
Interactive Tutorial on

Real-Time Optical Flow
Motion Estimation

Stefan Karlsson, (Ph.D.),
Josef Bigun, (Ph.D. Professor)

Contact:stefan.karlsson987(AT)gmail.com

Date: May 2015, v1.05 (First version: June 2013)

Illustration: Color coded optical �ow. Left is higher resolution equivalent of the right.

http://islab.hh.se/mediawiki/Stefan_Karlsson
http://www2.hh.se/staff/josef/
mailto:stefan.karlsson987(AT)gmail.com

Let's get started

Run the script runMe.m to display interactive synthetic video, with green arrows
displaying optical �ow. The �gure's title bar displays the state of the rendering.

� Arrow Keys: move the pattern around

� E/D: increase/decrease speed of rotation

� P(toggle): pauses rendering and calculations, all visualizations freeze.

� W/S: increase/decrease speed of motion along a prede�ned trajectory.

� Q/A: increase/decrease lag time (delay) between frame-updates.

Stop the session by shutting down the �gure. The "Fancy Flow Player"
will start playback of the recording. It displays motion as color (see cover �g-
ure), and has a handy keyboard and mouse interface (see FancyFlowPlayer.m

for details). You can interface with the seekbar by clicking and dragging. You
can zoom and pan in the view windows using mouse scroll and mouse dragging.

runMe has one purpose: to set up the call to vidProcessing, the interface
with the toolbox. The toolbox supports di�erent sources of video. Instead of a
synthetic sequence, you can load a video by changing movieType as indicated
in runMe. Try the provided `LipVid.avi' �le:

% in runMe.m ... %
in.movieType = 'lipVid.avi'; % assumes a file 'LipVid.avi' in current folder.

It is recommended that you use a camera for this tutorial1, set:

in.movieType = 'camera'; %assumes a connected camera to your computer

If at any time during the tutorial you would like to see applications to real-
world data, activate a di�erent movieType input.

1Image acquisition toolbox recommended. However, on windows you can get camera input
without it

1

Chapter 1

The Toolbox and Local

Optical Flow

1.1 Introduction

We provide 2 resources: a toolbox (in Matlab) and a tutorial (this PDF).

� The toolbox is about dense optical �ow motion algorithms.

� The tutorial is about gradient based dense optical �ow .

With dense estimation we are interested in motion at �xed positions in the
image. Another way to measure motion, not dealt with here, is by tracking
points from one frame to the next. With tracking, points are selected (auto-
matically or manually) and their positions detected in new frames. With point
tracking, positions are processed that change over time. With dense optical
�ow, the positions are �xed.

The tutorial deals with the gradient based approach to optical �ow, but
there are many other methods1. The toolbox is well suited for use with any
approach, as long as it is dense motion.

This tutorial/toolbox is written/coded/maintained by Stefan Karlsson and has
come about through work done with Josef Bigun at CAISR, Halmstad Univer-
sity. It is intended as an educational resource as well as a toolbox for exper-
imenting with motion algorithms. If you �nd this resource useful (or want to
suggest changes) tell me about it.

1.1.1 Outline

This tutorial is centered on completing some code; about 10 lines in total. We
will work with 4 separate m-�les, listed in the order you need to �x them:

1good examples of non-gradient based methods include block-matching and phase based

methods

2

http://islab.hh.se/mediawiki/Stefan_Karlsson
http://www2.hh.se/staff/josef/
http://islab.hh.se/mediawiki/Main_Page
http://www.hh.se
http://www.hh.se
mailto:stefan.karlsson987(AT)gmail.com

1. grad3D.m, which is used to calculate the derivatives of the video sequence
(dx, dy, and dt).

2. DoEdgeStrength.m, which is used for edge detection.

3. FlowLK.m, which uses dx, dy and dt to calculate optical �ow.

4. Flow1.m, which provides improvements to the �ow estimation.

On our path to getting this done, we will learn the basics of optical �ow and
its estimation.

At this moment, however, you have working versions of all these four �les in
your main folder. First thing to do is to remove the working m-�les, and replace
them with the broken versions that are found in the folder "tutorialFiles". The
working �les are your correct solutions, so you can review them if you get stuck.
The broken �les wont make the application crash or perform chaotically.

1.2 Estimating derivatives (grad3D.m)

We will denote partial derivatives as Ix = ∂I
∂x , Iy = ∂I

∂y and It = ∂I
∂t . Corre-

sponding numerical estimates in Matlab are denoted: dx, dy and dt.

The function header of grad3D shows 2 inputs, and 3 outputs:

% in grad3D.m %
[dx, dy, dt] = grad3D(imNew,imPrev)
%calculates the 3D gradient from two images.

imNew and imPrev are the new and previous frames of the video respectively.
For derivatives: Ix and Iy, we can make use of 3-by-3 di�erential �lters2,

sometimes referred to as central di�erence over a compact stencil. The simplest
way to estimate the It derivative is by taking the di�erence between frames.

