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CHAPTER 1

Introduction

A significant part of perceived reality is induced from vision where shape

and texture play important roles. If we see an image, even without color

or motion, we can “instantly” perceive the scene that it depicts. We also

assume that other people in the world will have roughly the same percept,

as far as the 3D contents go.

Trying to construct a machine that performs the same task as the human

visual system is no easy task. Bear in mind that I am only considering

interpretation of a single monochrome image here, while the brain obviously

does more. It uses both color and motion to help us achieve the much greater

goal of navigating through a complex world, and to ultimately make sense of

it. Humans excel at this, assuming no cognitive impairments such as, e.g.,

motion blindness or over-exposure to the philosophy of Sartre[15].

This thesis is concerned with the task of estimating illuminance flow,

which is used to derive shape from single grayscale images. It investigates

using texture for this purpose, but deviates significantly from most other

works (especially in computer vision) in that texture is given a much richer

definition. In general, texture is an elusive phenomenon when it comes to

description; there are various, sometimes contradictory definitions in the lit-

erature. One could easily dedicate several pages on the topic, as done by

many works connected to texture analysis (see for instance[16] for a good

overview).
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Thesis Introduction

Computer vision approaches to 3D reconstruction commonly model ob-

jects as consisting of shape (the surface of the object) and texture (the varia-

tion of surface albedo forming a pattern on the surface). While this definition

is very useful for cases such as a box of cereals, a race car with commercial

printing or a wall with graffiti, it is (almost) useless for objects such as the

stem of a tree, a boulder or a uniformly colored sculpture. I adapt a more

general notion of texture, which is more in line with the intuitive human no-

tion of it. While surface variation in albedo (painted pattern on the surface

say) is one part of what makes up texture, another part is fine-scale surface

variation. This kind of texture is often called 3D texture. This should not

be confused with the kind of “texture” found in 3D volumetric data, which

confusingly is often referred to as 3D texture as well[26].

1.1 Texture, shape and scale

If one takes a perfect sphere, and covers it with a uniformly colored, fine

scale, plastered surface, then nobody (except some of the more unreasonable

computer vision academics) would object to the statement: “I see a sphere

with some rough texture on it”. The unreasonable academic (lets call him

Simplicio from now on) will point out to you that if you look close at a small

surface patch, you only see shading and shadowing due to shape variation.

He will continue to state that this, in itself, is proof that the object is not

a perfect sphere, and that you should really learn what texture is before

engaging in discussion with real scientists.

In this context, it is appropriate to consider the planet we live on. To

Simplicio, one can explain that mount Everest is a barely noticeable part of

the texture of the planet and that on this scale he himself is part of neither

shape nor texture, but is utterly irrelevant, as is his opinion.

This is not to say that mount Everest does not have a shape, but it

is to point out that for the problem of shape inference, what is shape and

what is texture is completely scale dependent. A mountain is a shape when

considering how to land a space shuttle, but it is not when maintaining

geostationary orbit. Going back to the sphere with plaster, it is to ordinary

people a sphere, because if asked, they can easily grab it as a sphere, roll it

as a sphere, throw it as a sphere, but when asked to count the number of

plaster indentations and protrusions on the entire object, they will be unable

to (of course, Simplicio can help out here, as he can with ease provide a

protrusion detector/counter, as long as he can find the right Bayesian priors
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Chapter 1

for his vision algorithm).

Even though observers cannot easily count the protrusions, they are still

aware of them. A keen ball player will know how to better roll and grab the

sphere due to their distribution across the surface, and a visual artist will be

able to reproduce a picture of the sphere that the ball player will recognize. If

the artist is skillful enough he can depict the sphere in different illumination

conditions, where 3D texture will have widely different appearance. The

depiction will most likely have no protrusions similar to that of the original

sphere, and still no human will at a glance see the difference. The artist has

performed the remarkable task of 3D texture synthesis[22][21]. The exact

protrusions and indentations across the depicted sphere will probably be

different from the original. A reasonable hypothesis is that the statistics of

the texture that matter to human interaction (such as surface directionality

and spikiness/smoothness) would stay the same.

I model objects as having surface variation on 3 independent scales of

importance: macro, meso and micro.

Macro scale is the scale of the object as a whole, which is why no

one raises an eyebrow when I say that the Earth is round. Only a modern

day Simplicio would disagree. A planetary scientist could point out that the

planet is slightly elongated along the equator, and not a perfect sphere, but

Simplicio can dig a hole his entire life without any changes occurring on the

macro scale.

Meso scale is the scale of texture, especially when it is stochastic in

nature. Ridges of mountains are variations in the crust of the planet Earth,

and yields a noticeable texture when viewed from space. If we discuss the

Earth as an object, then we can talk of the specific peaks and valleys only if

we are in the meso scale.

Micro scale , finally, is the scale which is too fine for us to perceive as

a local shape change, and only makes sense to analyze statistically. In terms

of a camera, it is the sub-pixel resolution context. This is where we find

Simplicio on the crust of the planet and there is no lower limit to this scale,

even algae in the example of the Earth. A handful of algae is not observable

from space but a huge blooming might be.

With this close dependence between scale, shape and texture, the risk of

misunderstandings is a very real possibility. In the frame of thought intro-

duced here, it is quite possible to talk of mount Everest as a “shape within

the texture”. This is to do the mental exercise of switching scales within the

same sentence, and does not add to the clarity of the text. Nonetheless, I
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Thesis Introduction

hope the reader at this stage understands the meaning of a “shape within the

texture”, and I will henceforth avoid the temptation of “surfing the scales”.

Furthermore, I will try to keep myself to the range of scales in which we hu-

mans perceive with our unaided original senses (i.e. middle world as coined

by Richard Dawkins[1]).

1.2 A haptics analogy

In the area of haptics, the issue of defining scale in order to differentiate

between texture and shape is less complicated[32] (although some unique

complications do arise). One uses the natural aperture of the finger or the

hand, and relates it to a measure of scale of surface variation. This keeps any

haptically inclined Simplicio at bay (by giving him the finger, so to speak,

as an example), and researchers can safely say “I feel a sphere with some

rough texture on it”. As for the micro-scale, it is the scale so fine that

any particular protrusion cannot be felt haptically, but statistics from this

scale nonetheless affect the percept of the surface. For example, if there is

directionality in the height profile on the micro-scale, then there will be more

friction when sliding the finger in one direction compared to another. This

kind of surface-to-surface interaction on the micro-scale is studied in the area

of tribology[34].

With the finger, as with the retina, we perceive reality in 21/2

dimensions[57]. Beyond that, unfortunately, the finger or hand makes for

a very poor analogy with the retina. One might be tempted to define the

scales based on variations over angular units (parameterizing the visual field).

This breaks down instantly as one moves the object closer to the observer.

Even in an unchanging scene, what is texture and what is not is entirely

dependent on what is given attention to. Objects are often built up hierar-

chically of smaller repeating objects in any of the three scales. Clearly, in

the context of object appearance we must let the object of interest define

the scales, relative to the global size of the object and the resolution of the

imaging device. This is assuming that the object is contained within and

takes up a fair amount of the visual field, in which case the general object

size gives the macro-scale, the pixel resolution gives the micro-scale and the

meso-scale occupies a range in-between these two. This does not solve all

problems with scale definition. One problem occurs if we consider an object

with one part closer to a camera with a wide-angle lens. Another, more fun-

damental problem with the separation of macro-, meso and micro scales is
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Chapter 1

that global shapes become limited to smooth (and most certainly differen-

tiable) manifolds. It is impossible to have a macro-scale shape that is, for

example, a mathematical cube, because the edges and corners are infinitely

fine.

An interesting point of view to the three scales can be had for the special

case when the object can be parameterized as a spherical function. This is

when all surface points are projectable to a single point inside the object

(this is a so-called “star shape”). In this case, one could use the spherical

harmonics expansion[17] to reason about the three scales. Spherical harmon-

ics can be explained as frequency analysis on a spherical topology, and is

a generalization of the 1D Fourier Series expansion. The 2D Fourier series

expansion is connected; it is essentially equivalent, but works on a toroidal

topology instead of a spherical one. With the harmonics expansion, one has

a spectrum of surface variations, and one can chop this up into 3 intervals,

and label them as macro, meso and micro. Of course, the limit between

meso and micro is dependent on the resolution of the camera and how much

of the visual field the object is occupying. One has decomposed the object

as a sum of the 3 scales of interest, and the problem with non-differentiable

manifolds becomes apparent; for a cube, we get a smoothed out version for

macro shape, and visible bleed off into both meso and micro scales for the

edges and corners.

I hasten to point out that spherical harmonics are not used to define

the different scales, but are merely a convenient tool for reasoning about

them. Spherical harmonics come with a range of problems in this context,

including, but not limited to, allowing negative values and only allowing

spherical functions.

1.3 3D texture vs. flat texture

The variation in appearance of 3D texture due to illumination change is a

fascinating subject. It fundamentally sets 3D surface texture apart from its

flat 2D counterpart (painted patterns) in terms of how it can be analyzed

and ultimately handled by any vision system[7]. Consider, if you will, a plane

with texture illuminated by collimated beams (the sun on a cloudless day, or

what some call a point source at infinity). If the texture is 2D Lambertian,

then only the elevation angle (the slant) of the incoming beam of light matters

to its appearance; variation in the azimuthal angle of light is irrelevant. The

variation of the appearance is remarkably simple: the global intensity of the
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pattern is uniformly scaled as the elevation (slant) angle changes. Phrased

differently, for 2D texture, if we simultaneously increase the intensity of the

light as we decrease its slant then it is possible to leave the appearance of the

texture unchanged. With 3D texture, the case is naturally quite different.

On the meso-scale, the protrusions and indentations of the height variation

will appear differently depending on the elevation angle (slant), but more

critically, the appearance will vary based on the azimuthal (tilt) angle of the

light direction[7].

This observation has been exploited to great effect in the computer graph-

ics community. The collection of techniques called “bump mapping”[19] al-

lows a designer to provide two separate 2D arrays for a given object facet:

a) the 2D flat texture, and b) the meso-scale height variation across the

facet[19][18]. Objects rendered this way appear much more realistic and the

scene is generally more pleasing to the eye. More importantly (and probably

fundamentally connected) is that the observer is given a richer stimulus to

deduce the setup of the scene. There are now additional cues in the image

for the light field and the shape of the objects!

The addition of 3D texture to an object aids the human visual system

tremendously, and it is especially the possibility to infer shape from this

information that is the ultimate goal of observing the wonderful phenomenon

of illuminance Flow. This brings us finally to the specifics of my thesis

work, which is where the next section starts off. This, I promise, will be

less philosophically inclined and more technical then what this introduction

would have you believe.

1.4 Theoretical background

The position of the light source relative to the camera (the light vector) is

given by:

` = {`1, `2, `3}T = {cos θ cos φ, cos θ sin φ, sin θ}T

where θ is the illuminant elevation angle (slant) and φ is the azimuthal angle

(tilt). The light vector ` is not given in the tangential frame of the surface,

but in the frame of the camera. There is no spatial dependence, it is constant

throughout the scene. Fig. 1.1 illustrates the geometry.

To arrive at illuminance flow, we first define the twice projected light

vector:
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Figure 1.1: The imaging geometry where θ is the slant (elevation) and φ

is the tilt (azimuth).

f̃(x) = P (`− (`Tn)n)

where the 2-by-3 matrix P is the projection into the camera frame. In our

case P will simply discard the third dimension (the camera is along the z-

axis): P = (e1
... e2)

T. Illuminance flow is defined as the normalized projected

light vector, with a sign ambiguity:

f(x) = s
f̃(x)

|f̃(x)|
(1.1)

where s ∈ {−1, 1} represents the sign ambiguity which allows us to treat

illuminance flow as an orientational (axial) rather then a directional flow

field. The reason for doing so is because of the sign ambiguity in shad-

ing patterns, often called the convex-concave ambiguity[14]. Consider any

Lambertian rough surface texture distributed on a plane viewed frontally.

Roughly the same image will result if simultaneously the tilt light angle

is rotated one half revolution (φ → φ ± 180◦) while the texture height is

inverted (hmeso(x) → −hmeso(x)). The sign ambiguity can sometimes be

resolved using inter-reflections or shadows, but these effects are difficult to

use in general, and are most often negligible when dealing with a low relief

surface texture[22]. The sign ambiguity is illustrated even clearer in section

1.5 below.

Fig. 1.2 illustrates ground-truth on a sphere. The figure also shows how

we envision shape from illuminance flow to work. After estimation, any

7



Thesis Introduction

Figure 1.2: Illustration of ground-truth illuminance flow over the surface
of a sphere. Left: original image, with flow illustrated with red line seg-
ments. Right: illustration of how a shape from illuminance flow algorithm
should perform given the correct flow. The image can be inflated.

algorithm should have the power to inflate the image, as illustrated in the

figure.

An important example is a flat plane illuminated with collimated beams of

light; f(x) is then a constant vector throughout the image, and is detectable

only in the presence of 3D texture. If only 2D texture is present, then there

is no dependence on the tilt angle.

How would one go about measuring illuminance flow from an image of the

surface? To attack this problem (which is a novel topic), it is convenient to

start with a simpler and more studied issue, that of illuminant tilt estimation.

1.5 Illuminant tilt estimation

Illuminant tilt (φ) is the azimuthal light direction relative to the camera

frame. Now, illuminance flow is fundamentally different from illuminant tilt

for all cases except for the frontally viewed flat plane. Illuminance flow is (in

general) a spatially varying entity, while illuminant tilt is a global constant.

One might be tempted to think of illuminance flow as a local illuminant tilt

estimator, where the “tilt” angle is local with respect to the tangential plane.

This is still not correct, for it does not factor in the change in orientation

given by the final projection into the camera plane. Illuminance flow is the

twice projected light vector, and it will be equivalent to a local illuminant

tilt, only if the frame of the camera is aligned with the tangential frame of

8



Chapter 1

the object (which happens when the shape is a plane viewed head on, i.e.

fronto-parallel). The distinction is very clear cut, and very important!

With that said, we know that for the singular case of a fronto-parallel

patch, illuminant tilt estimation is what we are trying to achieve with any

illuminance flow estimation (especially such approaches as found in[35][9]).

One could approach illuminance flow estimation from the perspective of gen-

eralizing illuminant tilt estimation, which is one way of explaining the work

done on illuminance flow by use of the structure tensors. This is the fo-

cus of chapters 2 and 3, although this is not the way in which the topic is

there presented. When reading chapters 2 and 3 one could easily replace

every occurrence of the (gradient-based) “structure tensor” with “any lo-

cal unsupervised illuminant tilt estimator” (This is addressed in more detail

in Section 2.4). Chapter 4 shows that the gradient based structure tensor

emerges as the optimal estimator in a regression setting, while chapter 5 goes

beyond the structure tensor, and assumes that ground-truth flow is already

given, and forms the basis of shape inference1.

Unsupervised illuminant tilt estimation is all about image directional-

ity although not always stated so explicitly[35][9]. Before we go on, I will

share with the reader a small simple simulation experiment that is easily

reproducible.

1.6 Image-based, fronto-parallel 3D texture

synthesis

I hasten to point out that the thesis work has no connection with 3D tex-

ture synthesis. The following cartoon example is to illustrate a few points

connected to the appearance of 3D texture and illuminant tilt estimation.

For a work on proper 3D texture synthesis, see for instance[22], and[21] for

a thorough review of this fascinating rather recently considered problem.

We will generate images randomly, as the sum of sinusoidal wave planes.

Each wave-plane takes the form of cos(a(kT
b x + c)) for kb = {cos(b), sin(b)}.

Here, the frequency of the wave is a ∈ R+, the direction is b ∈ [−90◦, 90◦) and

the phase is c ∈ [−90◦, 90◦). One single such wave plane can be seen in the

top left of Fig. 1.3. We form a sum of N such wave-planes with individually

1More detail on the connection between the chapters and how they form a coherent
body of work is made clear from the thesis summary.
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generated random (a, b, c) and transform the resulting image such that its

gray values are translated and scaled to fit the range of 0 to 1.

For each plane we generate, lets draw independent random values for

(a, b, c). The script draws a from a chi-square distribution, with parameter

value 5. This is a strictly positive distribution, that is skewed (any positive

skewed distribution would do for our example, yielding different kinds of

perceived surfaces in Fig.1.3). The direction of the waves, b is drawn from

a normal distribution with mean direction µb = 45◦ and standard deviation

σb = 25◦ (this is actually a “wrapped” normal distribution because b is a

circular variable). The phase c is drawn from a uniform distribution.

The result for up to 1024 waveplanes is shown in Fig. 1.3. Interestingly,

what comes out in the end seems to be a rough surface texture frontally

viewed, illuminated with tilt angle φ = µb = 45◦. We can note the sign

(convex-concave) ambiguity, by rotating the images 180◦ (the reader is en-

couraged to this). When doing so, the images appear to still have illumination

from the direction φ = 45◦ but each perceived convexity has been replaced by

a concavity, and vice versa. Also interesting is that the procedure of adding

these planes converges to a stationary process, that is: as we add more planes,

the specific illuminated surface indentations and protrusions change, but it

is statistically a similar kind of surface illuminated from the same direction.

This simple experiment illustrates the central principle which lies behind all

the algorithms for illuminant tilt estimation from texture. The directionality

of the image will be highly correlated with the tilt of the light vector. If the

light vector is in the position of the camera, that is if the slant angle is 90◦,

then there will be no directionality in the image to exploit, and this is when

the problem of tilt estimation is undefined (as is illuminance flow).

The reader who is comfortable with frequency analysis will likely think

of this approach of adding waveplanes as a frequency based approach, and

realize that a very similar algorithm can be implemented in the 2D discrete

Fourier (FFT) domain. In the 2D continuous Fourier domain, the above

approach is equivalent to randomly placing points of energy (Dirac delta

distributions) in the spectrum. The statement above regarding convergence

to a stationary process is easily shown by realizing that the image we create

will converge towards a bimodal power spectrum.

10



Chapter 1

Figure 1.3: Illustration of simplistic 3D synthesis by addition of wave-
planes with random phase, frequency and direction. From top left to bot-
tom right: increasing amount of waveplanes, doubling for every image (1,
2, 4, 8, ... , 2048).

11



Thesis Introduction

The distribution of the orientations of the waveplanes will determine the

shape and size of the modes in the angular dimension, and the distribution

of the frequency will likewise determine the size and shape of the modes in

the radial directions. For certain choices of distributions for the orientations

and frequencies, the power spectrum will resemble closely the directional

derivative of some underlying two dimensional signal. This is precisely when

the resulting image will appear to us as an obliquely illuminated surface

texture (the underlying 2D signal is the meso-scale surface).

The results of my simple experiment with adding random wave planes

to yield image texture, must have some explanation from physical reality.

It seems improbable that it happens to resemble surface 3D texture just by

chance. There is indeed a physical rationale, the first to observe and make

use of it were Kube and Pentland[30]. In their elegant original work, the focus

was on fractal surfaces which I will briefly discuss here before continuing on

the physical rationale.

