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Semantics-aware Dynamic Graph
Convolutional Network for Traffic Flow Forecasting

Guojun Liang İD , Kintak U İD , Xin Ning İD , Prayag Tiwari İD , Sławomir Nowaczyk İD , Neeraj Kumar İD

Abstract—Traffic flow forecasting is a challenging task due to its
spatio-temporal nature and the stochastic features underlying complex
traffic situations. Currently, Graph Convolutional Network (GCN)
methods are among the most successful and promising approaches.
However, most GCNs methods rely on a static graph structure, which is
generally unable to extract the dynamic spatio-temporal relationships
of traffic data and to interpret trip patterns or motivation behind traffic
flows. In this paper, we propose a novel Semantics-aware Dynamic
Graph Convolutional Network (SDGCN) for traffic flow forecasting. A
sparse, state-sharing, hidden Markov model is applied to capture the
patterns of traffic flows from sparse trajectory data; this way, latent
states, as well as transition matrices that govern the observed trajectory,
can be learned. Consequently, we can build dynamic Laplacian matri-
ces adaptively by jointly considering the trip pattern and motivation of
traffic flows. Moreover, high-order Laplacian matrices can be obtained
by a newly designed forward algorithm of low time complexity. GCN
is then employed to exploit spatial features, and Gated Recurrent Unit
(GRU) is applied to exploit temporal features. We conduct extensive
experiments on three real-world traffic datasets. Experimental results
demonstrate that the prediction accuracy of SDGCN outperforms
existing traffic flow forecasting methods. In addition, it provides better
explanations of the generative Laplace matrices, making it suitable for
traffic flow forecasting in large cities and providing insight into the
causes of various phenomena such as traffic congestion. The code is
publicly available at https://github.com/gorgen2020/SDGCN.

Index Terms—Traffic flow forecasting, dynamic graph construction,
graph convolutional network, sparse hidden markov model.

I. INTRODUCTION

CCURATE traffic flow forecasting is crucial for intelligent traffic
management and smart city applications such as guiding road
construction, sensing traffic congestion, and recommending travel
routes. Exploring appropriate spatial and temporal characteristics
is the key to achieving high performance. Based on this idea,
many methods have been proposed in the literature in the last
decades. Early traffic flow forecasting methods were based on
traditional machine learning and classical statistics, including time
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sequence models [1–3], Kalman filter model [4], Markov chain
model [5], non-parametric methods, simulation models [6, 7], and
local regression models [8, 9]. These methods mainly focus on
exploring temporal relationships in time sequence data but ignore
the spatial correlation originating from the road network topology.

Recently, with the advances in deep learning [10, 11], Convo-
lutional Neural Networks (CNNs) are used to capture the spatial
features of grid-based data [12], and Recurrent Neural Networks
(RNNs) [13, 14] are employed to exploit the temporal correlation.
However, it is hard for these methods to simulate both the spatio-
temporal characteristics and the dynamic relationship of traffic data.
Although the hybrid model of CNN and RNN can capture some
spatio-temporal features [15], the complexity of the traffic road
topology surpasses the capability of CNN methods to capture the
underlying spatial features in regard to these non-Euclidean traffic
data. By formulating traffic prediction as a graph modeling problem,
GCNs have obtained state-of-the-art performance in traffic flow
forecasting [16]. However, the performance of these works is limited
by the use of fixed empirical graphs and insufficient consideration
of the dynamic features of the traffic data. Some scholars consider
using a dynamic graph to construct GCNs[17–25], but most of them
employ static graph (e.g., roads network topology) to construct a
dynamic graph with deep learning methods. Moreover, since deep
learning methods are usually viewed as a black box, dynamic graph
generated by them often lacks strong interpretation. In addition,
in order to aggregate the multi-hop neighbour node information,
a high-order Laplacian matrix is applied. However, the calculation
of such a high-order Laplacian matrix is time-consuming.
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Fig. 1. The dynamic change diagram of traffic flow. (a) Traffic flow during rush
hours on weekdays, and (b) Traffic flow during leisure hours on weekends.

Since global positioning systems and traffic sensors have been
widely used to record large-scale trajectories of vehicles on the road
[26], it becomes possible to understand the dynamic correlation
of traffic data through mobility modeling, allowing for a more
accurate dynamic graph embedding. Recently, several studies have
been devoted to this area [27–29]. However, the main drawback
of these mobility models is that they focus mainly on the local
relevance of trajectories but ignore the rich semantic relational
structure, i.e., trip patterns or motivation behind the mobility. For

https://orcid.org/0000-0002-7254-8994
https://orcid.org/0000-0002-8279-5390
https://orcid.org/0000-0001-7897-1673
https://orcid.org/0000-0002-2851-4260
https://orcid.org/0000-0002-7796-5201
https://orcid.org/0000-0002-3020-3947
https://github.com/gorgen2020/SDGCN


2

example, as shown in Fig. 1, origins appearing at far places with
the same destinations and intents at rush hours on weekdays (e.g.
two residential communities of going to the office for work in
the far away distance) should be considered highly semantically
connected. Meanwhile, during the weekend, the origins may be
highly semantically connected due to their similar purposes for
visiting recreational places. How to discover the dynamic hidden
semantic relational graph rather than the static graph (e.g. road
topology) is the key challenge in dynamic graph construction.

To address the above problem, inspired by the knowledge from
the relation extraction domain, we propose to apply a sparse hidden
Markov-based model to learn the intrinsic semantics embedded
in the historical trajectories. Since the contextual semantics of the
trajectories can provide useful insights about the relationships that
exist between these origins and destinations (OD), they can reveal
the hidden topology in the road network. For example, if people
usually arrive at regions A and B after work, such trajectories can
indicate that regions A and B are semantically connected (i.e., with
similar motivation, as they may both be there for shopping), even
if they are far apart.