In grad3D the code labelled "L1" and "L2" in remarks are for you to �ll
in. It is a question of using the conv2 function correctly. Finally, on the line
labeled "L3" you should use a di�erence of frames to estimate It.

When you are done with the derivatives implementation, we can show the 3
component images and try to interpret them in real-time. This can be done by
setting the argument method inside of runMe to:

in.method = 'gradient'; %makes the program visualize the gradient only
in.bRecordFlow = 0; %turn off the recording

Execute runMe, with the synthetic video input selected.

Are the gradient component images as you expect them to be? Do you notice
a relation between dt and dx, dy images? Odds are that you notice something
of a relationship called "optical �ow constraint" (read on).

2The well-used Sobel operator is a special case of this, where the �lter sum is not normalized
and contains only integers (1,2,4) of basis 2

3

tutorialFiles/.
https://en.wikipedia.org/wiki/Sobel_operator

1.2.1 Optical Flow Constraint

An important assumption to most optical �ow algorithms, is the brightness
constancy constraint (BCC). This means that the brightness of a point remains
constant from one frame to the next, even though its position will not. A �rst
order approximation of the BCC is sometimes called the optical �ow constraint
equation. It can be written as:

It + vIx + uIy = 0 (1.1)

where ~v = {v, u} is the motion we are trying to estimate with optical �ow
algorithms. We can also write ~v = −|~v|{cos(φ), sin(φ)}, where φ is the angular
direction of the motion, and write the optical �ow constraint equation as:

It = −|~v| (cos(φ)Ix + sin(φ)Iy) (1.2)

The quantity (cos(φ)Ix + sin(φ)Iy) is found in the r.h.s, and is what we call
a `directional derivative'. It is the rate of change in a particular direction φ3.
Now, run again the script runMe, with the same settings as before (use synthetic
image sequence).

Does the optical �ow constraint hold? Does It resemble a directional deriva-
tive? Does it look like a linear combination of Ix and Iy?

Set the motion of the pattern to be along the pattern 8, using keysW/S. The
title bar of the �gure contains text indicating the parameters of the rendering.
Set the `speed' to be equal to 1. Pause the motion (P) as the pattern is moving at
an angle φ = π/4 = 45o (this is when the pattern is moving towards the lower
right corner4 as indicated in �gure 1.1. When paused, enter the following code
into the matlab command prompt:

% get the derivatives from the toolbox (assumed still running)
[dx, dy, dt] = getCurrentGrad3D();

subplot(1,2,1);
imagesc(dt); title('dt');
colormap gray;axis image;

phi = pi/4; subplot(1,2,2);
imagesc(-(cos(phi)*dx+(sin(phi)*dy)));
colormap gray;axis image;

The images should be similar according to Eq. 1.2.

Now lets experiment with faster motions. Set the speed parameter to 2.5,
by hitting W. Get an idea of how the derivatives change as a result. Pausing
the �gure at the right time may now be tricky. An extra lag time can be added
(Q/A). Pause just as the motion is φ = π/4 as before, and run the same code
as before to display dt and cos(phi)*dx+sin(phi)*dy.

3Ix and Iy are both directional derivatives with φ = 0 and φ = 90o
4Matlab has the origin at the top left corner, with the y axis is pointing downwards

4

Figure 1.1: the position of the pattern as it is moving with direction φ = π/4. This is what
you should see when pausing (time it well). Red arrow shows the motion vector.

This time the images are not very similar. The optical �ow constraint is
valid as an approximation only when the motion is small.

Redo the same experiment once more, but this time change the scale (the res-
olution) at which the gradient is calculated. The toolbox allows you to de�ne
any resolution of the input video by the argument vidRes. Default height and
width of the video is 128, lets make that half by (in runMe):

in.vidRes = [64 64]; %video resolution, for camera and synthetic input

Run the experiment at a higher motion as before. With the coarser scale, the two
images will once more be similar. As we reduce the size of the video resolution,
large motions become small motions (as measured in pixels/s). However, notice
that the video has far less detail in it.

Choosing and tuning gradient �lters

There are many ways of estimating gradients, and what is the best method
depends on what we wish to use it for. In the end we care about the �nal
algorithm in terms of stability, accuracy and timeliness5.

The optical �ow constraint equation should be a guiding principle for testing
gradient estimation when the aim is motion. This can be done in the fashion
outlined in section 1.2.1, and does not need for any explicit optical �ow to be
calculated.