1.7 Surface models

A fractal surface is a 2D function whose second order (and possibly higher)

statistics are invariant of scaling. Thus, one can zoom into, or out of, the

surface indefinitely and find self-repeating structure. The focus of Kube and

Pentland[30] claimed to be the so-called Brownian surface, which can be

defined as a surface with a power spectrum following a “power law”. If h(x)

is the surface, and the Fourier transform of it is H(ω), then for the Brownian

surface:

|H(ω)| ∝ |ω|−β

for β ∈ R+. The so-called fractal dimension (denoted D, a standard mea-

sure of the self-repeatedness) correlates with both β and perceived surface

roughness[28].

A Brownian surface is a most non-intuitive entity. It is continuous, but

not differentiable, it is defined by its power spectrum that has infinite en-

ergy, and it does not have an auto-covariance function. There are a lot of

inherent problems with this surface model but it is popular mainly because

of the esthetic value of the generated approximations (which do resemble

real world surfaces, as Fig. 1.4 illustrates). The Brownian surface is espe-

cially not suited for illuminant tilt estimation of 3D texture analysis. One

of many problem is that the surface variation goes into the micro scale, and

12
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Figure 1.4: Renderings of two approximations of Brownian surfaces,
viewed obliquely. They have varying fractal dimension. Left: β = 1.1.
Right: β = 1. Gaussian smoothing (of varying degrees) was applied on
the surface height profiles. This was done sufficiently so as to make them
pleasing to the subjective opinion of this author.

thus changes the surface reflectance properties[13] (exactly how is dependent

on β). In practice, approximations of the model are used, where the power

spectrum is cut off towards the lower and higher frequencies (as done in Fig.

1.4). If one does not need infinite repeatability, but one does need differentia-

bility and a convenient auto-correlation function, then the Brownian surface

should not be an option. The work of Kube and Pentland is most certainly

not intended for non-differentiable manifolds, as the very entry point of the

theory developed begins with differentiation to form the locally varying sur-

face normal. The esthetically pleasing appearance that the approximation

provides can equally well be described as a sum of differentiable surfaces of

the following type (which we will henceforth call “Gaussian surfaces”):

|H(ω)| = exp(−σ|ω|2)

These surfaces are differentiable, and have the benefit of containing energy in

only one scale (given by σ). The Brownian surface contains infinite amount

of energy in all scales (macro, meso and micro, and above and beyond to

coarser then galactic scales, and finer then string theory scales). If one wants

Brownian looking surfaces as a model, then one can use a sum of Gaussian

surfaces to approximate the behavior of the Brownian model, within the scale

of interest (the relevant frequency band). This way, we have a model that is

differentiable and has a well defined auto-correlation function.
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Of course, other surface models exists, like those based on Markov

models[20] and other kinds of Power spectra[25]. It is important that the

reader does not confuse the meso-scale surface height profile (not observ-

able) with the image texture (observable).

1.8 From image based to physics-based mod-

eling

Now I return to the approach of adding random waveplanes in the image

based synthesis (section 1.6). Kube and Pentland were the first to realize

that the image of a random surface would quite often have a bimodal power

spectrum, and there is indeed a physics based explanation that we will now

investigate. First, the underlying assumptions of the theory are:

• Lambertian reflectance

• Uniform albedo

• Low relief (also results in no inter-reflections nor shadows/vignetting)

• Normal view (fronto-parallel to x-y plane)

• Light field of dominant directional component (in the extreme: colli-

mated beams, light source at infinity)

• The light vector must not be close to the viewing direction.

We start by considering the spatially varying normal of the surface as

given by:

n(x) =
{−hx(x);−hy(x); 1}T√

h2
x(x) + h2

y(x) + 1

where suffixes indicate partial derivatives and h(x) is the surface height func-

tion.

According to Lamberts law, the observed radiant intensity is proportional

to

I(hx, hy) ∝ `Tn

14
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With the assumptions listed above, this quantity is also proportional

to the image of the surface2 (thus I(hx, hy) will henceforth be treated as

the image). Now, the expression for I(hx, hy) is a very uncomfortable non-

linear expression, so Kube and Pentland performed a Taylor series expansion

around (hx, hy) = (0, 0), and arrived at their model by only using the linear

terms. I will henceforth use g = (hx, hy).

I will do a small modification to their approach. Instead of allowing two

degrees of freedom for the gradient of the surface, I will allow for only one:

the magnitude |g| =
√

h2
x + h2

y ∈ R+ such that (hx, hy) = |g|(cos a, sin a)

for some arbitrary local angle of the gradient a. We allow the derivatives

to change uniformly only with |g|. We perform the one-dimensional Taylor

expansion around |g| = 0 and show up to second order as3:

I(hx, hy) = −`3 + (hx`1 + hy`2) +
1

2
`3(h

2
x + h2

y) + O
(
|g|3
)

(1.2)

The Kube and Pentland linear model is −`3+(hx`1+hy`2), which we also find

as the zeroth and first order terms above. We recognize that (hx`1 + hy`2)

(which we can also write as cos θ(hx cos φ + hy sin φ)) is proportional to a

directional derivative in the direction of the illuminant tilt angle (φ). Now,

what will a directional derivative look like in the power spectrum? The

answer is given in Fig. 1.5. The derivative of Fig. 1.5 is along the y-axis, so if

the Kube and Pentland model would be correct, then we should see a surface

illuminated from below. We actually see surfaces illuminated from above,

because our vision system has a strong prior for that setting. We see again

the sign ambiguity in illumination direction and surface convexity/concavity.

Turning the images upside down will give rise to a perceptual flip. The

rationale of the Kube and Pentland model is the explanation to why the

technique of bump-mapping works[18].

Going back to Eq. 1.2, we notice the second order term in addition to the

Kube and Pentland linear model4. The first term is a weighted directional

2We can also mention that, strictly speaking, a linear camera transfer function is needed
to actually produce a proper image for this theory to work on. In practice, a monotonic
transfer function will do.

3This approach is very close to that of Section 3.3. The height scaling used there is
somewhat different, in that it is not spatially varying, and thus makes the connection to
global roughness measures. Here we just use the gradient magnitude because it makes for
a nicer expression that should be more intuitive.

4The second order term comes out this nicely because we used |g| in the Taylor series
expansion.
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Figure 1.5: Illustration of the directional derivative of Gaussian surfaces.
Observe that these are not rendered surfaces but derivatives of height pro-
files. Top row: Isotropic surface. Bottom row: Anisotropic surface. Left
column: the partial derivative (in the y-direction). Middle column: Surface
Power spectrum. Right column: Power spectrum of the derivative image
(from the left row).

derivative, whose weight (cos θ) gets larger as the illumination approaches

grazing (θ = 0, the light approaches the horizon). This is called first order

shading. The second term is the square magnitude of the gradient, weighted

with `3 = sin θ, and thus gets weighted more as the illumination approaches

normal direction (θ = 90◦, the light approaches zenith). This is called second

order shading.

The truncated Taylor series expansion is elegant in that it correctly orders

the different kinds of shading, and gives an accurate description of which type

of shading will occur more dominantly then the other. We see the two main

contributing factors explicitly in the formulation: the illumination slant angle

θ, and the surface gradient magnitude |g|.
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CHAPTER 2

Illuminance Flow over Anisotropic Surfaces

abstract

A theory is presented to analyze images of anisotropic fine-scale surfaces.

We investigate the estimates of illuminance flow using structure tensors.

For anisotropic surfaces, both the gradient-based and the Hessian-based

tensors will yield deviations from the true illumination orientation. Our

theory predicts this deviation. To show the use of this theory, an algorithm

is derived that uses both tensors simultaneously to compensate for small

amounts of anisotropy. Experimental results with rendered surfaces are

shown to conform well to our theory.

Published as: S. M. Karlsson, S.C. Pont, J.J. Koenderink, “Illuminance
Flow over Anisotropic Surfaces”. Journal of the Optical Society of America A 25,
282–291 (2008).
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2.1 Introduction

The light field[52] in which objects are situated is important in machine

vision. Often slight changes in illumination produce large changes in the

image of an object, especially with regard to meso scale surface variations

across the object (so-called 3D or surface texture).

A great deal of work has been done regarding methods for handling image

variation due to translation, rotation and scale[23][42][3]. Only in the last

decade or so has the subject of lighting variation been given widespread

attention within the machine vision field[53][54]. The focus has been mainly

on arriving at a set of lighting invariant features. The traditional approach

has been to vary the light field and gather statistics that are insensitive to

light change (often resulting in edges and corners in the albedo map).

In this chapter, we investigate illuminated, Lambertian anisotropic sur-

face textures of uniform albedo, and try to infer the so-called illuminance

flow[10][11]; defined as the set of vectors resulting from projecting the light

vector into the tangent planes of a surface. The illuminance flow over the

surface of an object constitutes a flow field. An example of this flow field

(for a sphere) is shown in the left pane of Fig. 2.1. The surface illuminance

flow is a continuous set of 3D vectors (one for each surface patch that is

illuminated) and does not depend on the camera position.

Geometry of an object exists on several scales. The global scale consti-

tutes the shape of the object as a whole (e.g. a sphere as in Fig. 2.1) and the

meso scale makes up the surface texture. At even finer detail are the micro

scales with variations so fine that they influence the reflectance properties

of the surface rather than observable geometry. Where one scale starts and

the other ends is usually not given, and can vary locally within the image

and depends on the camera position. The global scale geometry defines a

set of tangent planes, into which the light vector is projected to form the

illuminance flow.

In this chapter, we consider the case where the object is a plane on the

global scale, and where the camera is in normal position (illustrated by the

right pane of Fig. 2.1). Assuming a collimated light source then the illumi-

nance flow is a unidirectional flow field with direction φ (the azimuthal angle

of the incident light, as illustrated in Fig. 2.1). For this case, the problem is

reduced to estimating the azimuthal direction φ from the image.

Any algorithm that can estimate φ (locally) can be used to estimate the

illuminance flow in normal viewing. This puts our work close to surface tex-
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Figure 2.1: Left:Illustration of illuminance flow on a sphere. Two scales
of interest: meso-scale, surface variation due to texture, and object-scale,
defining the geometry of the object (here a sphere), Right: the imaging
geometry. We assume an object that is flat on the global scale for this
chapter. The elevation angle θ, and the tilt angle φ define the direction of
illumination.

ture classification and photometric stereo, where illuminant azimuth (or tilt)

estimation plays an important part[7]. In this context, this chapter presents

a novel theory that generalizes the Kube and Pentland imaging model[30],

by use of structure tensor statistics to account for surface anisotropy. After

presenting our theory and a proposed estimator, we will relate it to a few

algorithms of illuminant estimation from texture analysis (section 2.4) and

show that our theory is relevant to them all. With respect to illuminance

flow, this chapter is in line with the study by Pont and Koenderink[10] where

image structure tensors were used to estimate the light direction. The cur-

rent chapter is concerned primarily with the extension of the theory to the

case of anisotropic surface textures.

When the light field[52] has a dominant directional component (a colli-

mated beam being the extreme case) anisotropy will be imposed in the image

of the surface. In some cases this can be used to estimate the illuminance

flow. It has been shown[10] that using the structure tensor of either the

Hessian or the gradient yields good estimates. However, formally, this only

applies under a set of assumptions, namely:

• Isotropic surface

• Lambertian reflectance

• Uniform albedo
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• Low relief

• Normal view

• Light field[52] of dominant directional component (e.g. a collimated

beam)

Experimental results have been presented for real world surfaces[10]; the

structure tensors yielded promising results, with orientation estimates within

a few degrees of the veridical orientation. The illumination elevation was not

estimated due to the bas-relief ambiguity[55].

All assumptions are important in their own right. Some work has been

done on extending the theory to account for non-normal views [11] and non-

uniform albedo[33]. In this chapter, we focus on the isotropy assumption,

which, as far as we know, has not been given any attention so far. For

anisotropic surfaces, both the gradient and Hessian based tensors will yield

deviations from the true orientation of the illuminance flow. The theory

presented here predicts these deviations, which are shown to conform well to

experiments on rendered surfaces.

To show the use of this framework, an algorithm is proposed that uses

both tensors simultaneously. Extensive experimental results on rendered

surfaces are presented, as well as a few estimations on real-world textures.

2.2 Theoretical background

Derivatives will be denoted as hpq = ∂p+qh(x,y)
∂xp∂yq , the gradient as

gh = {h10, h01}T and the Hessian as:

Hh =

(
h20 h11

h11 h02

)
ĥ(k) is the Fourier transform of h(r) (spatial coordinates r = {x, y}T and

frequency coordinates k = {u, v}T ) and its square magnitude is referred to

as the power spectrum, denoted ρ̂h(k) = |ĥ(k)|2.
〈h〉 will denote averaging over the function h(r) , and mpq

h denotes mo-

ments of the power spectrum defined as:

mpq
h = 〈upvqρ̂h〉 (2.1)
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For correlations between derivatives we have (because 〈hp1q1〉 = 0) :

〈hp1q1hp2q2〉 = m
(p1+p2),(q1+q2)
h (−1)(p1−p2+q1−q2)/2 (2.2)

Eq. 2.2 is derived easily by use of the following properties of the Fourier

transform:

hpq ⇔ (−ju)p(−jv)qĥ(k)

〈f(r)g(r)〉 =
〈
f̂(k)ĝ∗(k))

〉
where ∗ indicates complex conjugate. Because ρ̂h is symmetric (due to hermi-

tian symmetry ĥ(k) = ĥ(−k)∗) all moments for which p+q is an odd integer

will equal zero.

Gaussian Surfaces and the Structure Tensors

Henceforth h(r) will denote a Gaussian surface, which is a 2D Gaussian

(stochastic) process with several convenient properties[50][51] making it a

good candidate for a surface model. It is (strongly) stationary with a constant

autocorrelation function ρh(r) within its ensemble. The covariance function

covh(r) is related to ρh(r) by covh(r) = σ2ρh(r) where σ is the standard

deviation of surface height. The spread of ρh(r) is denoted s, i.e. its width

as measured by second-order moments. s is a measure of scale, and the

quantity σ
s

equals the standard deviation of the derivative processes h10(r)

and h01(r).

The power spectrum ρ̂h(k) is related to ρh(r) through a Fourier transform,

and thus ρ̂h(k) is also constant within the ensemble, as are all the moments

mpq
h .

We will assume a Gaussian-shaped ρh(r) = exp
(
−rT Ghr

)
yielding an

equivalent Gaussian for the power spectrum: ρ̂h(k) = C exp
(
−kT G−1

h k
)
,

where C is a normalizing constant and Gh is the gradient-based structure

tensor, a symmetric, positive semi-definite matrix consisting of the second

order moments:

Gh =

(
m20

h m11
h

m11
h m02

h

)
=
〈
ghg

T
h

〉
(2.3)

The assumption that the autocorrelation function is Gaussian-shaped is

of no critical importance, it is only for convenience. All power spectra of
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interest have well-defined second-order moments, and thus also a structure

tensor, though not necessarily explicit in closed form as with the Gaussian.

For an isotropic surface, ρh(r) is isotropic and Gh is a scaled identity

matrix (i.e. m20
h = m02

h and m11
h = 0). For an anisotropic surface the eigen-

values/eigenvectors of Gh yield the amount and orientation of anisotropy.

We denote the maximum and minimum eigenvalues and their correspond-

ing eigenvectors as λmax
Gh

, λmin
Gh

, vmax
Gh

and vmin
Gh

. The gradient confidence is a

measure of anisotropy defined as:

ξ{Gh} =
λmax

Gh
− λmin

Gh

λmax
Gh

+ λmin
Gh

∈ [0, 1]

ξ = 0 occurs when h(r) is a completely isotropic surface, whereas ξ = 1 in-

dicates degeneracy (the power spectrum is reduced to a line and the surface

contains only isolines). The two cases ξ = 0 and ξ = 1 will be referred to as

the extrema, or extremal cases.

We are interested in the orientation of anisotropy. Here, we choose to

make the distinction between orientation and direction, the latter being free

to assume any angle, i.e. any real number modulo 360◦. Orientation, on the

other hand, is a quantity that treats directions that differ by 180◦ equally,

defined by taking any directional angle modulo 180◦ (a two-to-one mapping

[0◦, 360◦) → [0◦, 180◦) ).

The structure tensor was originally introduced to image analysis as a

method for orientation estimation[4]. The orientation angle of anisotropy is

given by the highest eigenvector and denoted:

µ{Gh} = ∠vmax
Gh

∈ [0◦, 180◦)

Closely related to Gh is the Hessian-based structure tensor defined as:

Th =

(
m40

h + m22
h m31

h + m13
h

m31
h + m13

h m04
h + m22

h

)
=
〈
HhH

T
h

〉
A measure of anisotropy (similar to ξ{Gh}) is the Hessian confidence:

ξ{Th}. The orientation of anisotropy is given by µ{Th}.
Analogous to the ξ{Gh} measure, ξ{Th} = 0 corresponds to the isotropic

case and ξ{Th} = 1 indicates degeneracy. However, for the non-extremal

cases, the two measures differ in general (e.g. ξ{Gh} = 1
2

and ξ{Th} = 1
2

have different interpretations). Also, important for our purposes, µ{Gh}
and µ{Th} will differ in general for the non-extremal cases. We will make
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frequent use of ξ{Gh} and for the sake of convenience will write simply ξ,

where it should be clear that ξ = ξ{Gh}, the confidence with respect to the

gradient tensor of the surface h(r), a well-defined and natural measure of the

anisotropy of a surface.

2.3 Illuminated Gaussian surfaces

In this section we will derive relationships between the hidden tensors of the

surface and the observable ones of the image. The key property here is that

surface anisotropy is encoded in the ξ{Gh} statistic (equivalently, we could

have used ξ{Th}, yielding slightly more cumbersome expressions). Thus, the

goal of this section is to express µ{GI} and µ{TI} in terms of ξ{Gh}, and

ultimately to predict the deviations of the µ{·} observables from the true

orientation of illumination φ. The orientation of surface anisotropy, encoded

by the hidden µ{Gh}, will be addressed at the end of the section.

The unit normal of a surface can be written:

n =
{−h10,−h01, 1}T√

h2
10 + h2

01 + 1

The irradiance by a collimated beam is described by a single vector:

i = c {cos θ cos φ, cos θ sin φ, sin θ}

where θ and φ are the elevation and azimuthal angles of the light source

respectively and c is the intensity of the light (normal irradiance caused by

the beam).

The assumption of a collimated beam is convenient for the derivation, but

not critical since extended sources can be exactly accounted for by equivalent

collimated sources if vignetting is not present. The following theory holds

also for light fields[52] where a dominant directional component is present;

the i vector can be replaced by this dominant direction (for Lambertian

surfaces this is equivalent, when self-shadowing is not present).

