update your model to look like this:

1in the future, if you plan on studying linear systems or control theory, you would do well
to remember this notation however

6

Notice that the single scope now takes three-signal input, which will be ev-
ident after you run your model and investigate the scope. Three graphs are
apparent.

Next, lets export some data to the Matlab workspace. Add 2 blocks Simout
from Sinks. In your new blocks, type in variable name diff3D and integrated,
and connect them as follows:

After you run your model, there should be 3 new variables in your workspace:
diff3D, integrated and tout. The variable tout is always generated when
you run simulink models, and contains the time vector of the simulation2. The
variables integrated and diff3D contains the data we gathered, but are in a
bit of a funky format. Here is how we get the relevant information:

%run this AFTER the simulink model that generates "diff3D" and "integrated"

t = integrated.Time;

sig = integrated.Data;

plot(t,sig);

legend('integrated');

similarly, we can get all three plots of the simulation:

t = diff3D.Time;

sig = diff3D.Data; %get all three signals

plot(t,sig);

legend('original','derivative','integrated');

2however, this vector is not necessarily the right size for your particular logged vector.
Read on to see how to get the correct time vector for your logged data.

7

3 Differential Equations

Describing, analyzing and solving differential equations is where Simulink really
shines. We will take two examples here, beginning with a simple model of
bacterial growth and finishing off with a mechanics system.

3.1 Bacterial Growth Model

Denote with x(t) the amount of bacteria at time t. The bacterial growth (dx(t)
dt)

is given by how many bacteria is born, offset by how many bacteria is dying. Our
model has the growth of bacteria proportional to the number of current bacterias
(x(t)), and the death of bacterias is proportional to the number squared (x2(t)),
thus:

growthRate = birthRate− deathRate

dx(t)

dt
= bx(t)− dx2(t)

Where the constants b and d are innate birth- and death constants respec-
tively. Assume an initial value of x(0) = c bacterias from the start.

There are many ways to describe this system in Simulink. A way that is
particularly simple, starts by putting in an integrator:

Notice the labels I put on the links, you can do that by double clicking links.
Labels are like remarks in regular code: they do not affect any computation.
An integrator can be thought of as an accumulator variable, that gets updated
on each iteration. On the first iteration t = 0, there will be x(0) being stored
in the integrator. This is our initial condition. Double click the integrator, and
find the option initial condition source, set it to external. This will add an
input to the integrator block, onto which we put a constant:

8

Above we used the the constant block (in commonly used blocks) to
attach to the integrator. Open the constant block, put constant value to c.
Later, we will have to set c to a value.

In order to get a full system description from our current incomplete model,
we have to CLOSE THE LOOP. From the right hand side of the integrator x(t)
we will perform operations through elementary blocks in order to get equality

with dx(t)
dt , the left hand side. This will yield the finished system:

For this model, we used two new blocks: Product and Sum, and they are
self-explanatory.

In order to flip and rotate blocks, simply right click them and find the op-
tions. Also, notice the important detail that the sum block has one input
labeled +(plus), and one - (minus), making it in effect a ”difference block”.

In order to run the model, we need to set the parameters b, d and c. When
running simulink, it automatically looks for variables in the workspace. There-

9

fore, the simplest way to set these constants is to run the simulink model from
a script, using the sim function. Assuming you have saved above model as
”bacterial”:

%set the constants for the simulink model

b = 1; %birth constant

d = 0.01; %death constant

%set the initial conditions:

c = 2; %initial volume of bacteria

%execute the simulink model(sets output variable 'x')

sim('bacterial');

% plot the result

plot(x.Time, x.Data);

3.2 Mass-Damper-Spring Mechanical System

Consider the following system:

Assume that the spring is at equilibrium at x = 0. The total force on the

mass (F = md2x
dt2) is a sum of two sources, spring (Fs = −kx) and damper

(Fd = −pdx
dt). We have:

F = m
d2x

dt2
= −pdx

dt
− kx

To solve this, we need the physical parameters (mass (m), damper constant
(p) and spring constant (k)), as well as initial conditions (x(0) = c1,ẋ(0) = c2).