On that topic, we can once more re-visit grad3d. If you look into the original
�le (that occupied the main folder before you replaced it with the one from "tu-
torial �les"), it describes 2 more approaches of gradient estimation, constructed
for the optical �ow constraint to hold better. They usually yield better result
in the end. In short, they add the following:

� Correctly centered spatio-temporal �ltering. First approach does
not correspond to correctly centered �ltering if one consider a spatio-

5often the terms `speed', `e�ciency' and/or `performance' are used instead of timeliness,
but these can be mis-interpreted in our context

5

temporal volume. We can centre the �ltering inbetween frames. This
corresponds to having the same stencil for all the gradient components
(3x3x2).

� Boundary e�ects. First approach gets edge e�ects near the image
boundary. To avoid this, single-sided di�erences are applied near the
boundaries. This is similar to the built-in function gradient, except we
use wider kernels/stencils (3x3x2 in middle of image, 2x3x2 and 3x2x2 at
boundaries).

Feel free to implement any kind of gradient estimation you like and visualize
it with the toolbox. Just make sure that the size of dx, dy and dt are always
the same: identical to the frame-size of the video.

1.3 Edge �ltering (DoEdgeStrength.m)

The second coding task is edge detection. This is a common task in video
processing for motion and other challenges. The function DoEdgeStrength has
5 inputs, and a single output:

function edgeIm = DoEdgeStrength(in, imNew, imPrev, gam, edgeIm)

As input we have the structure in set in runMe and the new and the previous
video frames (imNew, imPrev). gam is a normalization constant we can set
interactively by keyboard (R/F) and edgeIm (as input) is the former output of
the function.

The image edgeIm will contain the strength of edges as given by the 2D
gradient ∇2I(~x) = {Ix(~x), Iy(~x)}. The edge strength can be the value: P =

|∇2I| =
√
I2
x + I2

y .

The �rst implementation of DoEdgeStrength will be just 2 lines. Estimate
the gradient, and use it as indicated above. When you are done, view the edge
detection in realtime6:

% in runMe.m
in.Method = 'edge';

1.3.1 Edge normalization

What is meant by an edge depends on the application. A way to change the
sensitivity of our detector is by P = |∇2I|γ . Another approach, which is more
robust to noise is:

P =
m|∇2I|2

|∇2I|2 +mγ2

6this is especially fun if you have a camera and can view yourself

6

where m is the maximum possible value for the gradient magnitude7. If you
use the original grad3D, then m = 512. Implement this (using the input gam for
γ), and then set di�erent γ values interactively using the keyboard (R/F).

1.3.2 Temporal integration

Algorithms for video processing are often improved by using more images of the
sequence. However, using more memory is not desirable. A trick: 1st order
recursive �ltering allows us to include more temporal information with no extra
memory required. Before we approach optical �ow, lets try this on our edge
detection algorithm.

DoEdgeStrength receives a �fth input argument edgeIm (the previous output
of DoEdgeStrength). The idea: lets add the previous value to the current
estimate. We denote our integrated edge strength at time t as P̂ (x, y, t):

P̂ (x, y, t) = αP̂ (x, y, t− 1) + (1− α)P (x, y, t)

In DoEdgeStrength, P̂ (x, y, t − 1) is the input argument edgeIm, and α is
the input in.tIntegration. After you implement this, lets view the result with
a large temporal integration factor, by setting (in runMe):

in.Method = 'edge';
in.tIntegration = 0.9;

Having such a high integration is not very useful for edge detection, but if
you put it to a lower value, such as 0.2, you should see a reduced amount of
noise. Try with a connected webcam, and setting a low γ value.

1.4 Aperture Problem

Any region Ω where a motion vector ~v is to be estimated reliably must contain
"nice texture". In the synthetic test sequence, 4 examples textures are given
within the support of 4 separate disks. One of the textures is nice (checkerboard
pattern), two are linear symmetric (bars) and one is constant (a white disk).

In this context "bad textures" are regions that have either...

� constant gray value (no information), or..

� regions of linear symmetry (information in only one direction).

A region of constant value is bad for motion estimation because there is no
information to work with. How about linearly symmetric textures? Why are
they so bad? Run the function:

ApertureIllustration;

7e.g consider an 8 bit image and a 2 point derivative �lter. This givesmax(I2x) = max(I2y) =

2562 and m =
√

max(I2x) + max(I2y) ≈ 362

7

In it, a region Ω (the "Aperture") is illustrated as a red circle that you
can move around by clicking in the �gure. Mouse scroll, or keys Q/A changes
its radius, and W/S changes its boundary. A background circular motion is
present of a linear symmetric pattern. If you put your aperture in the middle
of the image, then it will be impossible to determine any true motion, except
for the component that is aligned with the gradients. Notice that if you bring
your aperture to cover parts of the edge of the pattern, you can almost instantly
perceive the true motion; the edges contain more directionality for your vision
system to work with.