We will consider the image I(r) that is formed by viewing the surface h(r)

normally, and will assume that its intensity is proportional to the irradiance

of the surface. The image of a Lambertian low-relief surface will then be

given by:

I(h01, h10, θ, φ) = i · n = c
sin θ − cos θ(h10 cos φ + h01 sin φ)√

h2
10 + h2

01 + 1
(2.4)
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We assume a low relief surface (which also entails no shadows or inter-

reflections) with low values of h10 and h01 on average, making it reasonable

to approximate Eq. 2.4 around (h10, h01) = (0, 0). A Taylor series approxi-

mation including the first order terms of Eq. 2.4 yields

I(h01, h10, θ, φ) = c sin θ − c cos θ(h10 cos φ + h01 sin φ) + O
(
gT g

)
(2.5)

Which is a weighted directional derivative of the surface plus a constant,

c sin(θ), of little interest. Eq. 2.5 is a model of image formation first sug-

gested by Kube and Pentland[30] and has been used in studies into texture

segmentation[6][8] and light estimation[10][8].

The approximation is valid only under oblique lighting, which is evident

from the fact that the approximation yields a constant image for θ = 90◦,

and for lower values θ → 0 we enter the shadow region.

We consider the Taylor series expansion of the surface around any point

of interest (expressed in a local frame where the origin has been aligned with

the point of interest)1:

h(r) = xh10 + yh01 + x2h11/2 + . . . (2.6)

Now, we truncate Eq. 2.6 up to third-order terms, and insert it into Eq.

2.5 yielding a closed form approximation of the imaging process valid under

the assumptions of low relief and oblique lighting of Gaussian surfaces:

I(r, θ, φ) ' c(sin(θ)− 1

2
cos(θ)(sin(φ)(h21x

2 +

2h11x + 2yh12x + 2h01 + 2yh02 + y2h03) +

cos(φ)(h30x
2 + 2h20x + 2yh21x +

2h10 + 2yh11 + y2h12))) (2.7)

The approximation in Eq. 2.7 can be used to derive expressions of the

structure tensors of the image, which will equal:

GI(1, 1) =
c2

2
cos2 θ

[
m22

h + m40
h + (m40

h −m22
h ) cos 2φ + 2m31

h sin 2φ
]

(2.8)

GI(1, 2) =
c2

2
cos2 θ

[
m31

h + m13
h + (m31

h −m13
h ) cos 2φ + 2m22

h sin 2φ
]

(2.9)

GI(2, 2) =
c2

2
cos2 θ

[
m22

h + m04
h + (m22

h −m04
h ) cos 2φ + 2m13

h sin 2φ
]

(2.10)

1The alignment of the frame implies h(0)=0. There is no loss of generality as the final
results depend on the partial derivatives of h (with minimum order of 1).
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TI(1, 1) =
c2

2
cos2 θ

[
m60

h + 2m42
h + m24

h +

(m60
h −m24

h ) cos 2φ + 2(m51
h + m33

h ) sin 2φ
]

(2.11)

TI(1, 2) =
c2

2
cos2 θ

[
m51

h + 2m33
h + m15

h +

(m51
h −m15

h ) cos 2φ + 2(m42
h + m24

h ) sin 2φ
]

(2.12)

TI(2, 2) =
c2

2
cos2 θ

[
m42

h + 2m24
h + m06

h +

(m42
h −m06

h ) cos 2φ + 2(m15
h + m33

h ) sin 2φ
]

(2.13)

The left-hand sides of equations 2.8-2.13 are the elements of the structure

tensors (equations 2.3 and 2.4) with respect to the image I(r). The right-hand

side contains power spectrum moments with respect to the surface h(r).

Now, the moments of the surface will be affected by the anisotropy. We as-

sume a Gaussian-shaped surface power spectrum ρ̂h(k) = C exp
(
−kT G−1

h k
)
.

Anisotropy is introduced as a non-zero ξ{Gh}. Assuming (for now) that the

orientation of anisotropy is in the orientation of the x axis (0◦ or equivalently

180◦), we can write the power spectrum as:

ρ̂h(u, v) = g(u, s−1)g(v,
1 + ξ{Gh}
1− ξ{Gh}

s−1)

where g(x, a) is a 1D normalized Gaussian with standard deviation a. The

parameter s remains a general measure of the scale of the surface.

Applying Eq. 2.1 will yield (for ξ = ξ{Gh}):

m40
h =

12π2(ξ + 1)5

s4(ξ − 1)4

m22
h =

4π2(ξ + 1)3

s4(ξ − 1)2

m04
h =

12π2(ξ + 1)5

s4(ξ − 1)4

m60
h =

60π2(ξ + 1)

s6

m42
h =

12π2(ξ + 1)3

s6(ξ − 1)2

m24
h =

12π2(ξ + 1)5

s6(ξ − 1)4

m06
h =

60π2(ξ + 1)7

s6(ξ − 1)6
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The remaining moments (m31
h ,m13

h ,m51
h ,m33

h and m15
h ) all equal zero. Insertion

into equations 2.8 to 2.13 yields:

GI(1, 1) = C1
2 (ξ3 + 1) + (ξ + 1)((ξ − 4)ξ + 1) cos 2φ

(ξ − 1)2
(2.14)

GI(1, 2) = C1
(ξ + 1)3 sin 2φ

(ξ − 1)2
(2.15)

GI(2, 2) = C1
(ξ + 1)3 (2 (ξ2 + ξ + 1)− (ξ(ξ + 4) + 1) cos 2φ)

(ξ − 1)4
(2.16)

TI(1, 1) = C2

(
2ξ5 − 2ξ4 + 4ξ3 + 4ξ2 − 2ξ + 2

(ξ − 1)4
+

(ξ5 − 5ξ4 − 5ξ + 1) cos 2φ

(ξ − 1)4

)
(2.17)

TI(1, 2) = C2
(ξ + 1)3 (ξ2 + 1) sin 2φ

(ξ − 1)4
(2.18)

TI(2, 2) = C2

(
2ξ7 + 10ξ6 + 26ξ5 + 42ξ4 + 42ξ3 + 26ξ2 + 10ξ + 2

(ξ − 1)6
−

(ξ7 + 9ξ6 + 27ξ5 + 43ξ4 + 43ξ3 + 27ξ2 + 9ξ + 1) cos 2φ

(ξ − 1)6

)
(2.19)

for C1 = 4c2π2 cos2(θ)
s4 and C2 = 24c2π2 cos2(θ)

s6 . We are interested in the eigen

analysis of the tensors. Multiplication by arbitrary positive constants does

not affect the eigenvalues or vectors, so we can safely choose to ignore C1

and C2 - they only become relevant when we have s = ∞, θ = 90◦ or c = 0,

for which both C1 and C2 are zero. For s = ∞ the surface has degenerated

to a plane (for which no variation is present in the image), for θ = 90◦ the

surface is illuminated strictly from above (no anisotropy imposed by the

illumination) and c = 0 indicates complete absence of light.

We now investigate the statistics that will be given by the eigen analysis
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of the tensors. For the µ{·} measures we get:

µ{GI} = − tan−1

[
a

b +
√

c

]
(2.20)

a = 2
(
ξ2 − 1

)
sin(2φ)

b =
(
4ξ2 + 2

)
cos(2φ)− 6ξ

c = 10
(
ξ2 + 4

)
ξ2 + 4 + 6

(
ξ2 + 2

)
ξ2 cos(4φ)

−24
(
2ξ3 + ξ

)
cos(2φ)

µ{TI} = − tan−1

[
a

b +
√

c

]
(2.21)

a = 2
(
ξ2 − 1

)
sin(2φ)

b =
(
8ξ2 + 2

)
cos(2φ)− 2ξ3 − 8ξ

c = 4ξ6 + 66ξ4 + 76ξ2 + 4 + 10
(
3ξ2 + 2

)
ξ2 cos(4φ)

−8
(
ξ2 + 4

) (
4ξ2 + 1

)
ξ cos(2φ)

The ξ{·} measures will yield:

ξ{GI} =

√
a− b

c
a = 5

(
ξ2 + 4

)
ξ2 + 2 + 3

(
ξ2 + 2

)
ξ2 cos(4φ)

b = 12
(
2ξ3 + ξ

)
cos(2φ)

c =
√

2
(
ξ2 − 3ξ cos(2φ) + 2

)
ξ{TI} =

√
a− b

c
a = 2ξ6 + 33ξ4 + 38ξ2 + 2 + 5

(
3ξ2 + 2

)
ξ2 cos(4φ)

b = 4ξ
(
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If the surface is isotropic (i.e. ξ = 0) then µ{TI} = µ{GI} = φ mod 180◦,

the correct estimate of the light orientation. For the anisotropic case, a

non-zero deviation will occur:

devG(φ) = (µ{GI} − φ) mod 180◦

with equivalent definition for the Hessian-based estimate of the image

devH(φ).
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Figure 2.2: Theoretical predictions for deviations of the three estimates,
devH (dashed), devG (dotted) and devC (drawn), as a function of true
azimuthal direction of illumination (φ), all three for ξ{Gh} = 0.1.

We have so far assumed that µ{Gh} = 0 (i.e. that the orienta-

tion of surface anisotropy is along the x-axis). Generalizing to anisotropy

of different orientations is easily achieved by shifting the deviations, i.e.

devG(φ − µ{Gh}). We will continue to assume µ{Gh} = 0, knowing that

the results are valid for all possible µ{Gh}.
The deviations devG and devH are plotted in Fig. 2.2 for ξ = 0.1, a low

amount of anisotropy and yet deviations are quite noticeable. This is indeed

expected and shows the impact of anisotropy. The expressions for the devi-

ations are very unwieldy which is why we choose to approximate them with

a truncated Taylor series around the point ξ = 0:

devG(φ) = 3ξ sin 2φ + O(φ2) (2.22)

devH(φ) = 4ξ sin 2φ + O(φ2) (2.23)

The aim is to have an estimate with no deviation, so Eq. 2.22 and Eq.

2.23 are good arguments for a measure that combines both the Hessian-based

and the gradient-based tensors of the image. A most simple example of such

combination would be:

µC = 4µ{GI} − 3µ{HI} (2.24)
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Expressed in terms of its lower order Taylor approximation (equations

2.22-2.23), µC will have zero deviation. When the expressions based on equa-

tions 2.20-2.21 are used, the resulting function devC = (µC − φ) mod 180◦ is

plotted in Fig. 2.2

While simple and straightforward to derive (given the theory we have

presented), the µC measure suffers from the drawback of introducing another

non-linearity. The multiplicative factors of -3 and 4 can be expected to

amplify any errors that are already present in µ{GI} and µ{HI}. We stress

that this chapter focuses on the theory we have presented, i.e. the physics

based modeling of the imaging process of anisotropic surface textures. With

the combined tensor estimate of Eq. 2.24 we wish to exemplify the use of

this theory.

2.4 Connection to other illuminant estima-

tors

To our knowledge, no other local and unsupervised illuminant estimator has

been suggested that accounts for surface anisotropy. We will mention a

few estimators that are based on the Kube and Pentland modeling, namely

those proposed in[29][35][36][9][37]. The premise is a surface texture normally

viewed, where a local estimate of φ, the illuminant azimuthal angle (tilt) is to

be estimated. Iterative non local algorithms, such as[39], that simultaneously

estimates the surface texture height profile are not considered, neither are

supervised algorithms that deal with a finite set of textures, such as[8].

The early approaches of[36] and[29] are based on means of directional

derivatives, and not variances. For an object that is globally a plane, this

means that they will not work (both Knill[35] and Chantler[9] discusses this).

Many modern approaches still explore the same premiss of a convex or spher-

ical surface (for example[37]).

Two algorithms that deal explicitly with the problem of unsupervised

estimation of illumination direction from a textured plane are Knill’s[35] and

Chantler’s[9]. Both of these schemes are equivalent to the gradient based

structure tensors, which emphasize the general nature of the theory we have

presented.

Chantler’s method[9] consists of a circular Fourier series expansion of the

power spectrum. This requires the Power spectrum to be collapsed (averaged

along the radial frequency direction) into a 1D function in the angular fre-
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quency variable (a polar frequency plot). Depending on how this collapsing

is done, Chantler’s method can be made equivalent to either the gradient

or the Hessian tensors (given that equivalent selections of derivative filters

and scales are selected for the tensor calculations). In Chantler’s method,

weighting higher frequencies more gives the Hessian tensor estimate, and less

the gradient. From Chantler’s perspective, the combined measure that we

suggest could be implemented by simultaneously making two polar plots of

the same power spectrum, one weighting the higher frequencies more, and

then combining the two estimates.

The relationship with Chantlers method is most easily seen through the

use of so called complex moments of the local image power spectrum, es-

pecially the properties presented in[2]. Structure tensors can be viewed as

a circular Fourier series expansion of the image power spectrum (just as

in Chantler’s method[9]). From the complex moments it is also easy to

show that the eigenvector angle µ{GI} is equivalently calculated as Knill’s

estimator[35]. Knill, in fact, arrives at the complex moment description ex-

plicitly, which was proposed years earlier by Bigun and Granlund[4], thus

connecting it for the first time to illumination direction.

2.5 Experiments

An experiment on rendered surfaces was performed to test the theoretical

predictions, and to analyze the behavior of the theory for violations of the

assumptions in terms of higher relief, non-oblique lighting and larger amounts

of anisotropy.

Rendering

The rendering was implemented without any 3D graphics libraries, due to

the simple nature of the scene and because we are not aware of any libraries

that render surfaces defined with torus topology (described in the following

subsection). Images (400x400 pixels) were generated as the orthographic pro-

jection of the radiance map of a Gaussian surface illuminated by a collimated

beam of light. This was rendered as the product of two entities:

Irend(r) = I(h01(r), h10(r), θ, φ)S(r)

where I(h01(r), h10(r)), θ, φ) is the formulation of the surface radiance for

the low relief case(Eq. 2.4) and S(r) ∈ {0, 1} is the binary shadow function
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that was calculated in full (0 indicates self-shadowing, for both attached and

cast shadows).

Inter-reflections were not rendered (discussed in section 2.8).

Surface Generation

The surfaces were generated randomly in the Fourier domain by using the

specified power spectrum and pairing it with a randomly generated phase

spectrum of independently generated values from a uniform distribution

∈ [0, 2π). This way of generating the surfaces ensures constancy of the esti-

mated autocorrelation function ρh(r) and of the height probability distribu-

tion function.

As is the case for all signals generated smoothly in the discrete Fourier

domain, the surface will be defined on a topological torus, i.e. it can be

viewed as having infinite area by repeating itself, without losing its station-

arity or continuity at any point. This topology is desirable for our purposes

as there will be no concern about the surface boundaries (there are none!).

Every aspect of the rendering, surface generation and estimation of

statistics was done without violating the torus topology, i.e. (x, y) →
{x mod width, y mod height} when the surface is represented as a finite 2D

array.

Setup

Parameters in the experiments were:

• σ: Surface height. Scales the height of the surface linearly.

• θ: elevation angle of the light source.

• ξ: the anisotropy, i.e. the value assumed for ξ{Gh}

For every configuration of these variables a sequence of 360 images is

created by varying φ ∈ [0◦, 360◦) in integer steps (two such images of the

same surface are shown in Fig. 2.3, for φ = 90◦ and 0◦ (left and center of

figure respectively)). The Hessian-based and the Gradient-based structure

tensors are applied to each image, and the two different estimates of Eq. 2.24,

µ{GI} and µ{HI} are collected from the eigen analysis outlined in section

2.3. This allows for relatively smooth curves of the deviations from the true

estimates to be compared with the theoretical prediction of Fig. 2.2.
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Figure 2.3: A rendered Gaussian surface with ξ = 0.6, σ = 100 and
θ = 30. Left: φ = 90◦. Middle: φ = 0◦. Right: φ = 0◦ and viewed from
another direction.

2.6 Results

Typical results are illustrated in Fig. 2.4 (each point of the graphs was calcu-

lated on images like those in Fig. 2.5). The output is bounded in [−90◦, 90◦),

as it is orientation estimation and not direction estimation. Comparing the

top panel of Fig. 2.4 with Fig. 2.2 yields, as expected, a strong resemblance.

In this range of the parameters the variation in curves, from one surface to

the other, is very low. For the case where the surface is rough, as in the sec-

ond panel of Fig. 2.4, and the lighting angle is still relatively low, shadows

will make a big impact, as is evident from the noisy curves.

In the experiment of the third panel of Fig. 2.4 a large amount

of anisotropy is present. All three estimates deviate towards the axis

of anisotropy, as expected. Consider, as an extreme case, a completely

anisotropic surface (ξ = 1); say a sinusoidal wave surface. It is impossible to

determine the light orientation from the information given by the irradiance

of the wave surface, by analogy with the aperture problem in optical flow. At

some point, while anisotropy increases, any algorithm must falter. It is worth

noting, however, that the combined estimate still performs noticeably bet-

ter than separate estimates in the high anisotropy case. Finally, the fourth

(bottom) panel of Fig. 2.4 shows what happens when the light elevation is

high. The deviation of the combined estimate worsens, but the overall shape

of the three curves remains quite consistent with the theoretically predicted

output.
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Figure 2.4: Typical outputs from the renderings for devH (dashed), devG

(dotted) and devC (drawn). X and Y axes: same as Fig. 2.2 (Note: The
ranges of the Y axes are different in the figure). First (Top): close to the
assumptions of the theory (σ = 30, θ = 30◦, ξ = 0.1). Second: higher re-
lief (σ = 60, θ = 30◦, ξ = 0.1). Third: strongly anisotropic surface, (σ = 30,
θ = 30◦, ξ = 0.6). Fourth (Bottom): high light elevation (non-oblique light-
ing), (σ = 30, θ = 70◦, ξ = 0.1).
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Figure 2.5: Example images corresponding to φ = 90◦ (top illumination),
each one correspond to one out of 360 images used to draw the graphs
in Fig. 2.4. The images have been histogram normalized for visualizing
details. Top left: (σ = 30, θ = 30◦, ξ = 0.1). Top right: (σ = 60, θ = 30◦,
ξ = 0.1). Bottom left: (σ = 30, θ = 70◦, ξ = 0.1). Bottom right: (σ = 30,
θ = 30◦, ξ = 0.6).
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We generated a large amount of data by varying ξ ∈ {0, 0.1, . . . , 0.8},
θ ∈ {30◦, 35◦, . . . , 80◦} and σ ∈ {30, 35, . . . , 100}. Furthermore, we averaged

the results over 5 independent surfaces. The absolute value of each curve of

the type in Fig. 2.4 was averaged, yielding one scalar error measure (average

error) for every configuration of θ, ξ and σ. The results are 3D, and thus

cannot be plotted in paper form. Fig. 2.6 shows contour plots over pairs of

dimensions, while the third dimension is kept fixed, close to the assumptions

of the theory.

The average error should be bounded ∈ [0◦, 45◦]; if it is any higher, the

output is worse than random guesses (e.g. an average error of 90 indicates

an output that is always perpendicular to the true orientation). The main

observation to make from Fig. 2.6 is low error and stable monotonic be-

havior around the point corresponding to the assumptions (ξ = 0, σ = 0 and

θ ≈ 45◦). As we go further away from the assumptions in parameter space,

the output gradually becomes worse. We also note that ξ completely domi-

nates as source of error in the plots, with the exception of the elevation angle

θ when it comes close to 90◦.

