
Ex. 7, Vectorization, timing and Debugging

Stefan Karlsson

March 28, 2014

1 Vectorization

Consider the following simple function(make a function in your matlab environ-
ment):

function A = sumA1(A)

A = A + 1;

The input A can be anything, as long as it is defined what happens when we
add the value 1. Lets consider vectors, so that A will be a long vector of scalar
values. In that case, an equivalent function to sumA1, is sumA2:

function A = sumA2(A)

for ii = 1:length(A)

A(ii) = A(ii) + 1;

end

The two functions sumA1 and sumA2 are very different in appearance, yet the
final output will be identical. Lets test this, by making a large random vector
that we send to the functions:

A = rand(10^6,1);

%call the first function, time it

tic;

A1 = sumA1(A);

toc;

%call the second function, time it

tic;

A2 = sumA2(A);

toc;

bCheckForSimilarity = isequal(A1, A2)

On my system, the first function executes in approximately 2.2 ms and the
second function takes 57 ms (roughly 26 times slower)1. We find that sumA1 has
less code, is more readable with much faster run time.

1On earlier versions of Matlab, this could be thousand times slower.

1

Why this huge difference in run-times?

The answer lies with how Matlab can make use of effecient algorithms, that
are mapped onto the parallelism of the hardware. The process of converting
code from sumA2 into the form in sumA1 is called vectorization. Vectorization is
very important in high performance computing, and there are many languages
aside from Matlab that allows for it natively2. We have seen some nice tricks
with indexation of vectors and matrices, both in assignment and calculations.
These tricks all fall within the scope of vectorized implementations. In Mat-
lab, the vectorization is especially elegant. When it comes to vectorization in
Matlab, it is mostly a question of how we remove loops, and re-write the same
operations on fewer lines and more readable code. We should usually vectorize
if and when we can. There are some drawbacks for some problems, however,
and we will investigate some of those here.

2 Sums

Lets investigate an example of the sum:

SP =

P∑
n=1

1

n2
= 1 +

1

22
+ ... +

1

P 2

In the limit, we have that S∞ = π2

6 , but we are interested in the behavior
as we input higher P . First, we do it by a loop:

function s = sumP1(P)

s = 0;

for n = 1:P

s = s+1/(n^2);

end

The same sum is easily implemented in a vectorized fashion:

function s = sumP2(P)

n = 1:P;

s = sum(1./(n.^2));

Now, for some timing:

tic;sumP1(10^6);toc

%you may want to run sumP2 twice, the first time will likely be slower.

tic;sumP2(10^6);toc

The difference between these two functions is not that big in newer versions
of Matlab. I get 19 ms for sumP1 and 8 ms for sumP2. This would indicate that
the vectorized version is more than twice as fast, but there is more to the story.

2I.e. its part of the core language

2

For the vectorized version sumP2, we create a big vector n = 1:P, the size is of
course dependent on P (was 106 in example above). It takes time for Matlab to
allocate memory and set the vector, and the loop version of the sum does not
require this over-head. While the vectorized version may be faster, especially
for smaller Ps, there is a problem we encounter for large P. Try this(warning,
Matlab will run out of memory):

sumP2(10^11)

This makes Matlab scream in pain, and wont be able to finish the job. The
equivalent call:

sumP1(10^11)

will not crash, however it takes a very long time to finish.

2.1 When to use loops?

Matlab has evolved quite a bit over the last 10 years. One thing that is much
improved is the way that native for-loops are handled. Sometimes, you should
use loops, lets investigate two common cases:

2.1.1 Memory considerations

Vectorising usually means a gain in speed, but sometimes a loss in memory(as
above example sumP2 illustrates).

2.1.2 Dependency on previous iterations

An example of this would be so called ”recursive filters”3. The following is an
example, it’s a simple way to estimate the variation locally in a signal x. It is
not possible to vectorize, because it has dependency on the previous iteration:

N = 150;

x = randn(N,1);

y = zeros(N,1);

%y(t-1) is from previous iteration, gives the new value at t:

for t = 2:N

y(t) = 0.8*y(t-1) + 0.2*x(t)^2;

end

plot(y);hold on; plot(x,'r')

2.1.3 Access intermediate results

Explicit loops can access results on every iteration. As a simple example, the
following function cannot be vectorized (assuming that we want the output in
the correct sequence)

3linear filters with infinite impulse response

3

for n = 1:P

s = s+1/(n^2);

disp(s); %echo the value of the sum, on this iteration

end

3 Debugging

Everybody makes errors during coding. It could be simple syntactic errors
or more complicated ones such as logical errors. Matlab is equipped with a
debugger to help the programmer to find and fix errors.

Errors come in two major forms: compile-time and run-time. Compile time
errors will be noted by Matlab just before your functions run, and are usually
easy to find. Among compile-time errors are common mistakes such as forgotten
parenthesis or operators, and Matlab not only tells you there is an error, but
nicely gives you the file, the line and often suggestion on how to fix it. You also
get dynamic checking from matlab(like a spell checker) as you are writing the
code, giving you hints of potential errors.