We can say that "nice textures" are those with linearly independent 2D
gradients ∇2I(~xi). In practical language, we must be sure that we do not have
a region of the kind we �nd in barber poles (�g 1.2). To see an animated version
of the barberpole illusion, type:

ApertureIllustration('barber');

Figure 1.2: The barberpole illusion. A pattern of linear symmetry is wrapped around a
cylinder, and rotated. The true motion is rotation left or right but the perceived motion by
the observer is up or down

Whether a region is "nice" or "bad" depends on how big we make it. Making
a region bigger, makes it more likely to gather observations from the image
that provide new directional information. Making a region bigger will have the
drawback of reducing the resolution of the resulting optical �ow, so a comprimise
is necessary:

� big region → better data,

� small region → better resolution.

This phenomenon is known as the aperture problem.

1.4.1 2D Structure Tensor

Whether a region is "nice" or "bad" is given by the so-called 2D structure tensor:

S2D =

(∫∫
I2
xd~x

∫∫
IxIyd~x∫∫

IxIyd~x
∫∫

I2
yd~x

)
=

(
m200 m110

m110 m020

)
A region is "nice" if both eigenvalues are large. This is equivalent to S2D

being "well conditioned", i.e. it can be inverted with no problems. If S2D

8

https://en.wikipedia.org/wiki/Structure_tensor

can not be inverted, its because we have a "bad" texture, and the 2 cases are
distinguished as:

� constant gray value region (both eigenvalues of S2D are zero)

� linear symmetry region (one eigenvalue of S2D is zero).

In practice, we will always consider a local region Ω, and will always have discrete
images. Therefore we can write here m110 =

∑
wIxIy, where w is a window

function(w ∈ [0, 1]) covering the region Ω (the function ApertureIllustration

gives you a nice view of a window function that you can position anywhere).
In general, we will write mijk =

∑
wIixI

j
yI
k
t . Assuming that we can move

the smooth window function w around, we can consider di�erent regions Ω
as window functions centered at some ~x. We will therefore write m110(~x) to
indicate positioning of Ω at ~x.

1.5 Optical �ow by Lucas and Kanade

Start by considering the optical �ow constraint equation (Eq. 1.1 or equivalently
Eq. 1.2). We can make many observations of Ix, Iy and It if we consider many
positions in some region (thus we can index di�erent observations as It(~pi)). We
will estimate motion over a region Ω, centered at some ~x, and so we consider
only derivatives within that region (those are the positions ~p1, ~p2 ... ~pN).

The LK method handles this using the least square method which is a stan-
dard numerical approach for when we have more observations then parameters
to solve for. Instead of an exact solution for ~v, we seek one that "�ts the data"
best. This is a ~v that will try to conform as "best it can" to all the observations
at all positions in the region Ω. We wish to �nd the solution that minimizes the
error:

ELK(u, v) =
1

2

∑
∀i∈Ω

(uIx(~pi) + vIy(~pi) + It(~pi))
2

(1.3)

To �nd the minimizer, we equate the gradient ∇ELK =
(
∂ELK

∂u , ∂ELK

∂v

)T
to

zero8:

∇ELK(u, v) =
∑
∀i∈Ω

(
uI2
x + vIxIy + IxIt

vI2
x + uIxIy + IyIt

)
=(

m200 m110

m110 m020

)(
u
v

)
+

(
m101

m110

)
= 0 (1.4)

8Whenever we try such an approach, we should �rst make sure our error function is "con-
vex". All the objective functions we deal with in this tutorial will be of this type, meaning
that a global extrema is found by looking for where the gradient of the error is zero

9

https://en.wikipedia.org/wiki/Lucas%E2%80%93Kanade_method

where we remind the reader of the notation mijk =
∑
wIixI

j
yI
k
t for a window

function w covering Ω. We recall the structure tensor S2D, and introduce ~b:

S2D =

(
m200 m110

m110 m020

)
, ~b =

(
m101

m011

)
Yielding the grand expression for the LK method of optical �ow:

~v = −S−1
2D
~b (1.5)

From the previous section we know of cases when S2D can not be inverted.
This happens for the "bad textures" (the case when we have the "barber pole"
for example). We must somehow deal with this, and one way is to check how
well-conditioned S2D is before inverting (thereby skipping those regions).

1.6 Optical Flow (FlowLK.m)

According to the original LK algorithm, observations of Ix, Iy and It within
our region Ω, should all be weighted equally. This would amount to a window
function w that is strictly Boolean in value. However, we will use a smooth
window function (fuzzy de�nition of Ω), e�ectively weighting observations less
that are positioned further away from the center of Ω. This is sometimes called
a "weighted least squares" approach.

The moment images will be central to our implementation of optical �ow,
and you can �nd how the m200(~x) and m020(~x) are calculated in FlowLK as:

% moment m200, calculated in 3 steps explicitly
% 1) make elementwise product
momentIm = dx.^2;

% 2) smooth with large seperable gaussian filter (spatial integration)
momentIm = conv2(gg,gg,momentIm,'same');

% 3) downsample to specified resolution:
m200 = imresizeNN(momentIm ,flowRes);

In this approach, the region Ω is a Gaussian window function and represented
by the �lter gg in the code. To view what Ω looks like, execute the following
lines:

gaussStd = 1.4;
gg=gaussgen(gaussStd); %gaussgen is in 'helperFunctions'
imagesc(gg'*gg);
colormap gray; axis image

Here, gg is a one dimensional �lter used in seperable �ltering9 and gg'*gg

is its outer product: the equivalent Ω we use.