Like the bacterial example, lets formulate a basic relationship using integra-
tors first, where we make initial conditions explicit:

10

In the basic incomplete model above, we now close the loops, and will end
up with the following system:

Assuming above model is saved as ”SpringDamp” we can run this using the
script:

%set the constants for the simulink model

m = 5; %mass [kg]

k = 2; %spring [N / m]

p = 1; %damper [Ns / m]

%set the initial conditions:

c1 = -10; %initial position

c2 = 0; %initial speed

%execute the simulink model(sets output variable 'x')

sim('SpringDamp');

plot(x.Time,x.Data);

For smooth visualization, we may want to change the default parameters of

above model. Click the icon , or click Model Configuration Parameters
in the menu. In Solver, change Stop time to 100, and Max step size from
”auto” to 0.1. Then run the above script again, and hopefully get some smoother

11

curves.
To show the power of Simulink for analyzing differential equations, lets con-

sider how easy it is to modify the system we have just made. Say that we wish
to turn on gravity in the system, at exactly t = 5. If gravity acts, then there is
an external force, and there are a total of 3 forces acting. From our model, we
know that the place where forces are summed up are at the Sum block. Thus,
we can easily include another source by modifying the model as follows:

The new thing in the model is the Step block, which is a signal source. It
is set to start at 5 seconds in, and to go from 0 to 9.81 in value. Assuming this
model is saved as ”SpringDamp2”, lets run it with the mass in equilibrium at
start (c1 = c2 = 0) and see the behavior when gravity kicks in:

%set the constants for the simulink model

m = 5; %mass [kg]

k = 2; %spring [N / m]

p = 1; %damper [Ns / m]

%set the initial conditions:

c1 = 0; %initial position

c2 = 0; %initial speed

%execute the simulink model(sets output variable 'x')

sim('SpringDamp2');

plot(x.Time,x.Data);

12

Tasks

Solutions that do not fill the following requirements EXACTLY, PRECISELY
AND TO THE LETTER will not be considered:

• Send your solutions by email to:

stefan.karlsson@hh.se

subject: Matlab, Exercise X, YourNames

• Send all the files that are requested, no more and no less, in one single zip
file per exercise, with NO sub-folders in the zip file. All the files, for all
the tasks should be bundled into one zip file.

• Put the Names of the authors, in remarks, at the top of every m-file.

• Send the solutions within 2 weeks of every exercise session. That is, you
have a two week deadline to hand it in.

• You will get 2 chances to send it in to me correctly.

13

Task 1

Create a simulink model e10_1 that solves the differential equation:

dx

dt
+ x = a + sin(bt)

with initial condition: x(0) = 2.
The model should be called from an m-file called e10_1script.m to start

and one should also initiate the differential equation with constants from there.
You must solve the differential equation within the simulink model, and export
the solution to the matlab workspace. The solution must be plotted in sufficient
detail and over a duration that makes sense.

Hand in 2 files, the simulink model e10_1, and the script file e10_1script.m
(both should be in the zip file for this exercise).

14

Task 2 (Optional for grade 4)

A simulink model e10_2 solves the following equation system consisting of 3
differential equations:

ẋ1(t) = x1(t) + x2(t)− 2x3(t)

ẋ2(t) = 2x1(t)− 2x3(t)

ẋ3(t) = −2x1(t) + 2x2(t) + x3(t)

Assume the following initial conditions: x1(0) = 2, x2(0) = 1 and x3(0) = 1
The model should be called from an m-file called e10_2script.m to start.

You must solve the differential equation within the simulink model, and export
the solution to the matlab workspace. The solution must be plotted in sufficient
detail and over the duration 0-2 sec.

Hand in 2 files, the simulink model e10_2, and the script file e10_2script.m
(both should be in the zip file for this exercise).

Hints:
- This system of equations has been encountered in this course twice before.
- Expect the model to be bigger than what you have done in the exercise so far.

15

	Introduction
	Setup Model Configuration

	Standard useful blocks
	Defining signal sources
	Math Blocks, routing and output

	Differential Equations
	Bacterial Growth Model
	Mass-Damper-Spring Mechanical System