For an accepted error of say 6◦, one should stay within the bounds of

ξ < 0.2, σ < 65 and expect even better behavior for oblique lighting of around

θ = 45◦.

As expected, for large amounts of anisotropy, the measure becomes inac-

curate, especially when the illumination orientation is in the direction of the

anisotropy axis of the surface (at φ = 0◦ and 180◦ in the graphs of Fig. 2.4).

Also expected was the increase in deviation due to higher relief. When

the surface is rough (σ is high), and as θ decreases, the surface tends to

cast shadows. Shadows affect the outcome of the tensor estimates, because

they give rise to new edges in the image. Shadow edges are non-local and

more noisy with respect to φ changes than are regular shading patterns. On

the other hand, as θ increases it comes closer to 90◦ where the problem is

undefined.

For high values of θ, the modeling of the imaging process as a directional

derivative is less accurate; other structure becomes evident as is seen in Fig.

2.5. The images on the left of Fig. 2.5 are images of the same surface, but

only the top one, with low θ, resembles a directional derivative. The struc-

ture of the top image resembles more the square magnitude of the gradient,

and is often referred to as second-order shading. Second-order shading is

independent of the orientation of illumination, and will inherit anisotropy

from the surface (if the surface contains anisotropy, then so will the square
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magnitude of its gradient).

For anisotropic surfaces with a higher relief, we expect to see higher av-

erage errors when θ approaches 0◦ and 90◦, due to shadows and second-order

shading respectively. This explains the concave shape of the lower graph of

Fig. 2.6 as σ increases, varying θ; oblique lighting at around θ = 45◦ will

allow for greater violations of the assumptions.

We mentioned in section 2.2 that we assumed (for convenience) Gaus-

sian shaped power spectrum for the surface. All the renderings so far has

been on such Gaussian surfaces. Preliminary experiments were performed

on Brownian surfaces[30], i.e. power spectrum of the shape ρ̂h(k) = kT k−
β
2

where we used β = 2. Anisotropy was introduced in the same way as

for the Gaussian surfaces, i.e. as a binomial form with the structure ten-

sor: ρ̂h(k) = (kT G−1
h k)−1. The Brownian surfaces needed to be smoothed

to be implemented (the roll-off frequencies were suppressed by multiplying

the power spectrum with a gaussian with identical Gh). Preliminary re-

sults on the anisotropic fractal surfaces were identical to that of the regular

anisotropic Gaussian ones.

2.7 Real-world textures

The question naturally arises of how the combined measure will fare on real-

world textures. We tested it on a selection of the photex database[6][5]. From

this database, we selected 26 textures, namely: aaa, aab, aaf, aai, aaj, aam,

aan, aao, aap, aar, aas, aba, abj, abk, acc, acd, acf, acg, ack, acl, acm, afa,

afb, afd, afe and afg. We picked these because they appear to have only

slight variations in albedo, with diffuse reflectance and varying degrees of

anisotropy. We didn’t tweak any of the many hidden parameters (such as

implementations of derivatives) for the benefit of the combined estimate, nor

did we pre-process the images in any way. We ran the algorithm with the

same parameters as for the rendered textures, except that we now imple-

mented smooth local averaging windows (2 by 2 as seen in Fig. 2.7). Fig.

2.7 illustrates typical outputs for the texture ’aab’ (one of the textures where

the combined estimate performed noticeably better).
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Figure 2.6: Contour plots of the average magnitude deviations. The
absolute value of each curve of the type in Fig. 2.4 is averaged (one non-
negative scalar for each curve). The gray value of each region indicates an
upper bound on the error, specified by the bars on the right of each figure.
Top: θ vs. σ with ξ = 0.1. Middle: ξ vs. σ with θ = 30◦. Bottom: ξ vs. θ

with σ = 30.
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Figure 2.7: Example of results from real-world textures. Top row: two
images of the texture ’AAB’ with light elevation (θ) = 45◦, they vary in
azimuthal light angle (φ). Dotted line is the combined measure, black line
the gradient and white line the Hessian, black arrow indicates global light
direction, top left: φ = −90◦top right: φ = 60◦; Bottom graph shows the
results for the 36 different images corresponding to equidistant sampling of
φ.
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Noteworthy is that ground truth for φ is slightly inaccurate for local esti-

mates. The black arrows in Fig. 2.7 illustrates the direction of illumination as

indicated by the photex database, but the light source was likely positioned

quite close to the texture, resulting in slight variation in the illuminance

flow field over the surface. Each texture has a great number of variations in

light direction (both azimuthal and elevation) and we average over the entire

collection.

The average error for the three estimators are: Gradient based: 13.3◦,

Hessian based: 11.4◦, and Combined estimate: 17.2◦. Thus the combined

estimate cannot be expected to perform better than the gradient or the

Hessian by themselves in the real world. This error amplification is due

to the multiplicative factors of -3 and 4 evident in Eq. 2.24. Any error

stemming from non-lambertian, higher-relief, oblique viewing etc. will be

amplified. Also, errors due to image noise, camera transfer function (from

irradiance to image intensity) will all give rise to deviations that are amplified

by the combined measure. Compared to the rendered surfaces, the real-world

textures most certainly deviates more from the model, giving rise to more

unstable behavior. A hint of this error amplification is also seen by the results

on the rendered textures when strong shadows occur. In the second graph of

Fig. 2.4, one can just make out small erratic deviations from the predictions

for the gradient and the Hessian, yet these small erratic deviations are made

very noticeable when they reemerge in the combined estimate.

2.8 Conclusions

The theory of illuminance flow estimation has been successfully generalized

to the case of small amounts of surface anisotropy. This has been done by

introducing structure tensor analysis of the surface (not just of the image, as

was done previously). The surface structure tensors are not observable, yet

their output (which are measures of surface geometry) will affect the output

of the image tensors; the form of this dependence is described by our theory.

The theory is based on a simple approximation of the imaging process of

the surface (Eq. 2.7), valid under the assumptions of a low relief isotropic

Lambertian surface of uniform albedo, viewed normally in a light field[52] of

one dominant directional component (e.g. a collimated beam).

A new measure, µC , which combines the image tensor outputs (Eq. 2.24),

has been devised based on the theory. The predicted output has been com-

pared to results from computer rendered Gaussian surfaces, where it has been
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found to be stable for small deviations from the assumptions of low-relief,

and isotropy (as predicted), especially when the light elevation is oblique

(say close to 45◦ or so). Results on real-world textures show the behavior

for larger deviations from the model where the combined estimate performs

worse than the gradient or the Hessian by themselves. This is because of the

error amplification due to the multiplicative factors of -3 and 4 (as seen in

Eq. 2.24). The combined estimate is a non-linear transform of the original

vectors (seen as complex numbers, we take them to the power of -3 and 4

to change their angle) that propagates and amplifies the error. More stable

estimates based on our theory can be derived, and is a worthy subject of

future work.

Inter-reflections are not factored into the approximation due to the low-

relief assumption. For the statistics we investigate here, under the Lamber-

tian assumption, the inter-reflections should have only a minor effect. This

is especially true if the surface has low albedo, that is if some amount of

light is absorbed upon each reflection (most natural surfaces have a rather

low albedo, with a reported average of 0.2[31]). Even with unit albedo and

high relief, however, there is no indication that incorporating more reflections

will change the anisotropy of the resulting image. For isotropic Lambertian

surfaces one can show[24] that inter-reflections will not affect the output of

the tensors, and thus (in theory) not affect the output of the tensors.

In real scenes one expects surfaces to have non-uniform albedo, non-

Lambertian reflectances and to be viewed from an arbitrary direction; there-

fore these cases will be discussed briefly.

If the albedo is non-uniform, we are faced with an additional 2D signal:

an albedo map a(r). The results of our findings will still hold if we relax the

non-uniform albedo assumption to the case of a(r) being uncorrelated with

the surface h(r), and the scale of the contents being sufficiently different,

i.e. it boils down to a scale selection question: outer scale defining areas of

interest, inner scale defining size of derivative filters.

For non-Lambertian surfaces, we consider the Bidirectional Reflectance

Distribution Function (BRDF))[56] denoted: B(v, n, i). Here, v and i indi-

cate the viewing and light directions and n the local normal. A Lambertian

BRDF is constant whereas a perfectly reflective surface (to which the present

analysis is not intended) has a BRDF equalling a weighted δ - function. The

local radiance due to a collimated beam is I(B)(x, y) = B(v, n(x, y), i)I(x, y),

where I is the irradiance of the surface given by Eq. 2.4. So, for a non-

constant BRDF the structure of the surface radiance will be similar to that
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of a Lambertian surface if ‖∇nB(v, n, i)‖ ≤ B(v, n, i). Thus, the Lamber-

tian assumption can be relaxed to a smooth BRDF, which applies to most

natural materials.

The issue of non-normal views is important in applications and has been

investigated by Pont and Koenderink[11]. They showed that, in theory, the

illuminance orientation estimates can be corrected for oblique views using

surface attitude estimates, up to a viewing angle of 55 degrees. For viewing

angles larger than 55 degrees there are no unique solutions. For the case

where the surface is anisotropic and non-obliquely viewed one could model

camera deviations from the normal position as an affine transformation of

the (low relief) surface, that is, approximating the rotation as foreshorten-

ing along an axis. Similarly, surface anisotropy could be introduced as an

affine transformation of an originally isotropic surface. Thus, we could model

the non-normal viewing of an anisotropic surface as the composition of two

affine transformations (which is itself affine) applied to an isotropic surface.

Therefore, we expect that the combined effects of surface anisotropy and

obliqueness will affect the illuminance flow estimates in a very systematic

way. However, it cannot be corrected for due to the fact that the individual

effects on the radiance structure are very similar (or even the same in the

low relief approximation). This will be a subject of our future work.

To conclude; we have described the second-order statistics of anisotropic

surfaces viewed under directed illumination. We have shown theoretically

and experimentally that the anisotropy of a surface can be corrected for,

for small amounts of anisotropy, using a combination of the Hessian-based

and gradient-based structure tensors. Finally, we discussed physical argu-

ments for the generalization of our results far beyond our rather restrictive

assumptions.
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Illuminance Flow over Anisotropic Surfaces with

Arbitrary Viewpoint

abstract

The theory of illuminance flow estimation by structure tensors is generalized

for oblique viewing of anisotropic texture. An added benefit is that the

theory predicts the behavior of unsupervised illuminant tilt estimators. The

previous theory is refined with general matrix formulations and compacted by

exploiting general properties of the structure tensor. Theoretical predictions

based on the revised theory are presented, and compared with experimental

results on rendered images. The predicted curves are shown to conform well

to the expectations when the deviation from normal viewing and surface

anisotropy are not large.

Published as: S.M. Karlsson, S.C. Pont, J.J. Koenderink, “Illuminance
flow over anisotropic surfaces with arbitrary viewpoint”. Journal of the Optical
Society of America A 26, 1250–1255 (2009).
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3.1 Introduction

The light field in which objects are situated is important in machine vision.

Often slight changes in illumination produce large changes in an object’s

appearance, especially with regard to finer scale 3D corrugations across the

object’s surface (so-called 3D or surface texture). In this chapter, we inves-

tigate illuminated anisotropic surfaces viewed from arbitrary directions, and

try to infer the so-called illuminance flow. Image illuminance flow is a 2D

vector field in the image-plane that results from projecting the light vector

first into the tangential plane of the surface, and then into the image-plane.

Fig. 3.1 shows ground-truth from a sphere.

This work is in line with the study by Pont and Koenderink[10] in which

they presented a theory for analyzing the illumination orientation of corru-

gated surfaces based on the structure tensor (2nd moment matrix)[4]. Gen-

eralizations of this theory to both oblique viewing[11] and to anisotropic

surfaces[12] have been done, but do not account for the effects occurring si-

multaneously (which is the focus of the current chapter). In addition, we will

refine previous and current theory by use of general matrix formulations and

achieve compact expressions that are equivalent to the eigensystem of the

tensor. The derivation of the theory will be done in a more intuitive fashion

with greatly improved compactness and insight.

When the light field has a dominant directional component (collimated

beams being the extreme case) anisotropy will be imposed in the image of

the surface. In some cases this can be used to estimate the illuminance

flow. It has been shown[10] that using the structure tensor of either the

Hessian or the gradient yields good estimates for many real-world surfaces.

However, formally, this only applies under a set of assumptions, namely:

isotropic surface, normal view, Lambertian reflectance, uniform albedo, low

relief surface and a light field of dominant directional component. All as-

sumptions are important in their own right. Some work has been done on

extending the theory to account for non-uniform albedo[33]. In this chapter,

we focus on the isotropy and normal viewing assumptions simultaneously,

which, as far as we know, have been given attention only when considered

separately [11][12]. Experimental results have been presented for real world

surfaces[10]; the structure tensors yielded promising results, with orientation

estimates within a few degrees of the veridical orientation. However, for

obliquely viewed, anisotropic surfaces, the structure tensors will yield devia-

tions from the true orientation of the illuminance flow. The theory presented

43



Anisotropic Surfaces with Arbitrary View

Figure 3.1: Left: illustration of the modeling of oblique viewing by affine
transform V . Dotted line illustrates illuminance flow. Right: illuminance
flow across the surface of a textured sphere illuminated by a distant point
source. Flow lines are the projection of the light-vector into the local tan-
gential plane of the surface.

here predicts these deviations, which are shown to conform well to results of

experiments on rendered surfaces.

A connected topic is that of illuminant tilt estimation[35][9][38]. The

premise for tilt estimation is traditionally a surface texture normally viewed,

where the illuminant azimuthal angle (tilt) relative to the camera frame is

to be estimated. Illuminance flow is relative to the tangential frames of the

object (e.g. the sphere of Fig. 3.1). Illuminant tilt and illuminance flow are

essentially different, except in the case where the surface texture is normally

viewed, and illuminant tilt is estimated in a local fashion.

Interestingly, all local and unsupervised illuminant tilt estimators that

we are aware of, correlate strongly with the structure tensor. They can be

seen as identical to the structure tensor in theory, and differences between

them are due to implementation parameters (discussed in[12]). Therefore,

as a side-effect, the theory presented in this chapter will also predict how

local and unsupervised illuminant tilt estimators will behave as anisotropy is

introduced into the texture and/or the texture is tilted with respect to the

camera.

3.2 Theoretical background

We will use the nabla operator ∇r{h(r)} = {hx(x, y), hy(x, y)}T, where the

subscript indicates the vector variable (here r = {x, y}) subject to differen-

tiation. The Hessian is Hr = ∇∇T
r {h(r)}.

We will use the notation 〈h(r)〉 to denote averaging over the function
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h(r). If h(r) is vector-valued or a matrix, the averaging is applied on each

element independently. |A| and trA will be used to denote the determinant

and the trace of the matrix A. Diagonal and rotation matrices will be denoted

Da,b and Rµ respectively.

Gaussian Surfaces and Structure Tensors

Henceforth h(r) will denote an isotropic surface height function, modeled as

a 2D, zero-mean, differentiable, stationary, Gaussian stochastic process (this

family of surfaces has several convenient properties[50][51].

The Brownian fractal surface is an example of a Gaussian surface that is

not differentiable and thus, strictly speaking, does not fit the model. How-

ever, the theory presented here is applicable to near Brownian surfaces, which

is in line with many other works[30][31].

The surface covariance function of the isotropic surface,

ρh(r) = Cov(h(0), h(r)), is rotationally symmetric, i.e. there exists

some 1D function f(t) such that

ρ(r) = σ2
hf(rTr)

where f(0) = 1 and σ2
h=〈h2〉 is the point-wise variance of the surface. By

definition, ρh(r) is constant within its ensemble. Now, let a linearly trans-

formed surface be denoted h(Ar), for a 2 × 2 matrix A, that is real-valued

and has a positive determinant (i.e. A ∈ GL+
2 (R)). It is easy to show that

the covariance function of h(Ar) is:

ρ(r) = σ2
h|A|f(rTATAr) = σ2

h|Gh|1/2f(rTGhr) (3.1)

where Gh = ATA is the gradient-based structure tensor[4], a matrix holding

the information about anisotropy amount and direction. The structure tensor

is known by many names, such as the 2nd moment matrix or the directionality

tensor. The structure tensor is given by:

Gh =

〈
hxhx hxhy

hxhy hyhy

〉
It is convenient to consider an auto-covariance function of the

type in Eq. 3.1, and especially a Gaussian-shaped covariance function:

ρh(r) = σ2
h exp

(
−rGhr

T
)
. As long as the elements of the tensor are defined,

the theory is applicable.
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The eigenvalues/eigenvectors of Gh yield the amount and orientation of

anisotropy of the surface. We denote the maximum and minimum eigenvalues

and their corresponding eigenvectors as λmax
Gh

, λmin
Gh

, vmax
Gh

and vmin
Gh

. The

surface confidence is a measure of anisotropy defined as:

ξh =
λmax

Gh
− λmin

Gh

λmax
Gh

+ λmin
Gh

∈ [0, 1)

ξh = 0 occurs for a completely isotropic surface, whereas ξh = 1 indicates

degeneracy (the surface contains only parallel isolines). The orientation angle

of anisotropy is given by the highest eigenvalue eigenvector and denoted:

µh = ∠vmax
Gh

∈ [0◦, 180◦)

In surface science and tribology, it is common to use either the surface

height standard deviation (σh = 〈h2〉1/2 = ρ(0)1/2) or the root mean square

slope (σ∇h = 〈|∇h|2〉1/2 = ∇2ρ(0)) as surface roughness parameters. De-

note with σh(Gh) and σ∇h(Gh) the roughness parameters for a varying Gh.

The isotropic case occurs when the structure tensor is the identity matrix

(Gh = I), thus σh(I) = σh. It is easily shown that

σ2
h(Gh) = σ2

h |Gh|
1/2

σ2
∇h(Gh) = σ2

∇h |Gh|
1/2 trGh/2

(3.2)

Thus, introducing directionality in a surface by Gh, will preserve the

roughness measure σh only if |Gh| = 1. The roughness measure σ∇h, on the

other hand, will remain constant if |Gh|
1/2 trGh/2 = 1. The only valid matrix

that can fix both roughness parameters simultaneously is the trivial Gh = I.

Assuming a constant roughness of the surface, the structure tensor is given

uniquely by ξh and µh by:

Gh = (1− ξ2
h)
−aRT

µh
D1−ξh,1+ξh

Rµh
(3.3)

where a is dependent on which roughness parameter is fixed (a = 1/2 to

constrain σh and a = 1/4 for σ∇h). Eq. 3.3 is verified by the trace and the

determinant of the expression (these give the change in roughness by Eq. 2).

3.3 Illuminated Gaussian surfaces

In this section we will first reformulate previous theory about illuminance

flow estimation (as presented in chapter 2) into a more compact and intu-

itive form, based on matrix formulations and the spectral theorem (Eq. 3.7).
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We will then proceed to introduce both anisotropy and oblique viewing as

affine transforms, finally arriving at a closed form approximation of how the

directionality of the image stems from illumination, surface anisotropy and

oblique viewing (Eq. 3.13).