It will be your task to write the expressions for several mijk(~x) images in
FlowLK. Continue reading when this is done.

9We could equally well use a 2D �lter directly, but making slower code.

10

The moment images makes it possible to de�ne local structure tensors10, one
for each position in the image as:

S2D(~x) =

(
m200(~x) m110(~x)
m110(~x) m020(~x)

)
These should all be inverted in order to estimate motion according to Eq.

1.5, but we need to check if each matrix is well-conditioned ("nice texture").
In Matlab, we use the function rcond for this (Matrix conditional number), as
seen on the line labelled "L1" in FlowLK.

You are now well prepared to �nish the missing code in FlowLK. Once you
are done, the con�guration for running the LK algorithm is:

in.method = @FlowLK;

Run the LK algorithm on the synthesized sequence. Does the algorithm per-
form as you would expect? There are points in the sequence where performance
is better than other places due to the texture being nicer. Try to relate your
observations to what you know about the aperture problem, and what you could
observe from running:

ApertureIllustration;

1.7 Performance evaluation

FlowLK works poorly. It gives us better than random guesses on the synthetic
sequence, but we note that regions without nice texture are missing.

The toolbox generates ground-truth optical �ow to aid in evaluation. To
enable viewing of ground-truth together with your estimated �ow, set:

in.bDisplayGT = 1; %display groundtruth flow, if available

This will plot red vectors, behind the green ones (in case of perfect estima-
tion, no red will show). With FlowLK, the di�erence between estimation and
ground-truth is high (commonly called the end-to-end point error). Also note
that the estimations wiggle around more than the ground-truth, and occasion-
ally explodes. A small change in data, does not guarantee a small change in out-
put - FlowLK is not very stable. Changing the threshold EPSILONLK in FlowLK,
will allow you to tune the algorithm somewhat for di�erent data. However
much you tune it, never expect an explicit implementation of the LK algorithm
to behave too well on real-world data.

Its a good idea to try the algorithm with live feed from a camera, or on
recorded video by changing movieType argument in runMe. This should further
convince you that the implementation su�ers from:

1. Low accuracy (deviates from groundtruth, ignores linear symmetry re-
gions)

10a.k.a tensor �eld

11

2. Low stability (wiggles around and explodes on occasion)

3. Low timeliness (Ine�cient, slow computations)

1.7.1 Problems with Evaluation

Quantifying performance of optical �ow can be a tricky business. The metric
with least complications is the so-called interpolation error. This error deals
with how well we can use the �ow to transform the �rst image (imPrev) into the
second (imNew). This error is useful to applications such as video-compression
and interpolation.

Interpolation error is not well suited for applications such as tracking and
ego-motion, where the �ow is used as a measure of real-world motion. The most
popular error metric in the computer vision �eld, is the end-to-end point
(vector) accuracy (distance between estimation and ground-truth). For this
kind of evaluation, synthetic sequences are usually required. A good example
of long and rich synthetic sequence with ground-truth is the Sintel dataset, the
classical ground-truth data to use is the Middelbury dataset.

Both interpolation and end-to-end point error fall short for applications such
as human-machine-interaction and robotic self stabilization, where stability and
timeliness are more important than high accuracy. As an example close at hand,
consider an optical mouse. With some of the earlier mice to appear, the mouse
cursor could wiggle and jump around tiny distances seemingly random as you
moved it smoothly. Erratic behavior was more likely during motion over strong
linear patterns when the mouse was also rotating (which does not add to the
translational motion a mouse is designed to look for). These erratic occurrences
would be relatively rare, but would interrupt the natural interaction with the
device. The optical mouse had high accuracy and timeliness, but inadequate
stability. Later generations of mice became better, because smoothness of hand
would better give smoothness of cursor, even though accurate motion was not
estimated. State of the art algorithms, as measured on Middelbury dataset,
typically perform poorly in applications such as the faceMouse and the squiggle
for the same reason.

1.7.2 Comparing methods, saving data

For a better method of optical �ow estimation, lets re-activate Flow1:

in.method = @Flow1; %Locally regularized and vectorized method

Running this algorithm together with ground-truth �ow shows large im-
provements in accuracy, stability and timeliness, compared to FlowLK. Lets ex-
pose Flow1 to a bit more challenging data, by introducing a background edge
and some noise in our synthesis:

in.syntSettings.backWeight = 0.7; %background edge
in.syntSettings.noiseWeight = 0.2; %signal to noise weight (in range [0,1])

12

http://sintel.is.tue.mpg.de/
http://vision.middlebury.edu/flow/data/
http://vision.middlebury.edu/flow/data/
https://www.youtube.com/watch?v=WuGDbTx1d6w
https://www.youtube.com/watch?v=h4umf0iCrFU

Its valuable to have live interaction in the synthesis, but we can never be sure
to generate exactly the same data twice. Lets save some data with ground-truth,
and use it repeatedly.