Run-time errors are the worse kind, they are bugs that have infected your
code due to misses either in syntax(typos) or worse: your logic and understand-
ing. I have touched on some common mistakes that cause problematic run-time
errors. Here are is some valuable advice:

• Avoid using the global workspace!. The power to change variables
anywhere in code, in any file, will make finding run-time errors extremely
difficult.

• Be careful with y-x indexation order. Matlab indexes matrices as
A(y,x), not as A(x,y) as we are used to.

• Be careful with one-based indexation. The first element of a vector
is indexed as a(1), not as a(0). Most languages start indexation at 0.

• Keep track of element-wise operations, vs matrix operations.
The forgotten dot! If you wish to multiply two matrices A and B you write
A*B, if you wish to multiply them element-wise you write A.*B. If both
matrices are square, then both operations are allowed and you get hard
to find bugs in your code.

Now let us move on and see how we can use the debugger4.

4You do not need to view this video in order to complete the tasks, but it will help you to
finish all the coming tasks more easily

4

http://islab.hh.se/mediawiki/images/f/f3/Lab7MatlabDebug.ogv

Tasks

Solutions that do not fill the following requirements EXACTLY, PRECISELY
AND TO THE LETTER will not be considered:

• Send your solutions by email to:

stefan.karlsson@hh.se

subject: Matlab, Exercise X, YourNames

• Send all the files that are requested, no more and no less, in one single zip
file per exercise, with NO sub-folders in the zip file. All the files, for all
the tasks should be bundled into one zip file.

• Put the Names of the authors, in remarks, at the top of every m-file.

• Send the solutions within 2 weeks of every exercise session. That is, you
have a two week deadline to hand it in.

• You will get 2 chances to send it in to me correctly.

5

Task 1

We will make an experiment with dices. We will throw two dices P times and
decide how often they add up to 6.

The function e7_2(P) emulates throwing 2 dices P times, and should produce
a plot which shows the percentage of throws that sum to six plotted versus
number of throws. (x –axis: the number of throws, y-axis: the percentage of
throws that have summed to 6). The x-axis should number from 1, up until P.

Add a horizontal line to the plot where one sees the probability of this
Experiment (what probablitiy is there of getting the sum to 6?). For a very
large number of throws this experiment should validate the true probability.

Hand in ONLY the file e7_1.m

Hints, Task 1

• First thing to do is to calculate5 by hand the true probability of 2 dices
summing up to 6. This way, you can just put this value as the horizontal
line in the plot, and be sure that you will see the output of the experiment
converging to the right value.

To calculate that probability, think about how many possible outcomes
there are, when you throw two dices. Then think about how many of those
total possibilities sum to 6. This gives you two values of interest (total
outcomes, total positive outcomes). At this point you know what to do.

• Implement this function most easily by first using randi (search docu-
mentation).

5No need to hand in any calculation

6

Task 2

Write an m-file [s1,s2] = e7_2(A,B) that takes square matrices A and B of
equal size and calculates the sum:∑∑

(A(i, j)−B(j, i))
2

!!! NOTICE !!! the elements of the matrices are indexed differently over
the sum!!!
(i and j are iterated over the valid positions in the matrices only) The file should
implement this both in a vectorized way, and a regular sequential way by for
loops. Implement 2 local functions e7_2a and e7_2b to do the loop version
and the vectorized version respectively. Let the function e7_2(A,B) have the
following form:

function [s1,s2] = e7_2(A,B)

if nargin < 2

error('require 2 args');

end

if ~isequal(size(A),size(B))

error('A and B must be equal size')

end

if (size(A,1)~=size(A,2)) || (size(B,1)~=size(B,2))

error('A and B must be both be square matrices')

end

s1 = e7_2a(A,B);

s2 = e7_2b(A,B);

if s1 ~= s2

error('Student hasnt implemented the sum correctly')

end

%% Define the local functions:

function s = e7_2a(A,B)

%implement the sum by nested for loop

function s = e7_2b(A,B)

%implement the sum in a vectorized way (no loops)

Hints, Task 2

For the vectorized method, consider what it means to do a matrix transpose.
What kind of sum will you get for symmetric matrices?

7

Task 3 (optional, for grade 4)

Function e7_3.m should measure the time it takes to execute the two approaches
of task 2. It should generate different sizes of random matrices A and B (still they
should be square and of equal size), where height and width is varied ∈ [1, 300].
The first A and B matrices will be of size 1 × 1, the second 2 × 2, then 3 × 3,
4× 4, ... , 300× 300.
For each size of the matrices (totally 300 different ones) the sums of task 2
should be averaged over 10 times for each of the methods e7_2a and e7_2b.
The time it takes should be saved in 2 vectors, giving two vectors in total as
a result. These vectors contain the time each algortihm takes to execute a
particular matrix size. Plot both vectors, make the vectorized version plotted
in blue, the loop version in red, and put a nice legend in the figure.

Hints, Task 3

There are alternative ways of using tic and toc. Get the time out in seconds
from the toc function.

8

	Vectorization
	Sums
	When to use loops?
	Memory considerations
	Dependency on previous iterations
	Access intermediate results

	Debugging