Isotropic Normally Viewed surfaces

The radiance by collimated beams (one point source at infinity) is described

by a single vector:

`3D = {cos θ cos φ, cos θ sin φ, sin θ}

where θ and φ are the illuminant incidence and azimuthal angles in the

camera frame respectively. For the problem of illuminant tilt estimation, φ

is to be estimated from an image of a surface texture.

The assumption of collimated beams is convenient for the derivation, but

not critical since extended sources can be exactly accounted for by equivalent

collimated sources if vignetting1 is neglected. The following theory holds also

for light-fields where a dominant directional component is present; the `3D

vector can be replaced by this dominant direction.

The normal of a surface can be written:

n(hx, hy) =
{hx(r), hy(r),−1}T(
h2

x(r) + h2
y(r) + 1

)1/2
The irradiance of the surface is q(hx, hy) = `T

3D · n(hx, hy). Under the

assumptions listed in the introduction, the irradiance will be proportional to

the image of the surface (assuming a linear camera transfer).

Irradiance is obviously not linear with respect to height scaling of the

surface. We let ε be a height scaling factor, then the irradiance will be

q(εhx, εhy). Because we are interested in low-relief texture, we use an ap-

proximation through a Taylor series expansion around ε = 0. By ignoring the

zeroth order term, and including first and second orders, the approximation

becomes:

1Vignetting is the effect of the light source being partially obstructed, and the surface
patch will not receive the full amount of possible irradiance. If the light source is a
collimated source, then vignetting is equal to shadowing. If the light source is diffuse,
then vignetting will result in variations of surface radiance that is often confused as being
shading.
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q(εhx, εhy) = ε gT` cos θ +
ε2

2
gTg sin θ + O(ε3) (3.4)

where g = ∇rh(r), and ` is the normalized 2D tangential component of `3D

in the xy-plane (` = {cos φ, sin φ}T). This approximation is a separation

into so-called first and second order shading. First order shading depends on

the tangential component of the incident light and behaves as a directional

derivative of the surface height profile. Second order shading depends only

on the normal component of the incident light and behaves as the square

magnitude of the gradient of the height. As the incidence angle θ becomes

lower, first order shading will dominate, whereas for θ closer to 90◦, second

order shading will dominate. Simultaneously, as θ goes to zero, cast shadows

will emerge, which this model does not take into account. In line with previ-

ous work[10][11][12], for purposes of directionality estimation, we will model

the image as first order shading, i.e. as a directional derivative of the height

profile in the direction of `, which is thus valid only for oblique lighting:

I(r) = ∇T
r {h(r)} ` (3.5)

The surface texture plane (object tangent-plane) will not be aligned with

the camera plane in general, which means that ` (which is described in the

camera frame) is not illuminance flow. A 2 × 2 matrix V encodes the fore-

shortening transform due to oblique viewing, as illustrated in Fig 3.1. The

illuminance flow vector ˆ̀ is then given by the relation ˆ̀ = V `. We will refer

to the same entities of the image I(r) as we did of the surface, but will ap-

pend I as subscript (e.g. the auto correlation function ρI , and the structure

tensor GI).

The gradient of the image is given by:

∇rI(r) = ∇∇T
r {h(r)} ` = Hr`

The structure tensor of the image is given by

GI =
〈
∇r{I}∇T

r {I}
〉

=
〈
Hr``

THr

〉
(3.6)

From earlier results, we know that in this case (normally viewed, isotropic

surface), the structure tensor yields the orientation of illumination[10],

as its greatest eigenvector (i.e. vmax
GI

= `), with a ratio of eigenvalues:

λmax
GI

= 3λmin
GI

. This relation was both derived analytically, and verified

experimentally in[10]. The same relation can be shown to follow directly
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from Eq. 3.6 assuming Hr is the Hessian of an isotropic surface (note that

this says nothing about a specific Hr for a given r, but only about the

distribution of Hr viewed stochastically). By virtue of the spectral the-

orem
(
G =

∑
λiviv

T
i

)
, and the fact that the tensor is positive definite (

(λmax
GI

, λmin
GI

) > 0) and symmetric (vmax
GI

⊥ vmin
GI

), we can write:

GI ∝
(
3``T + `⊥`T

⊥
)

(3.7)

where `⊥ = R±90◦`. If we expand Eq. 3.7, we get the form originally

presented[10]:

GI ∝
(

2 + cos 2φ sin 2φ

sin 2φ 2− cos 2φ

)
, (3.8)

Arriving at Eq. 3.7 we have an alternative way of deriving the previous

theory and have a form that is more open to generalizations to anisotropic

surfaces and oblique viewing, as we will show.

Anisotropic Obliquely Viewed surfaces

We will approximate anisotropy and oblique viewing by affine transforms on

the surface and the image respectively. This will only be valid under small

deviation of the camera from normal view (in addition to the assumptions of

the introduction). Let the image of an isotropic surface, transformed by an

invertible matrix V be denoted IV (r) = I(V r) = ∇T
V r {h(V r)} `, for which

the gradient will be:

∇rI
V (r) = V THV r`

The term HV r is the Hessian of an isotropic surface at transformed coor-

dinates k = V r = {u, v}T, i.e. :

HV r = Hk =

(
∂2h(u,v)

∂u2

∂2h(u,v)
∂u∂v

∂2h(u,v)
∂u∂v

∂2h(u,v)
∂v2

)
,

The structure tensor becomes:

GV
I = V T

〈
HV r``

THV r

〉
V (3.9)

The averaging is taken over r, and in Eq. 3.9, the expressions are a

function of V r. However, because the averaging is done for the entire domain

R2 this will not matter. For practical applications, when the structure tensor
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is taken over apertures (averaging windows) in an image, this becomes an

important issue connected to scale selection. For now, we assume an infinite

surface and can, analogous to Eq. 3.7, write:

GV
I = V TGIV = V T

(
3``T + `⊥`T

⊥
)
V (3.10)

Note that ` = {cos φ, sin φ}T is still with respect to the camera frame.

The transformation to the plane of the texture (the tangential frame of the

object) is contained in V (as illustrated by Fig. 3.1) and will be applied

shortly.

When introducing anisotropy in the surface by an affine transform (h(Ar),

for isotropic surface h(r) as outlined in section 3.2), we get:

∇T
r {h(Ar)} = ∇T

Ar {h(Ar)}A

∇∇T
r {h(Ar)} = ATHArA

Let the image of an anisotropic surface be denoted IA, and we have

∇rI
A(r) = ∇∇T

r {h(Ar)} ` = ATHArA`

The structure tensor becomes:

GA
I = AT

〈
HAr(A`)(A`)THAr

〉
A (3.11)

Analogous to Eq. 3.7, we write:

GA
I = AT

(
3˜̀˜̀

T
+ ˜̀⊥˜̀T

⊥

)
A

where ˜̀ = A` and ˜̀⊥ = R±90◦A`. Since ATA = Gh and

ATR±90◦A = |Gh|
1/2R±90◦ , we get2:

GA
I = 3Gh``

TGh + |Gh|`⊥`T
⊥ (3.12)

We combine equations 3.10 and 3.12 to have anisotropy and oblique view-

ing simultaneously:

G
(A,V )
I = V T

(
3Gh``

TGh + |Gh|`⊥`T
⊥
)
V (3.13)

2The relation ATR±90◦A = |Gh|
1/2

R±90◦ is easily derived by putting

A =
(

a b

c d

)
and R±90◦ =

(
0 −1
1 0

)
and performing the calculation.
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For compact scalar predictions, we choose to limit the matrix V to be

given by only one degree of freedom: ω, the amount of oblique viewing (the

angular deviation from normal position of the camera). The direction of

oblique viewing (axis in the image along which the foreshortening will occur)

will be fixed along the y-axis. V will then be given by V = D1,sec(ω). Similarly,

we limit Gh to be uniquely given by ξh and µh by Eq. 3.3. We keep the r.m.s.

slope (σ∇h) constant by putting a = 1/4 in Eq. 3.3.

We can now form a scalar-valued function µI(ξh, µh, ω, φ) as the angle

of the most significant eigenvector. This describes the directionality of the

image, given some direction of illumination with respect to the camera frame

(φ), amount of oblique viewing (ω), surface anisotropy amount (ξh) and

anisotropy axis direction (µh). Now, the eigenvector angle of any 2 × 2

symmetric matrix GI (with elements g11, g22 and g12 = g21) is given by
1/2 arg[g11 − g22 + i 2g12]. This, applied to the structure tensor, will yield:

µI(ξ, µ, ω, φ) =
1

2
arg
[
3ξ2 cos(4µ− 2φ)

(
sec2 ω + 1

)
− ...((

ξ2 + 2
)
cos 2φ− 6ξ cos 2µ

) (
sec2 ω + 1

)
+ ...

2ξ2 − 2
(
ξ2 + 2

)
sec2 ω + 4 + ...

i 6ξ sec ω (ξ sin(4µ− 2φ)− 2 sin 2µ) + ...

i 2
(
ξ2 + 2

)
sec ω sin 2φ

]
(3.14)

This prediction is based in the camera frame and thus describes how unsu-

pervised illuminant tilt estimators[9][35][38] will behave as surface anisotropy

and oblique viewing is introduced. The illuminance flow vector ˆ̀ is given by

the relation ˆ̀ = V `. Replacing ` → V −1ˆ̀ in Eq. 3.13 will therefore provide

predictions based on the illuminance flow. The corresponding direction of

illuminance flow is given by φ̂ = atan[cosω tanφ]. For illuminance flow pre-

diction we use µI(ξ, µ, ω, φ̂ = atan[cosω tanφ]). Some predicted curves with

respect to φ̂ are found in Fig. 3.2 which is further explained in section 3.5.

3.4 Experiments

We experimented on rendered surfaces to test the theoretical predictions.

Images(400 × 400 pixels) were generated as the orthographic projection of
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Figure 3.2: Predictions based on the theory. Each curve corresponds to
a specific illuminance flow direction (φ̂ = −90,−85, ..., 90) . Left: (ξh = 0),
Center: (ξh = 0.2), Right: (ξh = 0.4).

the radiance map of a Gaussian surface illuminated by a collimated beam of

light. Cast shadows were calculated in full.

The surfaces were generated randomly in the Fourier domain by using

a Gaussian shaped power spectrum and pairing it with a random phase

spectrum of independently generated values from a uniform distribution

∈ [0, 360◦). The power spectrum of the surface (with 2D frequency coor-

dinates u) is then given uniquely by Gh as: exp(uTG−1
h u).

This way of generating the surfaces ensures constancy of the estimated

covariance function ρh(r) and of the height probability distribution func-

tion. As is the case for all signals generated in the discrete Fourier domain,

the surface will be defined on a topological torus. This topology is desir-

able for our purposes as there will be no concern about the surface bound-

aries (there are none!). Every aspect of the rendering, surface generation

and estimation of statistics was done without violating the topology, i.e.

(x, y) → {x mod width, y mod height} when the surface is represented as a

finite 2D array. When viewing the surface obliquely, copies of the same

surface was patched seamlessly, such that no artificial edges appear.

We varied the amount of anisotropy (ξ as 0, 0.2 and 0.4), the amount

of oblique viewing (ω as 0◦, 5◦, ..., 65◦) and illuminance flow direction (φ̂ as

0◦, 20◦, ..., 360◦), and estimated the structure tensor (µI) from the resulting

image. We also varied the illuminant incidence angle in three possible values

(θ as 70◦, 45◦ and 20◦). We kept fixed the direction of the surface anisotropy

axis (µh = 45◦) and the surface r.m.s. slope roughness (σ∇h = 0.45).
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Figure 3.3: Results on renderings. Each row is the output for different
illuminant incidence angle. The rows are all predicted by the theoretical
curves of Fig. 3.2. Curves are for (φ̂ = −80,−60, ..., 80).

3.5 Results

Typical output of the renderings can be seen in figure 3.4. Comparing Fig. 3.3

with Fig. 3.2 reveals, as expected, a strong resemblance. Especially when the

angle of the incident light is oblique (at 45◦, the middle row of Fig. 3.3) and

when the anisotropy ξh is small (left column of Fig. 3.3). One characteristic

that was noted on in previous works[10][11] is the critical behavior that starts

at ω ≈ 50◦, where-after no unique solution can be expected (while influenced

by oblique viewing before that, each curve is non overlapping).

One can clearly see that all curves correlate with the ground-truth illu-

minance flow at low amounts of oblique viewing (ω → 0) and anisotropy

(ξh → 0). For the normal viewing and isotropic surface case, the only source

of directionality in the image comes from the direction of illumination. As the

two other sources of directionality (oblique viewing and surface anisotropy)

are introduced the resulting directionality of the image will be changed dras-

tically. As these new sources of image directionality become more acute, they

will tend to dominate the output of the image structure tensor in the sys-

tematic way predicted by our theory, and the structure tensor will correlate
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Figure 3.4: A rendered Gaussian surface used in the experiments with
ξ = 0.4 and θ = 15. Left: φ̂ = 90◦. Middle: φ̂ = −10◦. Right: φ̂ = −10◦

and viewed from another direction.

less with the illuminant direction.

Also expected were the less accurate predictions due to non-oblique in-

cidence light (the top and bottom rows of Fig. 3.3). When the incidence

angle(θ) of light becomes closer to 90◦ (normal direction) illuminance flow

becomes undefined (as is evident from Fig. 3.1, where the flow lines all con-

verge at the point where the illuminance flow direction is ill-defined). For

lower values of the incident light angle shadows affect the outcome of the ten-

sor, as they give rise to new edges in the image. Shadow edges are non-local

and more noisy with respect to changes in φ̂. Interestingly, shadows did not

have an especially big impact on the estimates. As evident by Fig. 3.4, the

images used for the top row of Fig. 3.3 are well into the shadowing regime.

3.6 Conclusions

We have extended the theory of illuminance flow estimation to the case of

obliquely viewed anisotropic surfaces. The theory has been revised by using

intuitive and compact matrix formulations (Eq. 3.13). Experiments on ren-

dered surfaces have shown that the theory is useful for predicting the output

of the tensor for obliquely viewed anisotropic surfaces. This is true under

the assumptions of Lambertian reflectance, uniform albedo and low relief.

Regarding the assumption a Lambertian reflectance function, it can eas-

ily be relaxed. As is discussed in[12], the predictions are still valid for re-

flectance functions that are not strictly Lambertian. The less Lambertian the

reflectance, the more crucial is the assumption of low-relief, and vice-versa.

The most crucial assumption for this theory is that of uniform albedo, not

low-relief or Lambertian reflectance (although, of course, violating them to
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the extreme will invalidate the theory).

As was expected, we found that obliquely incident light is essential for

the predictions to hold true. When the incident light is close to the normal

direction, it makes no sense to model the image as a directional derivative,

and illuminance flow is not well defined. As shown in Eq. 3.4 the second

order approximation of the irradiance of the surface provides a good model

for the imaging process (for our purposes). The second order shading was

mentioned, but not explicitly used in the theory thereafter. When the surface

is isotropic one can omit second order shading from the model. However,

when the surface is anisotropic, directionality will stem from second order

shading as well as from first order. This kind of shading correlates strongly

with the magnitude squared of the derivative of the surface. When dealing

with isotropic texture (obliquely viewed or not) second order shading will

not display any directionality. It makes sense, therefore, to go back to the

formula, and incorporate into the theory a term dependent on second order

shading. This is straightforward to achieve. The model of the image is given

by Eq. 3.4, and (putting ε = 1) we would have the form (g is the surface

gradient):

I(r) = gT(r)

(
` cos θ +

g(r)

2
sin θ

)
When the incident illuminant is on the horizon (θ = 0) this is identical

to the modeling of Eq. 3.5. When some general θ is used, the modeling

differs in that averaging is not done solely over the tangential part of the

incident light, but also, indistinguishably, over the gradient of the surface.

This will have as a general effect that the confidence of the estimates will

be lower. For the isotropic surface case, as the incidence angle approaches

normal direction(θ → 90◦), larger areas of averaging are required for a reliable

estimate. For the anisotropic case the situation is quite different. Not only do

we require larger averaging areas as θ → 90◦, but the gradient of the surface

introduces directionality from the surface itself. We can see this behaviour

in the experimental results, as the lower row of Fig. 3.3 follows the general

theoretical predictions quite well, albeit for an anisotropy amount which is

higher then the actual. The revision of the theory by introducing second

order shading would be paramount to an increase in the effect of anisotropy

from the surface, as a function of illuminant incident angle. This is exactly

what we have observed in the experimental results.
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Illuminance Flow Estimation by Regression

abstract

We investigate the estimation of illuminance flow using Histograms of

Oriented Gradient features (HOGs). In a regression setting, we found for

both ridge regression and support vector machines, that the optimal solution

shows close resemblance to the gradient based structure tensor (also known

as the second moment matrix). Theoretical results are presented showing in

detail how the structure tensor and the HOGs are connected. This relation

will benefit computer vision tasks such as affine invariant texture/object

matching using HOGs. Several properties of HOGs are presented, among

others, how many bins are required for a directionality measure, and how to

estimate HOGs through spatial averaging that requires no “binning”.

Submitted as: S.M. Karlsson, S.C. Pont, J.J. Koenderink, A. Zisserman,
“Illuminance Flow Estimation by Regression”. Submitted to International
Journal of Computer Vision (August, 2009).
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4.1 Introduction

In this chapter, meso-scale stochastic variation across an object’s surface

is not considered part of the shape, but is treated as 3D texture. This

texture makes it possible to estimate (image) illuminance flow, an axial (bi-

directional) flow field in the image that results from projecting the light

vector first into the objects tangential plane, and then into the image plane.

Vectors (a, b)T and (−a,−b)T describe the same flow at a given position. The

flow field in the image is described by local angles φ ∈ [0, 180◦). Illuminance

flow can be used as a shape cue but in this chapter we focus solely on its

estimation from images.

This work is in line with the study by Pont and Koenderink[10] where a

theory for analyzing the illumination orientation from 3D texture was pre-

sented. Generalizations to oblique viewing[11], anisotropic surfaces[12] and

non-uniform albedo[33] have been made.

In this chapter, we investigate real-world rough objects viewed from an

arbitrary direction, and using standard regression methods, estimate the il-

luminance flow over their surfaces (see Fig 4.1). We focus on a contempo-

rary and in fashion low-level feature: the Histograms of Oriented Gradients

(HOGs)[41][42]. The HOGs are the low-level features of the keypoints in the

Scale Invariant Feature Transform (SIFT)[42]. They perform well for human

pose recognition from video[41] without the scale optimization and keypoint

detection of the SIFTs. We will use the HOGs in a low-level and local fashion

as a way of measuring directionality at a position in an image.