Step 1: Save ground-truth data

Put these settings in runMe, and when running use the regular keyboard interface
to a�ect the sequence during recording.

% notice that both "movieType" AND "method" need to be set to 'synthetic'
in.movieType = 'synthetic'; % Generate synthetic video
in.method = 'synthetic'; % Ground-truth optical flow

%set recording:
in.pathToSave = 'GroundTruthData'; % Define directory for saving
in.bRecordFlow = 1; %record the video and flow

Step 2: View and access data

After you have saved data to the folder "GroundTruthData", you can access it
easily using a combination of FancyFlowPlayer and getSavedFlow:

% first, find a frame you are interested in, and then close
% down the FancyFlowPlayer...
frameNr = FancyFlowPlayer('GroundTruthData');

% ... then access the data of the frame:
[im, u, v] = getSavedFlow(frameNr, 'GroundTruthData');

% im is the video frame
subplot(1,2,1);imagesc(im); colormap gray;
axis image;title('video frame');

% u and v are the components of the flow
subplot(1,2,2);imagesc(sqrt(u.^2+v.^2));colormap gray;
axis image; title('Motion magnitude(groundtruth)')

Step 3: Use saved data with the toolbox

Lets use our saved ground-truth data and experiment on the LK implementa-
tion.

in.movieType ='GroundTruthData'; % Folder with previously saved video
in.endingTime='eof'; % Indicates when to end the session.

% 'EOF'- end when reached end of data
in.method = @FlowLK; % lets experiment on LK

%set recording:
in.pathToSave ='TestLK'; % Define directory for saving
in.bRecordFlow= 1; %record the video and flow

With in.endingTime='eof' the session will end when the end of the data
�le is reached. This means that two folders "GroundTruthData" and "TestLK"
will contain optical �ow of exactly the same video (one estimation by FlowLK,
the other ground-truth). If you leave the �gure open until "EOF" is reached,

13

then both folders contain data of the same duration. Example of exploring the
results:

frameNr = FancyFlowPlayer('TestLK');

% Access data:
imPrev = getSavedFlow(frameNr-1, 'TestLK'); %Previous frame

[imNew, u , v] = getSavedFlow(frameNr, 'TestLK'); %New frame
[~ , uGt, vGt] = getSavedFlow(frameNr, 'GroundTruthData');

% Display data:
subplot(2,2,1);imagesc(imPrev); colormap gray;
axis image;title('video frame, (t-1)');
subplot(2,2,2);imagesc(imNew); colormap gray;
axis image;title('video frame, (t)');
subplot(2,2,3);imagesc(sqrt(u.^2+v.^2));colormap gray;
axis image; title('Motion magnitude(Lucas Kanade)');
subplot(2,2,4);imagesc(sqrt(uGt.^2+vGt.^2));colormap gray;
axis image; title('Motion magnitude(Ground-truth)');

1.8 Flow1.m

Lets take a moment and derive Flow1. It improves on FlowLK by local regular-

ization, Temporal Integration and Vectorized coding.

1.8.1 Local Regularization

The aperture problem was addressed by investigating the conditional number
(rcond), before inverting S2D. With local regularization11, we aim to force a
change of the conditional number instead of only investigating it. We will use
so-called Tikhonov regularization. In practice, we will add a positive value to
m20 and m02 before we invert. It makes a huge di�erence to the stability of
the algorithm, and will also allow it to handle the linear symmetry textures,
although it gives only the motion that is parallel to gradients for those regions.

With this regularization, we are minimizing a di�erent error than the tra-
ditional LK. The idea is to add a term to ELK of Equation 1.3, so that the
error is always higher for larger �ow vectors (|~v|) thus favoring solutions that
are smaller. In the following error we add a term c|~v|2, and call c our tunable
Tikhonov constant:

E1(u, v) =
1

2
c|~v|2 + ELK =

1

2

(
cu2 + cv2 +

∑
∀i∈Ω

(uIx(~pi) + vIy(~pi) + It(~pi))
2

)
yielding an error gradient expression:

∇E1(u, v) = . . .

11The keyword "Local" is used here to not confuse the topic with global regularization, and
so called variational approaches

14

c

(
u
v

)
+
∑
∀i∈Ω

(
uI2
x + vIxIy + IxIt

vI2
x + uIxIy + IyIt

)
=

(
m200 + c m110

m110 m020 + c

)(
u
v

)
+

(
m101

m110

)
= 0

Thus, Tikhonov regularization amounts to adding a tunable constant to the
m200 and m020 moments.