We introduce a sparse state-sharing hidden Markov model to
capture the patterns of traffic flows from the sparse trajectory data,
and to reveal the latent states and transition matrices among them.
Consequently, we can build dynamic Laplacian matrices adaptively
by jointly considering time, space, and the trip pattern (or motivation)
of users. The primary contributions of this paper are as follows:

• A novel Semantics-aware Dynamic Graph Convolutional
Network (SDGCN) is proposed for traffic flow forecasting.
SDGCN transforms the traditional static graphs into adaptive
dynamic semantic graphs, and represents spatio-temporal road
connections through dynamic semantics-aware relationships.

• To address the low accuracy problem caused by the scarcity and
inconsistency of trajectory data, a State-share Sparse Hidden
Markov Model is introduced. It mines personalized features,
through which k-hop dynamic semantic Laplacian matrix can
be obtained, and consequently simplify the computational
complexity of calculating high-order Laplacian matrix.

• We conduct extensive experiments on three real-world traffic
datasets. Experimental results demonstrate the superiority
of SDGCN in traffic flow forecasting, compared to existing
baselines. Furthermore, we showcase examples of improved
interpretability of the generated graphs.

II. RELATED WORK

A. Traffic flow Forecasting

Traffic flow forecasting focuses on using past geographic
information to predict future traffic flow. However, due to the
complexity and nonlinear characteristics of the problem, it is not easy
to obtain accurate predictions. Many researchers have investigated
this field over years and developed various models to achieve higher
performance. Traditional statistical models, including Historical
Average (HA) [30], Auto-Regressive Integrated Moving Average
(ARIMA) [31] and Vector Auto Regression (VAR) [32], are widely
accepted due to their interpretability and fast computation. However,
their hypothesis of a stationary environment is difficult to satisfy
in real traffic scenarios; hence, their performance in the real world

is low. Traditional statistical learning-based approaches, such as K-
Nearest Neighbor (KNN) [33] and Support Vector Regression (SVR)
[34], can model non-stationarity and correlation of multivariate data,
but their accuracy often depends on manual feature engineering.

Due to the ability to take advantage of large amounts of data,
neural networks (NNs) are widely applied to predict spatio-temporal
traffic data [35–37]. These methods can be grouped into three
categories: temporal-dependent models, spatial-dependent models,
and spatio-temporal dependent models. In order to capture temporal
features, RNN models, especially Long Short-Term Memory
(LSTM), are often adopted [38]. Attention mechanism is often
applied in these models, Fang et al. tried to combine attention
mechanism with LSTM to exploit the long temporal features [39].
To capture spatial features, considering the success of CNNs method
in the image task, CNNs are often applied in the early stage of
traffic flow forecasting. Although CNNs are very suitable for these
standard applications of 2D or 3D data in the image processing
domain, the fact that traffic topology networks naturally exhibit non-
Euclidean structures limits the application of CNNs in traffic flow
forecasting [40]. Recently, researchers have tried to explore graph
structure information through NNs and developed a new family
of neural networks, Graph Neural Networks (GNNs) [41]. As a
breakthrough during the previous 5 years, researchers have proposed
GCNs to handle these non-Euclidean structured graphs [42].

B. Graph Convolution

Bruna et al. [43] attempted to apply CNNs to graph-structured
data and developed a general graph convolution framework based on
the spectrum of the graph Laplacian. Defferrard et al. then optimized
it by implementing eigenvalue decomposition using the Chebyshev
polynomial approximation [44]. Many GCNs and their variant mod-
els have been developed for traffic flow forecasting [45–49]. Zhao
et al. proposed the T-GCN model, which adopted GCN and Gated
Recurrent Unit (GRU) methods to represent spatio-temporal features
simultaneously [49]. By using a GCN to exploit spatial features and
GRU to exploit temporal features, T-GCN achieved considerable
improvements in prediction performance. Different from the dis-
criminative models, Zhou et al. introduced a generative flow-based
method named Variational Graph Recurrent Attention Neural Net-
works (VGRAN) to construct posterior of the traffic distributions for
more accurate prediction [47]. However, these models used a prede-
fined static road topology as the adjacency matrix of GCN, ignoring
the fact that the graphical topological relationships between roads
change dynamically over time. Therefore, these methods exhibit
limited potential for the further improvement of prediction accuracy.

C. Dynamic Graph Construction

More and more scholars have noticed that traffic network
graphs are dynamic graphs. To construct dynamic graphs, many
methods have been proposed [17–19]. Graph Attention Network
(GAT) [20] used the attention mechanism to adaptively predict the
dynamic adjacency matrices of the graphs. Following this work,
Guo et al. [21] developed the Attention-based Spatio-temporal
GCN (ASTGCN), which used attention mechanism and GCN to
deal with the traffic flow forecasting problem, and the dynamic
Laplacian matrices of the graphs were constructed. Attention-based
Spatiotemporal Graph Attention Network (ASTGAT) [48] used the
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attention mechanism, dilated gated convolution, and graph attention
network to capture the spatiotemporal features. The Dynamic Graph
Convolutional Recurrent Network (DGCRM) adopted two super
networks capturing dynamic information, and then used them to
generate dynamic graphs [22]. Most of them are still based on
the empirical Laplace matrix of the road network to generate dy-
namic Laplace matrices, ignoring the intrinsic temporal connection
between Laplace matrices of adjacent time periods [23]. DGCN
combined spatial attention and LSTM as graph generation layers
to obtain higher accuracy [50].Dynamic Spatial-Temporal Aware
Graph Neural Network (DSTAGNN) represented dynamic spatial
relevance among nodes with an improved multi-head attention mech-
anism [25]. Spatial-Temporal Graph Ordinary Differential Equation
Networks (STGODE) noticed the spatial-temporal dynamics of
node signals and captured the dynamic graph of nodes through
ordinal differential equation [24]. However, due to the complexity
of its model, it was time-consuming to train and predict.

Although some of the dynamic graph construction models
mentioned above can obtain high accuracy, most of them lack strong
explanations or interpretability for the generation of the adjacency
matrix or Laplacian matrix. In addition, a high computational cost is
required for computing high-order Laplacian matrices, which is not
always practical for realistic applications. In contrast to the above
work, we employ a state-sharing sparse hidden Markov model to
generate dynamic semantics-aware graphs from traffic trajectory
data. The traffic trajectory data generates dynamic semantics-aware
graphs, resulting in more interpretable and accurate dynamic graphs
for end-to-end learning.