Directionality can be defined in several ways, one way (several ones will be

discussed) is by the structure tensor (2nd moment matrix), which can be seen

as three coarse descriptors of the distribution of the gradient. Experimental

results on real world surfaces show that the structure tensor yields promising

results[10] for estimating the illuminance flow, with estimates within a few

degrees of the veridical orientation (in normal viewing). The issue of learning

an optimal estimator based on observations with ground-truth from arbitrary

viewpoints has never been posed, which is the focus of the current chapter.

Several local and unsupervised illuminant estimators have been

suggested[29][35][36][9][38]. Iterative non-local algorithms (such as [39]), are

not considered, neither are supervised algorithms for a finite set of textures

(such as [8]). These algorithms are either identical to or correlate strongly

with the gradient based structure tensor. The premise is a surface texture

normally viewed, where a local estimate of the illuminant tilt is to be es-

57



Flow Estimation by Regression

Figure 4.1: Left: Example photograph from the database used with flow
direction superimposed. A textured sphere is illuminated from the right
(tilt = 0◦, slant = 50◦). Black arrows illustrates illuminance flow (note that
both directions along the black lines are valid flow lines). Right: Binary
image indicating where the flow is well defined

timated. In this setting, the illuminant tilt is the same as the illuminance

flow, but this is not true for arbitrary viewing of the texture, as illustrated in

Fig. 4.1. The tilt is relative to the camera frame, while the illuminance flow

angle is relative to the tangential frame of the object, and can change locally

within the image, even for collimated beams (point source at infinity).

In this chapter, we focus on estimating the illuminance flow of the image

of convex objects with rough surface texture. We use the HOG features

in a regression setting, where we try both linear ridge regression and the

support vector machine (SVM). To connect the results to previous work we

show how the HOGs can be used to achieve a similar measure to that of

the tensor (but also how this measure differs). This will enable us to show

further properties of the HOGs, including how they are connected to the

tensor, how many bins are required to encode a directionality measure, a

different algorithm without binning to calculate the HOGs, and show how

affine invariant approaches affect them.
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4.2 Theoretical background

The position of the light source relative to the camera is given by the tilt and

the slant angles. The tilt is the angle the light vector takes as it is projected

in the camera plane (tilt = 0◦ for light from the right, 90◦ from above) and the

slant is the angle relative to the viewing direction of the camera, (slant = 0◦

if the light comes from the direction of the camera, 90◦ if it is perpendicular

to the normal of the camera plane).

The theory of illuminance flow estimation has been based on the struc-

ture tensor (second moment matrix), which in normal viewing for isotropic,

uniformly Lambertian, low relief surface textures will give the flow[10]. The

structure tensor (2nd moment matrix), is defined as

G = E
[
∇I∇T I

]
=

(
E [IxIx] E [IxIy]

E [IxIy] E [IyIy]

)
where Ix is the partial derivative of the image and E[·] indicates expected

value. The highest eigenvector will yield the directionality of the image (this

constitutes one of many ways of defining directionality). G contains the

second moment description of the stochastic 2D variable ∇I as well as the

second moments of the image power-spectrum[4].

Measuring directionality can also be done by building a histogram of

oriented gradients (HOG). For each gradient in an image a “bin” is increased

in value. The angle of the gradient determines which bin, and the magnitude

how much is added to it. A histogram is a crude form of non-parametric

density estimation. A generalization is the Parzen window method[43] where

many positions (bins) in an angular vicinity are updated (this is often called

kernel-based estimation of the histogram). Assuming that such estimation

is performed, there is no complication from grouping involved, i.e. one can

freely choose a large number of bins based on a small number of data. Of

course, the density estimation will be less reliable as data amount decreases.

The HOG can be made invariant to the sign of the gradient. The bins

will then only need to cover the orientational (axial) interval [0◦, 180◦). We

will refer to the invariant version as the orientational HOG and to the regular

HOG as directional. Discrete periodic sequences of the HOGs are denoted

f̄d(
n2π
N

) and f̄o(
nπ
N

) (for directional and orientational HOGs respectively with

N bin values). These are samples of slightly different density functions, that

are both related to the bivariate probability density function (pdf) f(x) for

the gradient ∇I.
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We will use a probabilistic approach to analyze both the HOGs and G, and

note on similarities with power-spectrum moments. The main drawback with

frequency based analysis is the enforced toroidal topology and dependency

on smooth convex window functions. Instead, we will assume that the pdf for

the gradient, f(x), always exists (the results generalize to distributions using

the Lebesgue measure). There are three coarse descriptors of f(x) found in

G, namely the second order moments, e.g. E [IxIy] =
∫∫

xyf(x, y) dx dy.

The HOGs are similarly coarse descriptors for f(x) as they estimate samples

of the densities:

fd(θ) =

∫ ∞

0

r2f(r cos θ, r sin θ) dr

fo(θ) = fd(θ) + fd(θ + π)

fd has period 2π and fo has period π, and are the population versions

of f̄d and f̄o. One could implement a HOG algorithm in two steps. First,

estimate f(x) (denoted f̄(x)) by e.g. a 2D Parzens window technique or a

2D histogram. HOGs are built by collapsing f̄(x) into a 1D discrete signal,

by weighted summing in the radial direction.

4.3 Directionality by complex change of vari-

ables

Consider the following complex expected values ργ(k), with corresponding

estimations ρ̄γ(k):

ργ(k) = E [|∇I|γ exp(−ikatan(∇I))]

ρ̄γ(k) = 1
N

N∑
n=1

(Ix(xn)−iIy(xn))k

(I2
x(xn)+I2

y (xn))
k−γ

2

(4.1)

for γ ∈ R+ and k ∈ Z, where i =
√
−1. We can normalize it by

ρ̂γ(k) = ργ(k)/ργ(0) so that |ρ̂γ(k)| ∈ [0, 1]. The ργ(2) for different γ are

different measures of directionality. |ρ̂γ(2)| = 1 always occurs for images

consisting entirely of isolines in the ∠ρ̂γ(2)

2
orientation. When estimating ρ̂γ

by ρ̄γ(k)/ρ̄γ(0), we can say that we are performing kth order voting with a

γ-correction term. This is similar to the theory of Bigun and Granlund[4],

where the differential operator (Dx +iDy) and its powers are analyzed. Pow-

ers of (Dx + iDy) include higher order derivatives, which in turn correspond
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to higher orders of complex moments of the power-spectrum (not of f(x)).

We use normalized powers of (Ix + iIy) which use only first derivatives. The

power-spectrum and f(x) are widely different entities.

A special case which connects to the Bigun-Granlund theory is ρ2(2) =

E [(Ix − iIy)
2] and ρ2(0) = E

[
I2
x + I2

y

]
. They encode G completely:

ρ2(2) = (λmax − λmin) exp(−i2atan(vmax))

ρ2(0) = λmax + λmin

where λmax and vmax are the highest eigenvalue and corresponding eigenvec-

tor of G.

Another special case is ρ0(k) = E [exp(−ikatan(∇I))]. This corresponds

to the so-called characteristic function[44] of the circular variable: atan(∇I).

The characteristic function is equivalent to a Fourier transform of the pdf

of atan(∇I). Thus, |ρ0(2)| is a fit of the second harmonic to the pdf of

atan(∇I), and ∠ρ0(2)
2

is the orientation (the phase on the unit circle) of the

second harmonic. For γ = 0, the magnitude of the gradient is ignored, which

is one extreme way of measuring directionality.

A third special case is that of γ = 1, which is strongly connected to the

HOGs, as we shall see. In general, for all γ, the change of variable formula[44]

gives the relation:

ργ(k) =

∞∫∫
−∞

|x|γ exp(−ikatan(x))f(x) dx =

π∫
−π

exp(−ikθ)

∞∫
0

rγ+1f(r cos θ, r sin θ) dr dθ

ρ1(k) =

π∫
−π

exp(−ikθ)fd(θ) dθ (4.2)

ρ1(2k) =

π∫
0

exp(−i2kθ)fo(θ) dθ (4.3)

Eq. 4.3 is found by evaluating Eq. 4.2 for k → 2k as the sum of two

integrals, one over [−π, 0], the other over [0, π], and then using exp(−i2kπ) =
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1 and fo(θ) = fd(θ)+fd(θ±π). Eq. 4.2 and 4.3 yield Fourier series coefficients

for fd and fo:

fd(θ) =
1

2π

∞∑
k=−∞

ρ1(k) exp(ikθ)

fo(θ) =
1

π

∞∑
k=−∞

ρ1(2k) exp(i2kθ)

If the population versions fd, fo, ρ1 are replaced with the sample versions

f̄d, f̄o and ρ̄1, then Eq. 4.2 and 4.3 will turn into discrete Fourier transforms.

For the orientational HOG we have:

ρ̄1(2k) =
N−1∑
n=0

exp
(
−i2k

nπ

N

)
f̄o

(nπ

N

)
(4.4)

Some properties of the HOGs that emerge from these observations are:

1) If a directionality measure needs to be explicitly calculated using

HOGs, then a best matching sinusoidal (the second harmonic approximation

of the directional HOGs, or equivalently, the first harmonic approximation of

the orientational HOGs) yields the desired measure. Other methods, such as

using functions not strictly sinusoidal or methods to measure the bi-modality

of a circular function, can be devised, but the harmonic will yield the mea-

sure that is closest possible to G (assuming no other information of f(x) is

available).

2) The minimum number of bins required to yield such a directionality

measure is given by the Nyquist-Shannon sampling theorem (the sampling

frequency is #bins
2π

). For the orientational HOGs, we require 3 bins, and for

the directional HOGs, 5 bins.

3) The directionality inherent in the HOGs is strongly correlated with that

of G. They differ in γ-correction only. The structure tensor has γ = 2, while

the HOGs have γ = 1. Algorithmically speaking, in G higher magnitude

gradients are weighted more then in the HOGs. If the magnitudes of the

gradients would be fixed to one (f(x) is nonzero only on a circle), then the

directionality of the HOGs and G would be identical.

4) An alternative to calculating the HOGs is to calculate ρ̄1(k), and then

to Fourier transform it. This approach avoids the grouping procedure (the

’binning’) inherent in the conventional histogram approach. K elements of

the sequence (k ∈ [0, K − 1]) yields 2K − 1 bin values (samples in f̄d).
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For estimating f̄o(θ) the sequence ρ̄1(2k) is used in the same way. This is

equivalent to using a wrapped sinc function as a Parzen window[43]. The

equivalent to a Gaussian Parzen window can be achieved by multiplying

ρ̄1(k) with a Gaussian (because multiplication in Fourier gives convolution

and because a Gaussian function transforms back to a Gaussian).

5) If images are affine normalized using G, as is proposed in several

works[45], then there is little or no discriminant information available in

ρ̄1(0) and ρ̄1(2). There are a total of three degrees of freedom in ρ1(0) and

ρ1(2) (real and complex valued resp.) that correspond closely to ρ2(0) and

ρ2(2) (that encode G). If one uses the HOGs as low level features, it might

be prudent to use ρ̄1(0) and ρ̄1(2) for affine normalization, instead of G.

However, if HOGs are estimated on smaller regions within a larger affine

normalized region, then ρ̄1(0) and ρ̄1(2) can still hold valuable information.

Also note that HOGs are usually normalized to unit mean which corresponds

to enforcing ρ̄1(0) = 1 regardless of affine normalization.

We emphasize that we are not suggesting a new set of low-level features

here, but rather we suggest an analysis of the existing ones (HOG) that makes

the connection to the structure tensor readily available, and sheds some light

onto what the HOGs actually do in terms of non-parametric density estima-

tion.

4.4 Axial regression

We now turn our attention to the specific topic of illuminance flow estimation

using the HOGs as low-level features. We tried two standard approaches,

first a linear model with ridge regression, then a support vector machine

where several kernels were considered. Because illuminance flow is an axial

(orientational) property, we used the orientational HOG.

Linear Model

We first phrased the problem in a linear setting as y = fT w, where y is the il-

luminance flow at a point, f = {f̄o(
0π
N

), f̄o(
1π
N

), ..., f̄o(
(N−1)π

N
)}T is the feature

vector, and w = {w0, w1, ..., wN−1}T is the weight vector. Collecting all fea-

ture vectors in matrix F , and all ground-truths in vector y, ridge regression

is a regularized version of LSE minimization, resulting in the pseudo-inverse:

w = (F T F + clinI)−1F T y, where I denotes the identity matrix, and clin is

the ridge parameter for the regression. This corresponds to minimizing the
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objective function:

Elin = clin||w||2 +
1

2
||Fw − y||2

Using the illuminance flow angle φ directly to represent the flow is not

suitable for regression because of the angular discontinuity (for axial data, 0◦

is equivalent with 180◦). Instead, one can choose to regress towards cos(2φ)

and sin(2φ) separately, arriving at 2 weight vectors independently (when

using the models for predictions, one needs to divide the output angle by

two). This can be eloquently phrased as one single regression, by using

complex numbers where y = exp(i2φ):

y = fT w =

exp(i2φ) =
N−1∑
n=0

f̄o(
nπ

N
)wn (4.5)

where wn ∈ C. The definition of the pseudo inverse allows for complex

numbers (replacing wT with conjugate transpose w∗). We are minimizing

one single consistent error Elin (we have ||w||2 = w∗w). That the regression

on cos(2φ) and sin(2φ) is done separately does not matter for the outcome,

nor does the coordinate frame we choose for φ.

In this model, if wn = exp
(
−i2π n

N

)
then, following Eq. 4.4, y = ρ̄1(2)

which correlates with the structure tensor (it differs only in γ-correction, and

is the closest possible to the tensor we can get using only the HOG).

Support Vector Model

The Support Vector Machine (SVM) was originally suggested by Vapnik[46]

for classification and regression[47] . The SVM fits the linear function y =

fT w + b to the data by solving the following convex optimization problem:

minimize Esvm =
1

2
||w||2 + csvm

∑
∀k

ζk

subject to

{
|(fT

k .w) + b− yk| ≤ ε + ζk

ζk ≥ 0
(4.6)

The constants csvm and ε are for tweaking the regression. The SVM

solves this by optimizing a dual formulation, arrived at through forming
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the Lagrangian of Esvm. New variables are introduced, α = {αk}, where

w =
∑K

k=1 αkfk, and thus y = b +
∑K

k=1 αkf
T
k f . With a new objective

function and constraints with respect to α, the dual problem gives solutions

to the originial (primal) problem[46]. The set of training feature vectors that

contribute to the output is small because α is usually sparse (these are the

support vectors of the machine).

Generalizing to non-linear functions is done by providing a substitute

scalar product (the kernel), κ(f 1, f 2). Each possible kernel corresponds

to performing transformations of the data before the regression, such that

a linear regression in the transformed space corresponds to non-linear re-

gression in the original one[48]. If the objective function makes use of the

kernel instead of scalar products, then the output of the machine will be

y = b +
∑K

k=1 αkκ(fk, f).

The linear SVM is very similar to ridge regression, but the objective

function we minimize is essentially different. Elin and Esvm have the same

smoothness term ||w||2, which is independent of the data, they differ in

how they penalize data deviation from the model. Any deviations that is

within the ε bound is not penalized in the SVM regression, and is penalized

linearly for the amount above that threshold, with slope equal to the param-

eter csvm. Ridge regression minimizes a squared error, with no ε insensitive

region. However, squaring also entails penalizing lower deviations less then

higher ones, so the two methods should be expected to yield similar output.

This argument holds despite the fact that ridge regression and SVMs require

widely different algorithms (matrix inverse vs. iterative search). Both are

convex optimization problems, where a unique global optimum is guaranteed.

The power of SVMs lies in their ability to introduce nonlinearities. For this

reason, we compared SVM regression with several popular kernels with the

result we achieved with the ridge regression.

We phrased the illuminance flow problem in a similar fashion as with

the ridge regression. We regress towards cos(2φ) and sin(2φ) separately, and

will get two SVMs that are combined to make predictions (output angle is

divided by two). In the ridge regression setting, this can be phrased as one

single regression using complex numbers, with a consistent error. We are

not aware of any method to provide the same property for SVMs. However,

because the ridge regression and the linear SVM are similar, we argue that

the linear SVM has a roughly consistent error, but the same cannot be said

for any kernel.
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Implementation and Data

For data, we used a set of 28 images of the same textured sphere pho-

tographed under controlled laboratory conditions. The lighting was approx-

imately collimated beams (one point source, far from the sphere), where the

position of the light source was varied in 14 slant directions (10◦, 20◦, ..., 140◦).

For each slant direction, the sphere was photographed with lighting from the

right (tilt direction 0◦) and the left (tilt direction 180◦). Furthermore, the

images were rotated to simulate more tilt directions, in total 16 directions

(0◦, 22.5◦, ..., 337.5◦) for every slant angle.

The photographs are 8 bit gray depth, 600 by 600 pixels. The sphere

was carefully positioned such that the center of the image corresponds to the

center of the sphere. The sphere is roughly 0.5 meters in diameter, and was

positioned 2 meters away from the camera. With a maximum variation in

visible height profile of 0.25 meters, we can assume that the camera has an

orthogonal projection as far as the sphere is considered. The height profile

is a sphere and with collimated beams of known direction, we calculated the

groundtruth illuminance flow angles φ for every valid position in the image.

Positions outside of the silhouette, in the shadow of the sphere or where the

light hits the surface very close to its normal direction were not considered,

as these positions do not have illuminace flow well defined (illustrated in Fig

4.1). This amounted to over 260.000 data points in 32 dimensional feature

space, with associated ground-truth illuminance flow φ ∈ [0◦, 180◦).

Orientational HOGs were calculated on square, 8 by 8 pixel wide cells

in the image. We used 8 bins, representing the angular intervals of

{[0◦, 22.5◦), ..., [157.5◦, 180◦)}. At the vertex of each cell are the positions

to be described by the features. For each position, the HOG bin values of all

4 cells sharing that vertex are collected into a feature vector of 32 elements.

These are normalized to unit mean. Each feature vector (for each position

considered) get values from 4 HOGs, so the outer scale can be said to be

16 by 16 pixel wide blocks. Each HOG contributes to 4 blocks, so there is

overlap between the feature vectors.

The software for calculating HOGs was Bill Triggs’ [41] implementation,

which uses two point derivative filters. We also implemented the structure

tensor algorithm with the same derivative filters and size of blocks as with the

HOGs. Linear interpolation is used in the binning algorithm of the HOGs to

improve accuracy, which approximately corresponds to a triangular Parzen

window[43]. Ridge regression was performed with the statistics toolbox in
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the Matlab environment. For the SVM, we used the “SVMlight v. 6.01”

software implementation[49]. We tried 4 different kernels: linear, polynomial,

sigmoidal (tanh) and radial basis function (rbf).

4.5 Results

Interestingly, all models (ridge and SVM) yielded near identical results to

the ρ̄1(2) measure, which is visually indistinguishable from the structure

tensor on these images. Typical output is illustrated in Fig. 4.2 together

with ground-truth. Performance is evaluated through the average angular

deviation (Ead) of the estimate to the ground-truth illuminance flow angle

(averaged over all images in the database, over all valid positions). All the

regressed models had an Ead lower then 16.5◦, with the best results for the

(second order) polynomial kernel at 16.43◦ and the worst being the rbf ker-

nel at 16.48◦ (further tweaking of kernel parameters and selecting different

training sets will change this ordering). The left panel of fig. 4.3 illustrates

the performance across the image (different positions on the sphere). The

corresponding illustrations for the other models are not shown, because they

are all visually indistinguishable.