1.8.2 Temporal Integration (Optical �ow)

So far, we have only used spatial integration (Ω stretching over x and y) for
generating the moment images mijk(~x). For the edge detection (section 1.3.2)
we integrated previous frames by recursive �ltering. We can do the same thing in
our optical �ow estimation on at least 3 di�erent levels: gradients, moments

and motion vectors. The most straightforward(but not the best) approach
would be to apply it to the the motion vectors, the end result of our algorithm.
We chose to put the �ltering on the gradient and moment level instead.

Parts of our algortihm ampli�es the e�ect of noise alot (they are non-linear).
We want to get best performance with as little temporal blurring as possible
(recall the e�ect on edge detection when α ∈ [0, 1) is high). We have 2 non-linear
parts of our algorithm: 1) making moment images, and 2) inverting matrices,
so we do �ltering just before these non-linear steps are applied.

For the moment images, the �ltering will make regions of interest, Ω, that
stretch into the t direction in addition to x and y, giving a more stable tensor
�eld. Lets denote the temporally integrated moments by m̂ijk(x, y, t):

m̂ijk(x, y, t) = αm̂ijk(x, y, t− 1) + (1− α)mijk(x, y, t)

On the gradient we can choose a di�erent α. We have found empirically that√
α works well for the �ltering of the gradient, which relates the two recursive

�lterings with each other through a single parameter:

Îx(x, y, t) =
√
αÎx(x, y, t− 1) + (1−

√
α)Ix(x, y, t)

Implementation

Gradient estimation by this principle is provided in function grad3Drec, which
is used by Flow1. The recursive moment estimation is part of the coding task
in flow1 we use the variable TC for our Tikhonov constant (the implementation
of c above), and we have tInt for our α. The implementation of the Tikhonov
regularization and temporal integration is found in the following lines:

% 1) make elementwise product
momentIm = dx.^2;

% 2) smooth with large seperable gaussian filter (spatial integration)
momentIm = conv2(gg,gg,momentIm,'same');

% 3) downsample to specified resolution

15

momentIm = imresizeNN(momentIm ,flowRes);

% 4) ... add Tikhonov constant if a diagonal element (for m200, m020):
momentIm = momentIm + TC;

% 5) update the moment output (recursive filtering, temporal filtering)
m200 = tInt*m200 + (1-tInt)*momentIm;

Your �rst task in flow1 is to �ll in the expressions for the missing moments.
Careful so that that only m200 and m020 gets the TC constant added, and that
the one liners have their brackets correctly placed.

As with the EPSILONLK parameter, play around with TC to suit your data.
TC will a�ect the resulting �ow �eld in the following way:

� make it too small → numerically unstable, ill-conditioned solutions (the
�ow �eld will wiggle around and explode occasionally),

� make it too large → all �ow vectors will tend to shrink in magnitude

1.8.3 Vectorization

Implementing the LK by using vectorized programming12 will make use of the
built in parallelism in Matlab.

Lets revisit the grand expression for the LK method, Eq. 1.5. This is a
2-by-2 system, and its solution can be derived analytically. To derive the full
symbolic expression for the solution of the system, use the matlab symbolic
toolbox13 by typing:

%declares symbolic variables:
syms m200 m020 m110 m101 m011;

b = [m101; ...
m011];

S2D = [m200, m110; ...
m110, m020];

v = -S2D\b

For readers who do not have the symbolic toolbox, the answer will be:

v =
(m011*m110 - m020*m101)/(- m110^2 + m020*m200)
-(m011*m200 - m101*m110)/(- m110^2 + m020*m200)

The output of above code should be implemented on lines labelled "L2" in
Flow1. You will need to use the Matlab dot-operator to indicate elementwise
operations for this to work.

With a vectorized formulation, we can run the algorithm at the same reso-
lution as the original video (i.e. one �ow vector per pixel). Resolution of the
�ow �eld is controlled by the argument flowRes. Set in runMe:

12in particular, using no for loops
13Mathematica or Maple are also good tools for these sorts of tasks

16

in.vidRes = [200 200]; %video resolution
in.flowRes = in.vidRes; %flow resolution

When dealing with full resolution optical �ow the toolbox uses the color
coding of �gure ??.

Color coded �ow is superimposed on the grayscale video. This trick allows
the observer to focus on only one view (as opposed to the traditional 2 views of
Funky Flow Player). This makes interaction and overview easier at the cost of
some detail. If you wish to see the �ow in the traditional color display (seperate
views), save the output and view it with Funky Flow Player.

1.9 Some Challenges

We have shown how to implement a dense optical �ow algorithm in Matlab
(with ease). The �nal algorithm is very short in code, understandable, (quite)
stable, and with a high timeliness (it's the only real-time optical �ow algorithm
we know of, entirely implemented in Matlab14).