III. METHODOLOGY

The purpose of traffic information forecasting is to predict the
state of traffic information at several moments in the future based
on the current or past observed traffic state. Traffic information
includes a variety of sensor data, such as traffic speed, traffic
density, and trip time. In this study, we focus on traffic speed
prediction in traffic flow forecasting. In a smart city, the traffic
speed can be measured through a number of relevant sensors.

A. Problem Definition

Definition 1: Traffic network G. The structure of the transporta-
tion network can be naturally represented by a graph G=(V,E,A),
where V represents a set of roads in the city, V = {v1,v2,...,vN}
and N is the total number of roads. In this study, we take roads as
nodes of the graph, and v or vn represents a common road node. E
is a set of edges between the nodes. We adopt an adjacency matrix
A to represent the connections between the road nodes. In particular,
A∈RN×N for a weighted graph, and the elements of A are either
0 or 1 for a static graph (e.g. based on road network topology).

Definition 2: Trajectory flow observation O. The probability
distribution of vehicle trajectories over time T is denoted
as matrix O = [O1, O2, ..., OT ] ∈ RN×T , where Ot =
[ot

(v1);ot
(v2);...;ot

(vN)]∈RN×1 represents the traffic flow trajec-
tory at time step t, and ot

(vn)∈V indicates the traffic flow changes
between origins and destinations of road nodes at time t. For exam-
ple, ot(vn)=vm, means traffic flow from vn to road vm at time t.

Definition 3: Dynamic semantic adjacency matrix At extends
the previous Definition 1 to a dynamic graph. Different from

traditional methods, where edges are fixed by static graph topology,
dynamic semantic edges are applied to represent relationships of
roads. Each dynamic edge at time t is expressed as the conditional
probability of traffic flow from vn to vm at time t, which can be
formulated as:

At={amn=p(ot
(vn)=vm)=p(ot=vm|ot−1=vn}. (1)

where At∈RN×N is the semantics dynamic adjacent matrix, amn

is the element of m-th row and n-th column. Correspondingly,
G=(V,E,A) will become Gt=(V,Et,At).

Definition 4: Feature matrix X. Traffic data contains various
data, which can be expressed as a matrix, X ∈RN×P , where P
represents the number of node attributes. In this study, we consider
traffic flow speed as a feature of interest, and capture the historicalP
time steps in feature matrix X=[Xt−p,...Xt−2,Xt−1], where Xt∈
RN×1 is used to represent the speed across all nodes V at time t.

With the above definition, the dynamic semantic adjacent matrix
can be calculated as follows:

[O1,O2,...Ot−1]
g(.)−−→Ôt

Equation1−−−−−−−→Ât. (2)

In the first step, we learn a function g(.) to map past t−1 time
series observations [O1,O2,...Ot−1] into the future observation Ôt

at time t. According to Equation 1, we can thus obtain the predictive
dynamic semantic adjacent matrix Ât.

In the second step, the traffic speed prediction can be formulated
as follows: [

Xt−p,...Xt−1;Ât

]
f(.)−−→ [Xt,...,Xt+T−1]. (3)

Our goal is to learn a function f(.) that maps past p time steps
of graph signals Xt−p,...Xt−1 (utilizing the predictive dynamic
semantic adjacent matrix Ât) to predict the graph signals in the
future T time steps.

B. Method Overview

As shown in Fig. 2, SDGCN consists of three components: dy-
namic semantic graph generator, graph convolutional network, and
temporal gate recursion predictor. Firstly, previous t−1 observed
traffic trajectories [O1,O2,...,Ot−1] are fed into the dynamic state-
share latent layer to obtain a common latent state-share space C.
k-hop (k-hop represents general multi-hop, k={0,1,2,...,K} and
K is the Max-hop number) personal feature of each road node v is
governed by a personal latent variable Zv

t and changing with time
t, which is sparsely connected to state-share latent space C. For
each road node v, we can aggregate k-hop probability into emission
probability to capture the inherent semantic features relationship of v.
Then, the dynamic semantic graph is generated after all road nodes
V are processed this way. Secondly, the output dynamic semantic
graph will be conveyed to GCN in the form of a combination
of various k-order Laplacian matrices. Thirdly, the node signals
[Xt−p,...Xt−2,Xt−1], together with the generated graph, are fed
to the GCN to capture spatial features. Finally, the latest P output
features of GCN are input to a temporal gate recursion predictor, cap-
turing the temporal features and obtaining the predicted values X̂t.
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Fig. 2. Overview of the SDGCN architecture: a) dynamic semantic graph generator, b) graph convolution network, and c) temporal gate recursion predictor. In the above,
X̂t is the predictive traffic speed at time t, and Lk is the k-order of the semantic Laplacian matrix.

C. Graph Convolution Network

GCN model builds a filter in the Fourier domain. Laplacian
matrix can be formulated as L=D−1

2 (A+I)D
1
2 , where I is the

identity matrix, which means adding self-connections, D is the
degree matrix. For GCN, considering K-hop aggregation, GCN
model can be expressed by the following formula [51]:

X(l+1)=f
(
A,X(l)

)
=σ

(
K∑
k=1

LkX(l)w(l)

)
, (4)

whereX(l)∈RN×P is the input of l layer, whileX(l+1)∈RN×T is
output of l layer in futureT time steps, k denotes the number of hops
aggregation and k∈{1,...,K}. In addition, w∈RP×T is a learnable
parameter, and σ represents the nonlinear activation function. To
capture the dynamic semantic relationship, Definition 3 is employed
as a new adjacency matrix. Two-layer GCN model [52] is used
to obtain dynamic semantic traffic relationships. In T-GCN [49],
K is set to 1 for simplification, which means only the first-order
neighborhood nodes are considered while ignoring high-order neigh-
borhood nodes, since it is time-consuming to compute the K-order
Laplacian matrix LK . If we calculate it directly, the time complexity
would beO

(
N3(K−1)

)
. Moreover, with a higher-order of Laplacian

matrix, it is prone to over-smoothing [53]. To exploit the high-hop
neighbour nodes information, the k-order Laplacian matrix should
be considered. Therefore, how to calculate semantic dynamic k-

order Laplacian matrix Lk and
K∑
k=1

Lk becomes a key problem.