We also implemented the regular structure tensor, with equivalent deriva-

tive filters and averaging areas as with the HOGs (two point derivative filters

and 16 by 16 square blocks). The structure tensor yields Ead = 16.7◦. If the

weights of the linear model are fixed to those corresponding to the structure

tensor, then the same error occurs (difference is smaller then 0.05◦). The

small reduction in performance when going from the regressed models to the

pure structure tensor, is explained by the directional bias in the estimation

(square blocks, and 2 point filters). The regressed models (both SVMs and

linear) have compensated for directional bias in the HOG features.

Ridge regression: Inspection of the regressed weights in Fig. 4.4 verifies

that wn ≈ C exp
(
−i2π n

N

)
, which corresponds to the ρ̄1(2) measure. Fig.

4.4 depicts the weights with their angle divided by two (thus wn occupy

half a circle) which is the equivalent to dividing the output of the model

by two (which is required for an estimate of the illuminance flow angle).

Incorporating more features in the training set made the weights converge

towards wn ≈ C exp
(
−i2π n

N

)
(closer to the circles of Fig. 4.4). Changing

the parameter clin changes the magnitude of the regressed weights (C above)

but not their directional component, except for when clin is close to zero.

For clin = 0 the regression is pure LSE minimization which will be (for this
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Figure 4.2: Typical output of the regressed models. Samples are taken
of every third valid x and y coordinate (1/9 of the valid positions shown).
Estimation is by the linear ridge predictor, but is visually indistinguishable
from any other model regressed. Note that the positions in the lower right
corner occupy a domain where illuminance flow is not well defined, as il-
lustrated by Fig 4.1 (incoming light is near to being parallel to the surface
normal)
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Figure 4.3: Average angular deviation of the prediction to ground-truth,
averaged over all images. White: no deviation, black: deviation > 45◦,
gray: linear scale in [0,45]. Left panel: Result achieved with HOG features
(approx. same image for all models). Maximum average deviation ≈ 79◦.
Right panel, equivalent image for when the normal is appended to the
feature vector, for the rbf kernel SVM

problem) unstable and prone to over-fitting. We note that the results show

some directional bias, especially in the directions (±45◦ and ±135◦). These

are weighted slightly less then the horizontal and vertical directions. This

is because two point derivative filters and square regions are used in the

HOG calculations which gives rise to some directional bias. If derivatives

of Gaussians are used as filters and roughly circular cells implemented, then

this effect disappears. Smoothing the image before the filtering reduces but

does not eliminate the directional effects of two point derivative filters.

SVM models: The output is almost identical to the structure tensor,

and visually indistinguishable from the ridge regression for all kernels used.

We used a training set of 12.000 randomly selected features for training, and

the remaining features for verification. Training is on a mere 4% of the data

but took nearly a day to complete per kernel. The output of the SVM models

is indistinguishable from that of the ridge regression, for both training and

verification set. All the regressed predictors had very similar performance on

the training and the verification set, with a difference in Ead smaller then 2◦.

Using different kernels yields different result only for much smaller subsets

of the training data, but as the training set becomes bigger they all converge

towards structure-tensor-like behavior.
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Figure 4.4: Weights of the linear model from ridge regression. Black dots:
weights, gray circles: centered around the positions of the ρ̄1(2) predictor.
Weights have their angular part divided by two, so that each gray radial
line corresponds to the center of the bin of the HOG. There are four HOGs
used for each position in the image thus four weights for each direction

It seems that the HOG features are not indicative of illuminance flow

beyond what is in ρ1(2). Unfortunately, with our SVM modeling, we are

not minimizing a consistent error which weakens this conclusion. To illus-

trate this issue, if we change the frame in which the illuminance flow angle

is described (the direction of the zero axis) then the results of the SVM re-

gression change. For small training sets, a noticeable change in output is

evident (this is not so with the ridge regression which is totally invariant

to the frame used). As the training set becomes bigger the output becomes

less dependent on the frame (in the training set used for the final results, no

directional bias can be seen).

Accounting for Oblique Viewing

A major source of error from the estimators comes from oblique viewing of

the texture, i.e. where image patches are taken closer to the silhouette of the

object. This is clearly evident in the left panel of fig. 4.3 where Ead actually

goes above 45◦ when taken close to the silhouette (random guesses results

in Ead = 45◦ for axial data). We appended the local normal of the sphere

(relative to the camera frame) to the feature vector, to see if the regression

would improve. We note that it is unfeasible to assume that the normal is
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available in real-world applications. We also encoded the normals differently

by e.g. projecting them into the camera plane (yielding 2D vectors with

magnitude less then one), and by doubling the angle of the projected vector

(which is equivalent to considering it as an axis rather than a vector). We

also used the normal in a preprocessing scheme, where we performed an affine

transform on the image region before the HOG features were calculated.

The affine transform aims at minimizing the effects of oblique viewing of

the texture. We performed first a contraction of the patch equivalent to the

foreshortening but in the orthogonal direction of the foreshortening. After

that, a uniform up-sampling of the texture patch was performed. We note

that modeling oblique viewing as an affine transform is an approximation to

begin with, and that we loose fine scale information doing the normalization.

All the models gained performance with the affine normalization but they

regressed nonetheless to the same structure-tensor-like behavior. The best

performance was with the polynomial kernel (Ead = 11.9◦) and the worst

was the sigmoidal kernel (Ead = 12.1◦), a difference we accredit to variability

in training set selection and kernel parameters.

Ridge regresssion: We achieved no improvement with the appended

normals. Inspection of the regressed weights showed that the ones corre-

sponding to the normals equalled zero, independently of how the normals

where encoded. The linear model is not powerful enough to make use of this

kind of information.

SVM models: In contrast with the ridge regression, the SVM has the

capability to make use of the normals. When appending them to the feature

vectors, an improvement was noticed that was dependent on which kernel

was used. The best improvement was achieved with the rbf kernel (Ead =

12.8◦) with the projected normal coded with double angle. The second order

polynomial kernel has Ead = 13.4◦ and the sigmoidal has Ead = 15.7◦. The

performance over different positions in the image of the rbf kernel SVM is

illustrated in the right panel of fig. 4.3. All the other results follow the same

pattern: an improvement close to the silhouette, but the closer to the center

of the image (normal viewing) the closer the models agree with the structure

tensor algorithm. The rbf kernel SVM performs very much like the affine

normalization scheme.
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4.6 Discussion

This chapter has 2 major contributions; 1) deriving theoretical properties of

the Histogram of Oriented Gradients (HOGs), and 2) estimate illuminance

flow through regression on the HOG features.

HOG Properties

Our theory uses spatial averaging over a set of non-linear mappings of the

gradient (Eq. 4.1). We have shown how the resulting sequence is equivalent

to a Fourier series expansion of the HOG features, where the second har-

monic is strongly correlated with the eigenvector of the structure tensor (2nd

moment matrix). The only difference between the second harmonic of the

HOG and the structure tensor is a γ- correction of the gradients in the corre-

sponding spatial averaging. In affine invariant texture and object matching

the structure tensor is often used in a normalizing procedure, and our theory

predicts how this will affect the HOGs. It also shows how many bins are

needed of the HOG to calculate a similar measure as the structure tensor, as

well as an alternative way of calculating HOGs, without binning.

The structure tensor is not the only way of achieving affine normalization.

It entails a γ-correction of two in our spatial averaging. Better results might

be achieved if a directionality measure is used that is consistent with the

low-level features (HOGs), that involves a γ of one (i.e. enforcing the second

harmonic to have zero energy). Further investigation into this will be a

subject of future work.

One could naturally ask whether the gradient mappings might yield even

more efficient features than the HOGs. This is an interesting topic as well,

but beyond the scope of this chapter. We have not suggested a new set of

features, but rather, an analysis of the existing ones (HOG) that makes the

connection to the structure tensor readily available, and explains what the

HOGs actually do in terms of non-parametric density estimation.

Illuminance Flow Regression

Regarding the experimental results of this chapter, we found that in a re-

gression setting, using the HOGs as low-level features, the second harmonic

of the HOGs was (approximately) found as the optimal estimator of illumi-

nance flow. Because this is the closest possible to the structure tensor that

can be achieved using only HOGs, as well as visually indistinguishable on
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the images used, we conclude that the structure tensor is near optimal for

the images in this study.

A natural question is whether the results generalize to arbitrary texture,

which could be composed of different fine-scale surface geometry and any

form of local variation in surface reflectance. We have in earlier work dis-

cussed the applicability of the structure tensor for deviations from the uni-

form plaster type of texture[12]. Essentially, as long as the height profile has

sufficiently low average height and is reasonably smooth, then a less Lamber-

tian reflectance will not affect the outcome of the structure tensor. This is

especially true if the light source is more elongated then a point source. For

flat spatially varying albedo texture (on which the vast majority of computer

vision theory is based) illuminance flow is not observable. In the case where

both fine-scale surface texture(say plaster) and flat albedo texture (say a flat

painted pattern) are present simultaneously, things become more trouble-

some. Oblique viewing and anisotropy for flat texture can be modeled as one

single affine transform (a single fact that makes popular computer vision).

We tried both linear ridge regression and Support Vector Machines(SVM)

with several kernels. We were unable to find any significant improvement in

performance using the more powerful SVM. This is an indication that for the

estimation of illuminance flow there is no more useful information in HOGs

other then what is in the second harmonic. Essentially, we found that the

gradient structure tensor is the optimal estimator in our setting (albeit with

a lower γ-correction than what is usually suggested).

This conclusion is weakened by the fact that our SVM regression is not

minimizing a consistent error. We could not find a way to do the regression

on both the x and the y component of the ground-truth simultaneously as

was done with the ridge regression. We contended with doing 2 separate

SVM regressions, one for each component of the illuminance flow vector.

We formulated the linear ridge regression through complex numbers,

which easily shows that the error is independent of the particular frame

we use to describe ground truth angles. If, similarly, the SVM framework

could be generalized to deal with complex numbers, then it should be able to

use SVMs with a consistent error for axial regression problems of this kind.

Alternatively, the two SVM regressions could be performed simultaneously,

with an additional constraint that the combined output should be on the unit

circle (which should still be a convex optimization problem), thus coupling

the models. This will be a worthwhile subject for future work.
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Local Shape from Illuminance Flow

abstract

Illuminance flow is a flow field in the image produced by projecting the

light vector into the local tangential plane of a visible surface. The flow is

observable from objects with rough 3D surface texture. In this chapter we

investigate the differential invariants of this flow field and show how shape

can be inferred locally at a point in an image. In addition, the global position

of the light source can be partly inferred as well, at least for the experimental

surfaces we consider. A simple algorithm for estimating the second order

local shape (the Hessian) is derived and shown experimentally to perform

quite well on simulations of Gaussian surfaces (2D Gaussian processes)

where we assume the ground-truth flow is given.

Submitted as: S.M. Karlsson, S.C. Pont, J.J. Koenderink, “Local shape
from Illuminance Flow”. Submitted to Journal of Mathematical Imaging and
Vision (September, 2009).
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5.1 Introduction

In this chapter, meso-scale stochastic variation across an object’s surface is

not considered part of the shape, but is treated as 3D texture. This tex-

ture makes it possible to estimate (image) illuminance flow, an axial (bi-

directional) flow field in the image that results from projecting the light

vector first into the objects tangential plane, and then into the image plane.

Vectors (a, b)T and (−a,−b)T describe the same flow at a given position. Fig.

5.1 shows ground-truth from a sphere. Illuminance flow can be used as a local

as well as a global cue for the shape of objects. This chapter focuses solely

on the local approach, but global approaches will be briefly discussed. This

work is in line with the study by Pont and Koenderink[10] where a theory for

analyzing and predicting the illumination orientation from 3D texture was

presented. Generalizations to oblique viewing[11] of anisotropic surfaces[12]

and non-uniform albedo[33] have been made. This chapter takes the subject

further by exploring how illuminance flow can actually be used for shape in-

ference. Shape from illuminance flow is a novel topic, and can be said to be

somewhat in-between shape-from-shading and shape-from-texture, but fun-

damentally independent of both. Our notion of texture deviates significantly

from most other works (especially in computer vision) in that it is given a

richer definition.

Computer vision approaches to 3D reconstruction commonly model ob-

jects as consisting of shape (the surface of the object) and texture (the varia-

tion of surface albedo forming a pattern on the surface). While this definition

is very useful for cases such as a box of cereals, a race car with commercial

printing or a wall with graffiti, it is less useful for objects such as the stem

of a tree, a boulder, a uniform colored sculpture or the sphere with plastered

texture in Fig. 5.1. We adapt a more general notion of texture, which is

more in line with the intuitive human notion of it. While surface variation

in albedo (painted pattern on the surface say) is one part of what makes up

texture, another part is meso-scale surface variation. We model objects as

consisting of surface variation on two seperate scales; the meso scale and the

macro scale. The macro scale constitutes the shape of the object (a perfect

sphere in the example of Fig. 5.1) and the meso scale is the scale of the

texture. The shape we are interested in describing using illuminance flow is

on the macro scale. On this scale we can assume that object surfaces are

smooth differentiable manifolds (the texture on the meso scale might not

be). We will talk of the tangent plane of the macro scale surface, and simply
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Figure 5.1: Examples of illuminance flow patterns. Top left: Flow over a
real world object (sphere). Top right: A flow pattern with non-zero swerve
(ĝ1) and non-zero splay (ĝ2). Bottom left: Pattern with non-zero splay
only. Bottom right: Pattern with non-zero swerve only.

mean the tangent plane as it would be if the meso scale texture variation is

not considered.

The texture is not part of the shape, but we want to exploit its presence

for inferring the shape, which is as far as the analogy goes for illuminance

flow and shape from texture. In traditional shape from texture (as with the

majority of computer vision state of the art) only flat texture is used, where

oblique viewing can be modeled as an affine transform[45], and where light

direction has a very simple relation to the appearance of the texture. For 3D

texture, things are very different. On the meso scale, the texture is a shading

and shadowing pattern of a low relief height function. While flat Lambertian

texture only depends on the elevation angle of light relative to tangent plane

(giving a uniform intensity change), 3D texture has a critical dependence

on the azimuthal angle of the light direction relative to the (macro scale)

76



Chapter 5

tangent plane. It is precisely this dependence that allows us to observe the

flow.

5.2 Theoretical background

The position of the light source relative to the camera is given by:

` = {`1, `2, `3}T = {cos θ cos φ, cos θ sin φ, sin θ}T

where θ is the illuminant elevation angle (the slant) and φ is the azimuthal

angle (the tilt). The light vector ` is not given in the tangential frame of the

surface, but in the frame of the camera. There is no spatial dependence, it

is constant throughout the scene.

We will start by working in a coordinate system where the camera is

situated along the z-axis. The camera is modeled as having orthographic

projection. We assume a point (x = 0) on the surface of the object that does

not suffer from self occlusion. The macro scale surface h(x) is approximated

(locally) as a 2D function by:

h(x) = xT∇h +
1

2
xTHx (5.1)

where ∇h =

(
h10

h01

)
and H =

(
h20 h11

h11 h02

)
are the gradient and the

Hessian at x = 0. The non-unit normal of the surface is n0(x) =

{−∂h(x)
∂x

,−∂h(x)
∂y

, 1}T and n = n0/|n0|.
Assuming a Lambertian uniform albedo surface and that the point is not

in shadow, we model the shading of the surface as:

I(x) = `Tn

This shading is on the macro scale regardless of whether meso scale texture

is present. Over a given window, the macro scale shading is approximated by

averaging all meso-scale intensities including points of the texture in shadow.

We do not consider a 3D texture on any finer scale than the meso-scale. If one

uses, for example, a Brownian fractal surface[30], where the surface variations

exist on all finer scales (as well as coarser ones) then we note that the surface

will not be Lambertian in general[13]. The only assumption that we make on

finer scales than meso is that whatever they may be they yield a Lambertian

reflectance.
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The shading is by definition strictly positive and bounded since we assume

no shadow in the macro scale context (I(x) ∈ (0, 1]). On the meso scale,

there is no problem with shadows within the texture.

The shading, as it has been defined here, is strictly speaking not observ-

able (we do not know the camera transfer function or the intensity of the

light, both of which are not treated here). As observable we will instead

consider the contrast gradient, ∇c(0), which is based on the local contrast:

c(x) =
I(x)

I(0)

For a second observable, we will consider the illuminance flow. To arrive

at the flow, we first define the twice projected light vector:

f̃(x) = P (`− (`Tn)n)

where the 2-by-3 matrix P is the projection into the camera frame. In our

case P will simply discard the third dimension (the camera is along the z-

axis): P = (e1
... e2)

T. As with the contrast, we assume a point not in shadow

on the macro scale, but shadow in the meso scale texture poses no problems.

Illuminance flow is defined as the normalized projected light vector, with a

sign ambiguity:

f(x) = s
f̃(x)

|f̃(x)|
(5.2)

where s ∈ {−1, 1} represents the sign ambiguity which allows us to treat

illuminance flow as an orientational (axial) rather then a directional flow

field. The reason for doing so is because of the sign ambiguity in shading

patterns. Consider any Lambertian rough surface texture distributed on a

plane viewed frontally. Roughly the same image will result if simultaneously

the tilt light angle is rotated one half revolution (φ → φ ± 180◦) while the

texture height is inverted (hmeso(x) → −hmeso(x)). The sign ambiguity can

sometimes be resolved using inter-reflections or shadows, but these effects are

difficult to use in general, and are most often negligible when dealing with a

low relief surface texture.

In[12] we discuss how to estimate illuminance flow from images of texture.

It is not as straightforward to observe the illuminance flow as it is to observe

the contrast but the estimation of the flow is not the focus of this chapter. We

are interested in describing the structure of the flow field, deriving differential

invariants and relating them to the shape of the surface on the macro scale.
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Because of the bas-relief ambiguity[55], estimating first order shape (i.e.

the normal) is not reliable using illuminance flow and/or contrast. We focus

on the second order shape parameters (the elements of H : h20, h11 and h02),

and especially as they are expressed in a local frame given by the flow vectors.

We will give attention to both the illuminance flow as well as the contrast

gradient, and will show a fundamental connection between them. We start

off with illuminance flow and its differential invariants.

5.3 Illuminance flow

We will use a standard approach from differential geometry, the method

of moving frames[40], in order to derive two natural differential invari-

ants and relate them to the local shape of the surface. According to the

moving frame method, we let f(x) define an orthogonal frame locally by

{ê1 = f(x), ê2 = Rf(x)} where R is a 90◦ counter-clockwise rotation. In-

dependent differential invariants are then expressed in an intuitive way as

proportional to the angular speed of rotation of the frame as it is moved

along its basis vectors. We can derive two such invariants, which we name

the swerve (ĝ1) and the splay (ĝ2) due to the intuitive characteristics that

they measure, as illustrated by Fig. 5.1.