There are several classical issues with optical �ow estimation we have yet to
discuss, and that our algorithm does not deal with.

1.9.1 Noise

As with all sensors, cameras have noise. This is the downfall of many optical
�ow algorithms. To add noise to the synthetic video:

in.syntSettings.noiseWeight = 0.2; %signal to noise weight (in range [0,1])

1.9.2 Failing the BCC

The starting point of deriving our optical �ow method is the BCC. We would
expect our algorithm to be quite dependent on it. Important examples of when
the BCC fails include varying light �eld in the scene (such as shadows) and
automatic gain control in the camera (including automatic camera parameter
setting such as shutter speed).

An important phenomenon, in low-end web cams especially, is the presence
of �icker. We can add �icker to the synthetsis by:

in.syntSettings.flickerWeight= 0.8; %amount of flicker (in range [0,1])
in.syntSettings.flickerFreq = 0.8; %frequency of flicker (in range (0,Inf])

1.9.3 Higher Motion

Higher motion was discussed in section 1.2.1. The standard way to deal with
this is through pyramid, multiscale approaches (sometimes called multi-grid

14Many implementations have convenient wrappers for Matlab, such as the computer vision
toolbox, but they are not implemented in native Matlab code

17

solutions). Coarsest scale of the pyramid is estimated for motion �rst, where
robustness for high motion comes at the price of image detail. The pyramid can
be used in combination with iterative approaches to optimize for accuracy.

However, an even greater challenge with higher motion (in low-end cameras
especially) is motion blur. The multi-scale approach exacerbates the problem
rather than address it15.

1.9.4 Optimizing for accuracy

At the onset, we use the optical �ow constraint (Eq. 1.1), which is an approx-
imation that almost never hold exactly. We can achieve better accuracy by
iteratively applying the same method (Flow1, FlowLK or any method based on
Eq. 1.1). If we interpolate ("warp") imPrev using the estimated motion, we
yield a prediction of imNew. We can let this prediction replace imPrev, and re-
peat the same algorithm. A new �ow �eld results, which is (hopefully) smaller
in magnitude than the �rst. The new �ow �eld is added to the old, and used to
warp imPrev into a new prediction, and the iterations proceed.

With advantage, this approach is implemented in multi-scale, so that the �rst
iterations are done in coarse scale, while gradually descending to �ner scale. The
main cost to timeliness lies in that these steps invoke the entire method (e.g.
FlowLK), and that each step depends critically on the previous, leaving no room
for parallelization. Each step also introduces image interpolation (warping) as
an added costly operation.

1.9.5 Multiple Motions

The questions of having several motions in the same Ω causes some quite speci�c
problems. The background motion has some distribution of gradients, while
the foreground motion has others. You may have noticed the e�ect when we
activated the rendering of a background edge. To make it even more observable,
you can synthesize a moving background edge by:

in.syntSettings.backWeight = 0.5; %background edge pattern
in.syntSettings.edgeTiltSpd=2*pi/300; %speed of rotation of background edge

A perceived motion over such an aperture is not obvious. Run:

ApertureIllustration('multiple');

This renders two bar patterns moving with one partly obscuring the other.

15Motion blur is one of those e�ects that makes you marvel at the human visual system.
Its presence improves our perception and reaction times. For most people outside the �elds
of cognition/perception and computer graphics, it seems, motion blur is treated as an evil
source of noise. Some have made attempts to use the motion blur as a source of information
for their motion algorithms, but usually with little success, and always at the level of higher
vision. Humans apparently use motion blur already in lower level vision, and very successfully
so. Perhaps a reader will be encourage to �nd out how it all really works in the ganglion cells
and beyond. If you do, get back to me one day and share.

18

1.9.6 Filling in the gaps of local �ow

The interior sections of objects may lack nice texture, giving gaps where no
optical �ow is estimated. The only way to �ll these gaps with local algorithms
is to make the Ω regions larger, which in turns destroys the �ne detail required
near the motion boundaries. There is no way to solve this(to my knowledge)
unless we dive into the topic of Global algorithms. This will be the topic of the
next chapter.

19

	The Toolbox and Local Optical Flow
	Introduction
	Outline

	Estimating derivatives (grad3D.m)
	Optical Flow Constraint

	Edge filtering (DoEdgeStrength.m)
	Edge normalization
	Temporal integration

	Aperture Problem
	2D Structure Tensor

	Optical flow by Lucas and Kanade
	Optical Flow (FlowLK.m)
	Performance evaluation
	Problems with Evaluation
	Comparing methods, saving data

	Flow1.m
	Local Regularization
	Temporal Integration (Optical flow)
	Vectorization

	Some Challenges
	Noise
	Failing the BCC
	Higher Motion
	Optimizing for accuracy
	Multiple Motions
	Filling in the gaps of local flow