D. Dynamic Semantic Graph Generator

The Hidden Markov Model (HMM) is a way of modeling sequen-
tial processes with unobservable states. As shown in Fig. 3a, HMM
assumes that some latent states govern the sequence observations,
and these latent states obey the Markov assumption: that the proba-
bility of state transition (next state) only depends on its current state.

1) Dynamic Semantic Graph by HMM: HMM is a powerful
method for learning dynamic semantic relations. Formally, let K be
the number of latent states and k-th latent state govern the dynamic
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Fig. 3. The framework of HMM and State-share Sparse HMM: (a) illustration of the
HMM-based prediction model details in the latent space and its relationship with the
traffic trajectory, and (b) illustration of the details of State-share Sparse HMM-based
prediction model in the latent space and its relationship with the traffic trajectory.

semantic relationship of k-hop, then in the classical HMM, there
is a triplet of parameters λ={π,S,D}. To facilitate the subsequent
discussion, the parameters are defined as follows [54]:

• π denotes the initial probability of the k latent state, π∈RK×1,
where πi=p(q1=i).

• State transition matrix is defined as S = {sij} ∈ RK×K,
which shows the transition probabilities between K hidden
states. The probability of transiting from the i-th state to the
j-th state is defined by sij, sij=p(qt=j |qt−1=i).

• Emission matrix D={di(Ot)}∈RK×N , which denotes the
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probabilities of i-th hidden state emitting to Ot observation
with di(Ot)=p(Ot |qt=i).

According to the HMM theory, amn from Equation 1 can be cal-
culated by the forward algorithm in the prediction period as follows:

amn=

K∑
j=0

dj(Ot=vm)

K∑
i=0

sijαi(Ot−1=vn), (5)

where αi (Ot−1=vn) = p (O1,O2,...,Ot−1=vn,qt−1

=i) , dj (Ot=vm) = p (Ot=vm |qt=j). In this study, we
apply latent states qt=j to govern the j-hop relationship of traffic
trajectory. For the transition probability of traffic trajectories, the
probability of one hop is much larger than the probability of multiple
hops, and multiple hops can be regarded as an accumulation of
one hop. Therefore, the observation can be considered a priori as
conforming to the multinomial distribution. Some restrictions must
be attached to the form of the model to ensure that the parameters
of the Probability Density Function (PDF) can be re-estimated in
this way. In particular, D=

{
dj(Ot)=cjθ

j
m

}
, where cj is the nor-

malization factor, and θm is considered as the single-hop probability
to node vm. Thus, Equation 5 can be expressed as follows:

amn=

K∑
j=0

cjθ
j
m

K∑
i=0

sijαi(Ot−1=vn). (6)

Let Hj = cj
K∑
i=0

sijαi(Ot−1=vn). Then, amn=
K∑
j=0

Hjθ
j
m, which

is equivalent to the semantic dynamic k-order Laplacian matrix
Lk and

∑K
k Lk. Moreover, if the hidden layer has K states, the

time complexity of computing the K-hop Laplacian matrix can be
reduced to O(NK) in the prediction stage.

2) Dynamic Semantic Graph by State-sharing Sparse HMM:
HMM model can be a powerful tool for learning semantic multi-hop
features of traffic trajectories when the amount of trajectory data
transmitted by road is sufficient and consistent. However, as shown
in Fig. 4, multi-hop data is often scarce, especially for far distances,
where the data of close range is much larger than that of the remote.
In this situation, there is often too little data to train a reliable model,
and the accuracy of the HMM is relatively low.

To solve this problem, the State-share Sparse HMM model [55]
is employed, where the hidden layer is divided into two layers.
The design of the State-share Sparse HMM obeys the following
principles: 1) the shared latent layer shares the same latent state set
to avoid data scarcity; and 2) the individual latent layer maintains

its personal transition matrices, which is sparse and small, to build
personalized transition models.

As shown in Fig. 3b, the input O={O1,O2,...,Ot−1} is a set of
observations of the traffic trajectory information. The observations
are controlled by a set of hidden variables in a shared latent layer,
and for each sequence of observations, two levels of latent states
can be defined: 1) C={c1,c2,...,ct} is a set of latent states shared
by all roads, which governs the distribution of observations, and 2)
Zv={πv,zv2 ,...,z

v
t } is the individual latent states, which dominates

a few shared latent states associated with each road. The shared
latent state space, which consists of a series of shared latent states,
is shared by each road to avoid suffering from data scarcity. The
personal latent space is an individual latent states layer to capture
the personalized characteristics of each road. D={dm} defines the
probabilities of m-th latent states emitting specific observations. For
each road, the triple personalization parameter Φv={πv,Sv,Bv}
can be defined [55]:

• A vector πv ∈RK×1, where πv
i = p(zv1=i), which denotes

the initial probability distribution of personal latent states.
• A matrix Sv =

{
svij
}
∈ RK×K, which denotes the proba-

bilities transiting among K personal latent states by svij =
p
(
zvt =j |zvt−1=i

)
. Similarly, K is the number of personal la-

tent states and k-th latent states govern road k-hop relationship.
• A matrix Bv = {bvim} ∈ RK×M , which denotes the

probabilities of i-th personal hidden state emitting to the m-th
shared latent state with bvim=p(ct=m |zvt =i).

Although the State-share Sparse HMM can solve the scarcity
of multi-hop data, how to compute amn becomes a new problem,
as the forward algorithm applied to solve the classical HMM is no
longer suitable. Therefore, we develop a new forward algorithm
as follows. We define

αkm(Ot)=p(o1,...,ot,ct=m,zt=k)

=
∑
i

∑
j

p(o1,...,ot,ct=m,zt=k,ct−1=i,zt−1=j). (7)

By Bayes theorem and Markov assumption:

αkm(Ot)

=
∑
i

∑
j

αij(Ot−1)p(ct |zt)p(zt |zt−1)p(ot |ct). (8)

By triple-tuple personalized definition:

αkm(Ot=vm)=
∑
i

∑
j

αij(Ot−1=vn)bkmSkjdk(Ot=vm).

(9)
Analogous to HMM, D = {dk(Ot = vm) = ckθ

k
m}, where

k = 1,2,...,K, ck is the normalization factor, θm is regarded as
one-hop probability to vm. Thus, dk(Ot) defines a multinomial
distribution of the k-hop latent state over the shared latent state.
Thus, amn from Equation 1 can be calculated as follows:

amn=
∑
k

ckθ
k
m

∑
i

∑
j

αij(Ot−1=vn)bkmSkj. (10)

Similarly, let Hk = ck
∑

i

∑
jαij(Ot−1= vn)bkmSkj, we have

amn =
∑K

k Hkθ
k
m, which is equivalent to the semantic dynamic

k-order Laplacian matrix Lk and
∑K

k Lk. Moreover, if the personal
hidden layer has K states, the time complexity of computing the
K-hop Laplacian matrix can be reduced to O(MK+K2) in the
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prediction period. Note that M is much larger than K, and the time
complexity can be approximately equal to O(MK). In sum, the
time computational complexities of the three methods to calculate
the high-order Laplace matrix are shown in Tab I. For the general
case, the number of road nodes N is larger than the shared state
latent parameter M. Therefore, the lowest time complexity can be
achieved by the State-share Sparse HMM.

TABLE I
THE TIME COMPLEXITIES OF CALCULATING HIGH-ORDER LAPLACIAN MATRIX

IN THEORY.

Method Directly HMM State-Share
Sparse HMM

Time complexity
of calculating LK O(N3(K−1)) O(NK) O(MK)

E. Temporal Gate Recursion Predictor

To capture the temporal features, GRU is adopted as a temporal
gate recursion predictor in this study. GRU is an RNN network
similar to LSTM, but more simplified, since it has only two gates.
GRU merges the input gate and the forgetting gate from LSTM
into a single gate, called the update gate, which controls the amount
of the previously remembered information retained to the current
moment. The other gate is the reset gate, which controls the amount
of past information that would be forgotten in the current moment.
The mechanism of its operation can be explained by the following
equations [38]:

gt=σ(Wz ·[ht−1,xt]+bu) (11)

rt=σ(Wr ·[ht−1,xt]+br) (12)

h̃t=tanh(W ·[rt∗ht−1,xt]+bc) (13)

ht=(1−gt)∗ht−1+gt∗h̃t, (14)

where ht represents hidden state at time t, while h̃t is the candidate
state at time t, gt is the update gate, rt is the reset gate.

IV. EXPERIMENT

A. Dataset Description

In this study, three real traffic datasets, Xi’an city and Chengdu
city in China are collected, which are obtained from the data source:
Didi Chuxing GAIA Initiative (https://gaia.didichuxing.com). The
traffic data (15 days of Xi’an and 10 days of Chengdu) are selected to
train the model as the traffic speed has obvious single-week periodic
properties. The other dataset is Beijing urban city in china from
T-Drive dataset, which is obtained from the data source: Microsoft
company (https://www.microsoft.com/en-us/research/publication/t-
drive-driving-directions-based-on-taxi-trajectories/)[56, 57]. The
traffic data (4.2 days of Beijing) are selected to train the model with
the non-week periodic property.

• Xi’an: Totally 251 road sections in the urban area of Xi’an
were chosen. The period was from 1st Nov. 2018 to 15th Nov.
2018, a total of 15 days. The traffic speed of each road was
sampled every 10 minutes. A total of 541,909 speed sampling
points were collected. There were 859,088 matched vehicle
trajectories at the same time, which were applied to generate
the semantic dynamic adjacency matrices.

• Chengdu: Totally 505 road sections in the city proper of
Chengdu were chosen. The period was from 1st Nov. 2018
to 10th Nov. 2018, a total of 10 days. The traffic speed of each
road was sampled every 10 minutes. A total of 727,200 speed
sampling points were collected. There were 909,697 matched
vehicle trajectories at the same time, which were applied to
generate the semantic dynamic adjacency matrices.

• T-drive of Beijing city: We partition the Beijing city into 8 ×
8 grids, and then the traffic speed of each grid was sampled
every 5 minutes. The period was from 2nd Feb. 2008 to 6th
Feb. 2008. A total of 77,248 speed sampling points were
collected. There were 5,049,436 matched vehicle trajectories
at the same time, which were applied to generate the semantic
dynamic adjacency matrices.

As for some missing traffic speed data, the average speeds are
calculated to fill in the missing values. The data were preprocessed
by Min-Max scaling and the 70% of the first-time series is used as
the training set (10.5 days of Xi’an, 7 days of Chengdu and 3 days
of Beijing), and the remaining 30% is used as the test set. Horizon
1, horizon 2 and horizon 3 indicate the traffic speed of the next 10
minutes, 20 minutes and 30 minutes in Xi’an and Chengdu and the
next 5 minutes, 10 minutes and 15 minutes in Beijing. The overall
road area distribution is shown in Fig. 5. The blue lines in Fig. 5a
and 5b are the road networks and road segment, and the red circles
are the trajectory points of vehicles on the road segment, Fig. 5d
and Fig. 5e are the average traffic speed of all roads, showing a
certain periodicity. The blue lines in Fig. 5c are the grid segment
of Beijing, and Fig. 5f are the average traffic speed of all grids.

B. Baselines

The proposed model is compared with the notable traffic flow
forecasting methods. These methods can basically reflect the
baselines of traffic flow speed forecasting. The baselines are
described as follows:

• HA [30], predicts the future speed by the average traffic
information in the historical periods.

• ARIMA [58], integrates auto-regression with moving average
model on the time sequence to predict future traffic data.

• SVR [34], is another classical time sequence analysis
regression method by using linear support vector machine for
regress task, which applies the historical time sequence data
to train the model and then predicts the future traffic speed
by the trained model.

• GCN [52], is a neural network for processing convolution on
graph data structures.

• GRU [38], is a RNN method like LSTM, but with fewer pa-
rameters than LSTM, which is utilized in learning time series.

• T-GCN [49], adopts GCN and GRU to exploit spatial and
temporal dependencies.

• ASTGCN [21], applies attention module and GCN to train
and predict dynamic Laplacian matrices and speed.

• DGCN [50], applies attention and LSTM module, together
with GCN to train and predict dynamic Laplacian matrices
and speed.

• DSTAGNN [25], applies multi-head attention, together with
Multi-scale Gated Tanh Unit (M-GTU) convolution module
to train and predict dynamic Laplacian matrices and speed.

https://gaia.didichuxing.com
https://www.microsoft.com/en-us/research/publication/t-drive-driving-directions-based-on-taxi-trajectories/
https://www.microsoft.com/en-us/research/publication/t-drive-driving-directions-based-on-taxi-trajectories/


7

(a) Xi’an road segment distribution. (b) Chengdu road segment distribution. (c) Beijing grid segment distribution.
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(d) Xi’an average traffic speed.
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(e) Chengdu average traffic speed.
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(f) Beijing average traffic speed.
Fig. 5. Traffic segment distribution of three cities.

In order to facilitate the comparison with other methods of
baselines, widely used metrics are applied in this study:

• Root Mean Squared Error(RMSE):

RMSE(y,ŷ)=

√
1

|Ω|
∑
i∈Ω

(yi−ŷi)
2

• Mean Absolute Error(MAE):

MAE(y,ŷ)=
1

|Ω|
∑
i∈Ω

|yi−ŷi|

• Explained Variance Score (EVS):

EV S=1−
∑

i∈Ωvar(yi−ŷi)∑
i∈Ωvar(yi)

where y = {y1,y2,...,yN} denotes the ground truth speed
value, while ŷ= {ŷ1,ŷ2,...,ŷN} denotes the predicted speed
value. Ω denotes the test samples. RMSE and MAE are
quantitatively used to describe the difference between the
predictive value and the ground truth value. The smaller the
value is, the more accurate the model is. EV S weighs the
ability of the predicted result to represent the actual data, the
larger the value is, the better the predictive effect is.

• Accuracy of traffic trajectory prediction:

Accuracy=
∑

top−num

I
(
Ot,Ôt

)
/N

I is the indicative function. In this study, top−num=5, the
top five predicted probabilities of traffic trajectory of the next
time with ground truth values are evaluated.

C. Hyper Parameters

The proposed model is implemented in Tensorflow 1.9.0 on
a workstation with 16G memory Nvidia GTX 1070 GPU and
i7-7700HQ CPU. As for the deep Learning framework, the initial
learning rate is set to 0.0001. Adam Optimization is utilized, and
the batch size is 32. 12 samples are used to train. Training epochs
is 1000, L2 loss is applied as loss function of our model, with
a regularization parameter 0.0015. Two-layer GCN architecture
and Relu activation function are adopted, and the number of
GRU hidden units is set to 256. There are two key parameters
for State-share Sparse HMM: 1) Shared states number M , and
2) Personal latent states number K. As the number of roads in
Chengdu is twice that of Xi’an, theM andK values of Chengdu are
400 and 5 while Xi’an are 200 and 5, Beijing dataset are 32 and 2.
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D. Results

Taking T-drive data as an example, firstly, outlier trajectory points
that deviated from 8 × 8 grids are removed, then the preprocessed
trajectory data are sliced according to the 1207 node signal time
interval. Thirdly, the historical trajectory data are fed into the
State-share Sparse HMM model for training, and the 64 × 64
Laplacian matrix of the next time is predicted. The Laplacian
matrices predicted by HMM or State-share Sparse HMM are
asymmetric in most cases. However, GCN requires that the input
Laplacian matrices are symmetric, so the larger of the road or grid
relationships between two roads or grids at adjacent moments in
Definition 3 is taken as the common value:

am,n=an,m=max{p(Ot=vn |Ot−1=vm),

p(Ot=vm |Ot−1=vn)}.
(15)

Finally, through Equation 15, the symmetric Laplacian matrix is
applied to GCN and GRU to extract spatio-temporal features and
predict the value of traffic flow speed at the next several moments.

Tab. II shows the performance of the baseline models based on
Chengdu, Xi’an and Beijing in the next three time horizons. The
performance is compared for Horizon1, Horizon2 and Horizon3.
It can be seen from Tab. II that SDGCN achieves the best results
in three datasets. Traditional methods cannot guarantee that each
dataset will produce the desired results. As a side note, for complex
nonlinear spatio-temporal traffic problems, other methods usually
fail to capture the essential spatial-temporal features, while methods
that consider both space and time such as T-GCN, SDGCN,
ASTGCN, DGCN and DSTAGNN have better performance than
methods that consider only one factor. In addition, for complex
traffic problems, dynamically tuned GCNs often achieve better
results than approaches using static graphs.

Interestingly, without changing any other parameters, simply
replacing the fixed Laplacian matrices with semantic dynamic Lapla-
cian matrices provides a considerable improvement to the conven-
tional GCN model, which is denoted as GCN improved in Tab. II.

The top-performing models are compared in more detail in Fig.
6. The RMSE and MAE of all models increase as the time
increases, and the prediction results of different methods vary for
three datasets. Therefore, long-time prediction of traffic flow is still
difficult. SDGCN model achieves better performance for long-term
prediction. It is worth noting that for the roads in Chengdu, the num-
ber is twice than that in Xi’an. SDGCN has the least difference in pre-
diction accuracy for three datasets and obtains better robustness. This
is due to the fact that it dynamically constructs the topological rela-
tionship of roads based on real traffic trajectories. Since it is difficult
to capture traffic flow with only a single speed dataset, dynamically
adjusting the topological relationship of roads by tracking traffic
trajectories can better reflect the internal relationship and exhibits
better interpretability, which will be discussed in the next section.

To better explore the performance of the graph construction
model, the elapsed time of the dynamic graph model is shown
in Tab. III. The prediction time increases as the number of road
nodes increases. Note that the number of road nodes in Chengdu
is twice than that in Xi’an, and the prediction time changes slightly
by applying SDGCN, since the use of State-share Sparse HMM
has less impact on the increase of road nodes compared to other
methods (i. e., attention mechanism). As to the time of generating
high-order Laplacian matrix, experiments show that SDGCN takes
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Fig. 6. The predictive results of different methods on Xi’an, Chengdu and Beijing.

less time than ASTGCN, DGCN and DSTAGNN, as expected
based on its lower time complexity. Thus, it is efficient and
beneficial to analyze the traffic flow even in big cities, where a
large number of roads makes previous approaches impractical.

E. Ablation Study

In order to verify the effectiveness of the SDGCN model, we
have made variants of SDGCN. (1) TGCN: completely replace the
dynamic graph with the fixed road topology but retain the GRU
module, then there will be the same network structure as TGCN.
(2) SDGCN*: completely replace State-share Sparse HMM with
traditional HMM dynamic graph constructive module but retain
GRU module. (3) GCN improved: retain the State-share Sparse
HMM dynamic graph generation module, and remove the GRU
module. (4) GCN: completely replace the dynamic graph generation
module with the fixed road topology and remove the GRU module,
then there will be the same network structure as traditional GCN.
We conduct the ablation experiments on three datasets. Fig. 7 show
the results of every variant. It can be seen that the performance
of our SDGCN is better than other variants, which confirms the
effectiveness of each component in our model.
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TABLE II
THE PREDICTION RESULTS OF SDGCN AND OTHER BASELINE METHODS ON THREE DATASETS.

Time Horizon 1 Horizon 2 Horizon 3
Metric RMS MAE EVS RMS MAE EVS RMS MAE EVS

Xi’an

HA[30] 4.8580 3.3804 0.7794 5.1645 3.6133 0.7506 5.4483 3.8344 0.7222
ARIMA[58] 7.1284 5.6280 0.0082 7.1300 5.6290 0.0082 7.1326 5.6309 0.0078
SVR [34] 4.9242 3.3237 0.7759 5.3821 3.6770 0.7315 6.0527 4.1831 0.6595
GCN[52] 5.3607 3.8000 0.7347 5.5673 3.8846 0.7139 6.5662 4.2323 0.6021
GRU[38] 3.5479 2.2420 0.8822 4.1200 2.6310 0.8412 5.5594 3.0830 0.7116
TGCN[49] 4.4719 3.2226 0.8120 4.5747 3.3145 0.7984 4.9122 3.5553 0.7880
ASTGCN[21] 4.0746 2.8342 0.7977 4.0896 2.8471 0.7960 4.1144 2.8716 0.7942
DGCN[50] 3.8679 2.6260 0.8597 3.9250 2.6707 0.8589 4.1509 2.9187 0.8491
GCN improved 4.2793 2.9415 0.8310 4.1200 2.6310 0.8412 5.5594 3.0833 0.7116
DSTAGNN[25] 4.7483 3.1531 0.7869 4.7424 3.1520 0.7875 4.7394 3.1501 0.7876
SDGCN (ours) 3.3507 2.2069 0.8973 3.6780 2.4639 0.8753 3.8796 2.6224 0.8611

Chengdu

HA[30] 4.8537 3.3429 0.7855 5.0947 3.5171 0.7635 5.3269 3.6859 0.7408
ARIMA[58] 6.1944 4.8990 0.0074 6.1963 4.9009 0.0074 6.1996 4.9037 0.0070
SVR[34] 4.7893 3.3402 0.7915 4.9997 3.4924 0.7727 5.2213 3.6708 0.7519
GCN[52] 6.1273 4.3052 0.6594 6.5924 4.7229 0.6058 6.8606 5.1157 0.5731
GRU[38] 4.6305 2.9511 0.8054 5.9112 3.4386 0.6866 7.2614 4.9793 0.5453
TGCN[49] 5.7276 4.2080 0.7098 5.6533 4.1413 0.6667 5.7656 4.2409 0.6656
ASTGCN[21] 4.7280 3.2928 0.7616 4.9932 3.5238 0.7683 5.0884 3.5529 0.7674
DGCN[50] 4.5525 3.2220 0.8219 4.5579 3.2239 0.8213 4.5666 3.2277 0.8207
GCN improved 5.8484 4.1401 0.6885 5.7493 4.0000 0.6997 5.9231 4.1404 0.6819
DSTAGNN[25] 4.8142 3.1532 0.7911 4.9193 3.2561 0.7614 5.0211 3.3582 0.7515
SDGCN (ours) 3.9181 2.7303 0.8640 3.8890 2.6914 0.8421 4.1583 2.8955 0.8260

Beijing

HA[30] 5.5293 3.7527 0.6728 5.7077 3.8633 0.6517 5.8445 3.9529 0.6342
ARIMA[58] 7.7196 6.1278 0.0012 7.7209 6.1292 0.0012 7.7216 6.1296 0.0012
SVR[34] 5.8192 3.9078 0.6446 6.2670 4.1119 0.5829 6.2952 4.2240 0.5784
GCN[52] 6.7045 4.7545 0.5086 6.8244 4.8042 0.4930 6.8415 4.8501 0.4904
GRU[38] 6.7582 4.7222 0.5112 6.8904 4.9704 0.4956 7.3706 5.3292 0.4281
TGCN[49] 6.4244 4.6195 0.5494 6.5732 4.7173 0.5313 6.6722 4.8259 0.5192
ASTGCN[21] 5.8108 4.1214 0.6855 6.0542 4.2514 0.6585 6.2844 4.3870 0.6320
DGCN[50] 5.1132 3.7339 0.7603 5.4057 3.9058 0.7315 5.5727 4.0083 0.7116
GCN improved 6.4270 4.5140 0.5586 6.4350 4.5171 0.5580 6.4630 4.5560 0.5553
DSTAGNN[25] 5.1389 3.7216 0.7612 5.5359 4.0227 0.6841 5.8371 4.1578 0.6712
SDGCN (ours) 4.5375 3.2890 0.7739 4.9778 3.5621 0.7347 5.1615 3.6224 0.7142

TABLE III
THE PREDICTION RESULTS OF SDGCN AND OTHER BASELINES METHODS ON THREE DATASETS.

Method Xi’an Chengdu Beijing

training time
(s/epoch)

predicting
time(s)

Gernerating
Laplacian

Matrix
L5time

(ms)

training time
(s/epoch)

predicting
time(s)

Gernerating
Laplacian

Matrix
L5time

(ms)

training time
(s/epoch)

predicting
time(s)

Gernerating
Laplacian

Matrix
L5time

(ms)
ASTGCN[21] 1.73 3.11 998.35 4.16 3.44 2015.63 0.70 0.10 10.14

DGCN[50] 18.95 12.59 1382.49 28.02 27.57 5495.40 5.09 0.49 17.45
DSTAGNN[25] 17.81 2.39 310.41 123.47 22.21 509.62 3.91 0.47 4.32
SDGCN(ours) 7.25 1.34 234.61 9.04 1.52 497.25 2.90 0.09 2.11

F. Effects of parameters

For the dynamic graph construction, the main parameters are the
number of shared hidden statesM and the number of personal states
K. We evaluate the performance when these parameters change on
the condition that all other parameters are kept at their default values.

• Effect of M: For the three datasets, the changes are roughly
similar. As shown in Fig. 8a, 8d and 8g, when the value of
M is small, accuracy of TOP 1-5 increases greatly with the
increment of M , but when M increases to a certain level, it
becomes saturated, and a further increase is slow.

• Effect of K: When K is relatively small, as shown in Fig. 8b,
8e and 8h, TOP 1-5 accuracy changes a lot with the increase
of K, but as K reaches a certain level, the accuracy decreases
dramatically. It shows that the probability of very high-hop
events in a short period is relatively low.

Applying the State-share Sparse HMM to represent the traffic
trajectories, the dynamic semantic relationships of the road nodes
will be obtained. The output Laplacian matrices are Markov
matrices based on the previous position to infer the probability of
the next transition. The accuracy of the HMM and the State-share
Sparse HMM learned in the time series of three cities are analyzed.
As shown in Fig. 8c, 8f and 8i, due to the sparsity and inconsistency
of the trajectory dataset, the accuracy of the conventional HMM
model is relatively poor, reaching no more than 40%, and exhibits
large fluctuations over time. At the same time, the accuracy of the
State-share Sparse HMM model is significantly improved, with
accuracy basically about 80%−90% and slighter fluctuations.

G. Interpretation of the Generative Laplace Matrices

To visualize the Laplacian matrices generated by the State-share
Sparse HMM model, Fig. 9 plot part of the output Laplacian
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Fig. 7. Ablation experiment of module effectiveness.

matrices (50 × 50 road segment or grid segment) and Tab. IV
to compare them with the Laplacian matrices generated by the
classical HMM model. The prediction results of classical HMM
are limited to a smaller number of local road nodes and they have
difficulties in capturing the global features, which exhibits a lot of
zero values, while the State-share Sparse HMM model can take
the global network into account through two-layer structure, which
displays more non-zero value. The State-share layer tries to capture
the common features of all roads and the personal states layer can
preserve the features of each road through sparse connections. In this
way, the output Laplacian matrix of the State-share Sparse HMM can
represent the dynamic semantic relationships, even if the distances
between different roads are far away. Therefore, the output Laplacian
matrices of the State-share Sparse HMM can better extract the
dynamic features of the global road network. The dynamic Laplacian
matrices not only make the speed prediction more accurate, but also
result in a better interpretation of the generative Laplacian matrices.
It provides a strong basis for the generated graphs in the next
moment to infer the motivation behind the trip, which is important
for subsequent traffic management. For example, as shown in
Fig. 10, during weekday working hours, the road connections
between residential community areas and work offices will become
closer with more dense traffic trajectory points and the semantic

multi-hop reveals the relationship from residence community to
working offices, however, during weekend leisure hours, the road
connections between community areas and entertainment halls
will become closer with more dense traffic trajectory points and
the semantic multi-hop reveals the relationship from residence
community to entertainment halls. Therefore, the semantics-aware
dynamic map can reflect these internal relationships more clearly.

V. CONCLUSION

In this paper, a novel traffic flow forecasting method, Semantics-
aware Dynamic Graph Convolutional Network (SDGCN) is pro-
posed. Different from the existing dynamic GCN methods, SDGCN
constructs dynamic graphs not from the node’s signal information,
but rather from trajectory information of traffic flow. This way
it fully considers both semantic dynamic graph and node signals
to make higher speed predictions. The State-share Sparse HMM
method is presented to obtain the dynamic semantics-aware graphs
based on traffic trajectories. The motivation or trip patterns behind
the traffic flow can be captured through trajectories data. Also, the
trend of traffic flow can be predicted to build a dynamic graph. Con-
sidering the complexity of calculation, we develop a new forward
algorithm for the State-share Sparse HMM method in the predictive
stage, and finally the high-order semantics-aware Laplacian matrices
with low time computational complexity can be obtained. Experi-
mental results demonstrate that SDGCN outperforms state-of-the-art
traffic flow forecasting methods and also better interprets the gener-
ated Laplacian matrices. This way it can dynamically represent the
trip patterns or motivation behind the traffic flows. However, consid-
ering that both trajectory and traffic speed information are required,
it is difficult to obtain both datasets in some application scenarios.

In future work, we will further explore the dynamic relationships
of traffic flow and extend the semantics-aware dynamic graph to
deep GCN as well as the external factors to the dynamic graph
construction work.
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Fig. 9. Visualization of Laplacian Matrices generated by HMM and State-share
Sparse HMM.
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(a) Trajectory of vehicles at rushing hour on weekday.
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