Having started with the geometric intuition of the invariants, we will now

proceed with the process of deriving algebraic expressions for them. We will

base this on the local, second order description we have for f(x) following

equations 5.1 and 5.2. The frame vectors are given by putting x = 0 which

yields:

f(0) = ê1 = s
u

|u|
where

u = M1`

where M1 is a 2 by 3 matrix containing only first order shape information:

M1 =

(
1 + h2

01 −h01h10 h10

−h10h01 1 + h2
10 h01

)
The differential structure of the flow is contained in the set of partial

derivatives. We first differentiate f(x) and then put x = 0. Because it is

a 2D field (f(x) = {f1(x), f2(x)}T), we have 4 such derivatives in total, or
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equivalently one pair of gradients that together describes how the frame will

change given some infinitesimal motion:

J =

(
∇f1(0)

... ∇f2(0)

)T

The angular speed of rotation of the frame as it moves in the direction

of some unit vector k is given by
(
JTê2

)T
k. It is natural to define the flow

gradient as g = JTê2 = {g1, g2}T, and the swerve(ĝ1) and the splay (ĝ2) are

given by:

ĝi = gTêi (5.3)

The algebraic expression for g comes to:

g = H
v

|u|2

where

v =

(
`TM2`

`TM3`

)
where M2 and M3 are 3 by 3 matrices given uniquely by first order shape

information:

M2 =

 −h01 − h3
01 0 0

2h10(1 + h2
01) h01(1− h2

10) 0

0 h2
01 + h2

10 − 1 −h01



M3 =

 h10(h
2
01 − 1) 0 0

2h01(−1− h2
10) h3

10 + h10 0

1− h2
10 − h2

01 0 h10


We can write the expression for g in terms of the light vector (` which

is in the camera frame, considered constant), first order shape (M1, M2, M3)

and second order shape (H):

gT =
1

`TMT
1 M1`

(
`TM2`

`TM3`

)
H

It is also beneficial to normalize the vector v. This formulates g as a unit

vector applied to the Hessian, multiplied with a non-negative scalar:

gT =
|v|
|u|2

(
v

|v|
H

)
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For the invariants, we have:

ĝi(∇h, `) =
|v|
|u|2

(
v

|v|
H êi

)
(5.4)

Now, for any two unit vectors k1 and k2, a second order directional

derivative of the smooth 2D function h(x) (the surface) is achieved through

kT
1 H k2. This is equivalent to differentiation first in the k1 direction then

k2, regardless of the relationship between k1 and k2 (orthogonality is not

required). Thus, the invariants of the flow field ĝ1 and ĝ2 are directly pro-

portional to second order derivatives of the surface and the factor |v|/|u|2
is positive. When the differentiation is done in the moving frame (i.e.

along the vectors ê1 and ê2) we use the notation ĥij. Thus, for example,

ĥ11 = êT
1 H ê2 = êT

2 H ê1.

We now consider the special case when the point is viewed fronto-parallel,

i.e. when ∇h = 0. The invariants become simpler (θ is the globally constant

slant angle of light in the camera frame):(
ĝ1(0, `)

ĝ2(0, `)

)
= s tan θ

(
ĥ11

ĥ02

)
(5.5)

This is because

as ∇h → 0,{
|v|
|u|2 → tan θ
v
|v| → u

|u| = s ê2

5.4 Contrast gradient

The algebraic expressions for the contrast gradient and the shading gradient

come to:

∇I(0) =
1

(|∇h|2 + 1)3/2
uT H

=
s|u|

(|∇h|2 + 1)3/2
êT

1 H

∇c(0) =
∇I(0)

I(0)

This can be seen as the flow vector (ê1 = f(0)) applied to the Hessian, and

scaled with a non-negative value. It makes sense to describe the gradients in

the moving frame (ê1, ê2):
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(
ĉ1(∇h, `)

ĉ2(∇h, `)

)
=

|u|
I(0)(|∇h|2 + 1)3/2

(
ĥ20

ĥ11

)
(5.6)

Like the invariants of the flow, the contrast gradient is proportional to

second order derivatives of the surface. Unlike the flow, however, we do not

need to assume fronto-parallelity for the directions of differentiation to be of

an orthogonal frame. The constant of proportionality is different from that

of the flow (they are, however, always non-negative).

As with the flow, when we assume fronto-parallelity (∇h = 0) the contrast

gradient assumes a simpler form:(
ĉ1(0, `)

ĉ2(0, `)

)
= − s

tan θ

(
ĥ20

ĥ11

)
(5.7)

5.5 Local shape from illuminance flow

If we assume a point with fronto-parallelity, and if we know the global light

slant angle (θ), then using the illuminance flow and the shading gradient

together, one can solve for the second order shape of the point (the Hessian,

in the coordinates of the moving frame):
ĥ02 = s ĝ2/ tan θ

ĥ20 = −s ĉ1 tan θ

ĥ11 = −s ĉ2 tan θ

ĥ11 = s ĝ1/ tan θ

(5.8)

For Eqs. 5.8 to be useful for shape inference, θ must be known, and

sufficiently different from 0◦ and 90◦ (tan θ must be neither 0 nor ∞). For the

fronto-parallel case, these degenerate cases occur exactly when illuminance

flow is not defined. The sign ambiguity s has carried through to the estimates

of shape. Notice that it is the same s for all the estimated parameters, i.e.

the estimated Hessian as a whole has a sign ambiguity.

Estimation of the global illuminant slant

Regarding the light slant angle (θ), if ĥ11 6= 0 then we have:

θ = tan−1
√
−ĝ1/ĉ2 (5.9)
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There are two singular cases for which ĥ11 = 0 and θ cannot be calculated in

this manner: a) the shape is rotationally invariant (the Hessian is a scaled

identity matrix, the principal curvatures are equal), and b) the moving frame

{ê1, ê2} is aligned with the frame of the principal curvatures of the shape.

Especially in the presence of noise, the closer to the singular cases the less

stable the estimate of θ.

For a given object, there are always points that are fronto-parallel to

the camera. However, it is impossible to determine where these points are

(without limiting constraints or more information) and it is not certain that

illuminance flow is defined there (no 3D texture, or the points could be in

shadow). Without knowing which points are fronto-parallel, one approach is

to take all possible points, and form an average estimate as

θestim = tan−1
〈√

−ĝ1/ĉ2

〉
(5.10)

where averaging 〈·〉 is over all valid positions. We will investigate experi-

mentally how the estimates of Eq. 5.8 and 5.10 will perform when assuming

ground-truth illuminance flow is given.

From now on, we will assume that θ is also given (but will investigate

through simulation the validity of its estimation by Eq. 5.10). The rela-

tions of Eq. 5.8 holds only for the fronto-parallel case, but we will show

experimentally that reasonable results are achieved on average.

5.6 Experiments

Experiments were conducted on random surfaces. These were generated

as the simulation of 2D stochastic Gaussian processes. The surfaces were

generated in the Fourier domain as a fixed power spectrum with a randomly

generated phase spectrum. The power spectrum is shaped as an isotropic

Gaussian function (|H(ω)| = exp(−σ2ωTω)). The choice of the Gaussian

power spectrum provides us with surfaces with energy in one single scale

(σ). This is in contrast with the brownian (fractal) surface, whose power

spectrum follows a power law[30]. The Brownian surface has information on

all scales due to its fractal, self repeating statistics, and is not appropriate to

model the shape at macro scale. The Brownian surface is among the most

popular models for surface texture, even though it is not differentiable. Our

power spectrum, being Gaussian, has infinite support in the Fourier domain

just like the Brownian surface, but unlike the Brownian process our surface
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is differentiable.

For our experiment, we assume that illuminance flow is correctly observed

where it is defined. We also assume we know the sign of the flow, so that

we do not need to concern ourselves with the sign ambiguity (s = 1). There

are two cases when illuminance flow is not defined: a) the surface is in

shadow (nT` < 0) and b) the illumination is orthogonal to the tangent

plane (nT` = 1 and the light vector projects to zero). We ignore points in

shadow and only consider points sufficiently far from orthogonal illumination

by nT` < 0.97. It is relatively easy to detect points where nT` = 1; they

are points where the image intensity attains a local maximum and where

flow-lines converge. One can thus avoid these points as well as a small radius

around them.

We calculated the contrast and shading gradients and the illuminance

flow using Eq. 5.3, based on the Jacobian of the flow field. Using Eq. 5.8 the

Hessian was estimated, and an error between ground-truth and estimation

gathered. Likewise, θ was estimated using Eq. 5.10 and compared to the

groundtruth.

The roughness of the surface is measured by the RMS slope

(τ = 〈|∇h|2〉1/2). In the experiment we vary the roughness from 0.05 to 1

in increments of 0.05, which is regulated by uniformly multiplying the height

map with a value after it has been generated through the Fourier transform.

The second variable is the illuminant slant θ which we vary from 10◦ to 80◦

in increments of 10circ.

The ground-truth Hessian with respect to the local moving frame is cal-

culated in full. The elements (ĥ02, ĥ20 and ĥ11) are normally distributed,

with zero mean. For the roughest surfaces (τ = 1) the standard deviation

for ĥ11 is approximately 0.0115 and for ĥ02 and ĥ20 it is 0.02. The standard

deviation is proportional to τ .

Typical surfaces in the experiments are illustrated in the top rows of Fig.

5.2 and Fig. 5.3, where we show the surfaces also in different viewpoints

for the benefit of the reader. We adapt a frontal view of the surfaces when

performing the experiments, and we assume the ground truth flow is given.
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Figure 5.2: Illustration of a low roughness surface(τ = 0.15) with low
illumination (θ = 10◦), and the estimation of its local shape. Top left: The
viewing condition of the experiment. The surface is rendered with shading
and the illuminance flow at sparsely sampled points are illustrated by black
lines. Top right: An oblique view of the same surface, which is rendered
with surface texture. Bottom row: Scatter plots of the estimations vs.
ground-truth for the ĥ11 shape parameter, estimated through the flow(left
plot) and the contrast(right plot). The dotted line is the best fitting line
in the data, the grey line is the line with slope one for reference.
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Figure 5.3: Same type of illustration as that of Fig. 5.2, but for a higher
surface relief (τ = 0.85), and close to fronto-parallel illumination (θ = 80◦).

5.7 Results

We found that the estimates of Eqs. 5.8 correlate quite well with the ground

truth shape of the surface, as is evident from Fig. 5.4 and Fig. 5.5. Fur-

thermore, the estimation of the global illuminant slant angle (θ) is found to

behave very stable, although with systematic error. It is monotonic with

respect to the groundtruth, as is evident from figure 5.6.

The estimates based on the flow (ĥ02 and ĥ11) behaved nearly identical,

as did the estimates based on the contrast gradient (ĥ02 and ĥ11). We will

therefore only display the two parallel estimations of ĥ11.

While the correlation is high for most settings, this misses to pick up on

a phenomenon that occurs when the slant angle (θ) is closer to the singular

cases of 0◦ and 90◦. Because our estimates are derived for the fronto parallel

case only, it cannot handle these cases, which is readily seen in the propor-
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Figure 5.4: Correlation of the illuminance flow based ĥ11 estimate with
ground-truth as a function of the roughness τ . The curves differ in il-
luminant slant (θ), the values of which are indicated in the figure. The
parameter ĥ02, which is also estimated by the flow follows nearly identical
curves and is therefore omitted.

tionality constants of Eqs. 5.8. For θ = 80◦, even though our results show

the highest of correlation in this case, the proportionality constant of Eqs.

5.8 is not accurate. When plotting the data together with the groundtruth

as done in Fig. 5.2 and Fig. 5.3 we note that the slope of the best fitting

line (dotted line) is not unity. The best fitting line is very close to a slope of

one if θ is kept in the interval of [25◦, 65◦].

From the scatter plots, we note a stability at zero for the contrast gradient,

but not for the flow measures. This is because of the different nature of the

flow field and the contrast gradient, as outlined by Eqs. 5.4 and 5.6. The

key is that the contrast gradient is proportional to the orthogonal second

order derivative even for the non fronto-parallel case. The gradient of the

flow field, on the other hand, is not proportional to an orthogonal second
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Figure 5.5: Correlation of the contrast based ĥ11 estimate with ground-
truthas a function of the roughness τ . The curves differ in illuminant slant
(θ), the values of which are indicated in the figure. The parameter ĥ20,
which is also estimated by the contrast follows nearly identical curves and
is therefore omitted.

order derivative (the first direction of differentiation is dependent on ∇h).

For the estimates of ĥ02 and ĥ11, when based on the contrast, they should

be exactly zero when the ground-truth is zero, while this is not predicted to

happen for the illuminance flow invariants (that estimate ĥ20 and ĥ11).

The contrast gradient has a high sensitivity to small shading values due

to the division with I(0), evident in Eq. 5.6. If we are close to a shadow (on

the macro scale), or more generally, if we are in grazing illumination, then

the contrast gradient approaches infinity. This explains the large amount of

outliers for the contrast based estimates in the lower right panel of figure 5.2

(The outliers are all coming from points in grazing illumination, or close to

shadows). The contrast based estimates perform considerably better when

the illumination is not grazing, as evident in the lower right panel of figure
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Figure 5.6: Estimation of illuminant slant(θ) as a function of surface
roughness(τ). Curves differ in the ground-truth illuminant slant (θ), which
are (from top to bottom) linearly spaced from 80◦ to 10◦.

5.3. The flow based estimates do not suffer from this drawback, but instead

perform worse at close to orthogonally illuminated parts of the image.

5.8 Conclusions

As our experiments have shown, the rather simple algorithm for estimating

second order local shape (i.e. the Hessian) in Eq. 5.8 will work reasonably

well. The algorithm of Eq. 5.10, that estimates the global slant angle of the

light source, was shown to especially behave stable and quite accurate for

surfaces of lower roughness.

The method for estimating the illuminant slant angle was derived for

fronto-parallel points (were ∇h = 0) and yielded a very simple relation (Eq.

5.9). Because we do not know which points are fronto-parallel we suggested

to simply do averaging over all valid points (as Eq. 5.10 illustrates). If

instead we truly have the illuminant slant angle (θ) as a given, then we can

use Eq. 5.9 as a way to define a set in the image satisfying

ĉ2 tan(θ)2 + ĝ1 = 0
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Local Shape from Flow

The set of fronto-parallel points are a subset of all such points, (assuming

that illuminance flow is defined on them). How useful this observation is,

remains to be seen, and will be a worthwhile subject for future work.

For all the techniques used in this chapter, observed illuminance flow is

needed. The fact that shape inference can be done at all in this strictly local

fashion is quite fascinating in itself. New information is made available by

observing illuminance flow, and shape from this quantity is a novel topic

indeed. The work on shape from illuminance flow is still in its early stages.

For a future, powerful algorithm for shape inference we envision much more

than this purely local approach. Considerations of the global structure of the

flow field and contextual information (such as the contours of a segmented

object) should be taken advantage of.

In order to arrive at a fully practical algorithm, several issues remain

to be addressed. Importantly, we assume a separation into macro-scale and

meso-scale surface variation, where the meso-scale variation adds only to the

surface texture of the object. In real world applications, this separation is

not always straightforward. This is an issue of scale selection. The human

visual system is very efficient at doing this, and adapts the scales readily

depending on what is given attention to. In the same way, an algorithm for

shape from illuminance flow needs to set the scales, which decides what is

texture and what is shape to be inferred.

An important perceptual ambiguity in vision is the so-called bas-relief

ambiguity[55]. Essentially, this states that it is difficult to distinguish be-

tween the shape of a surface h(x) and a transformed version: ah(x)+bx+cy.

This three parameter transform will leave the cast shadows over the surface

identical to that of the original surface, if the light source similarly undergoes

a transformation. Thus, in general, it is very difficult to distinguish shapes

that differ only by a height scaling and an added plane. If we assume that

illuminance flow is observable over the shape, then the height scaling param-

eter (a above) of this transform is disambiguated, while the addition of the

tilted plane is not. Illuminance flow may still have the power to disambiguate

the full bas-relief ambiguity, if we consider the global structure of the flow,

which still remains to be investigated. If one adds a non-frontal plane to the

surfaces we have used in the experiments, the global structure of the flow

clearly changes, even though the average results of using Eq. 5.8 does not

change much. The set of fronto-parallel points change as the plane is added,

which is why the use of the condition ĉ2 tan(θ)2+ ĝ1 = 0, as mentioned above,

might prove useful in future work.
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Summary

This thesis investigates the concept of illuminance flow, which is a novel topic

to the area of computer vision and image analysis. Illuminance flow is a 2D

flow field in the image produced by projecting the light vector into the local

tangential plane of every visible point of a smooth object. The main applica-

tion of illuminance flow is to monocular shape inference. Specifically, given

a single image of an object, what is the shape of the visible surface of the

object? In this sense, shape from illuminance flow is similar to shape from

texture and shape from shading, but fundamentally independent of both.

Illuminance flow is only observable from objects with rough 3D surface tex-

ture. Therefore, much of the work has been on 3D texture, and its special

dependence on light direction, which is shown to be very different from “reg-

ular” 2D texture. Three fourths of the thesis work is focused on the task of

estimating the flow, especially how this can be achieved with the help of the

so-called structure tensors. One fourth of the work deals with the approach

of “shape from illuminance flow”, a subject which is still in its infancy.

To make the material more accessible, the introduction (chapter 1) ad-

dresses underlying topics in alternative and more elaborate ways. The intro-

duction outlines the general scientific view points, modeling and problems. It

has as purpose to fit the work and the approach into a broader context, and

it is hoped that a less technically versed audience will find it interesting and

transparent. The main body of work of this thesis consists of the four journal

publications that has resulted from the work done on the topic of illuminance

flow. These constitute chapters 2-5 that are presented in chronological order.
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Summary

Chapter 2 investigates the use of the structure tensor to estimate illu-

minance flow when the surface meso-scale variation is anisotropic (has a fair

amount of directionality) and the view is fronto-parallel. The structure ten-

sor measures directionality within the image, and for an anisotropic texture,

there is one additional source of image directionality. The theory of illumi-

nance flow estimation by structure tensors is expanded upon, by introducing

the surface based structure tensor. How will the observable, image-based

tensor behave given some directionality as defined by the hidden structure

tensor of the surface? The Hessian-based structure tensor is used to augment

the estimate of the gradient based estimate in a very simple (yet non-linear)

scheme, to improve on the estimate of illuminance flow. This chapter con-

tains the results of rather extensive experiments on both computer simula-

tions (renderings of Gaussian surfaces) as well as real-world textures. The

theory is shown to conform well for reasonable amounts of anisotropy.

An important property of all unsupervised illuminant tilt estimators in

the literature is that they are all strongly correlated to the gradient based

structure tensor. We elaborate on this dependence, and explain how that

makes our theory quite general.

Chapter 3 generalizes the theory of illuminance flow estimation by struc-

ture tensors for both anisotropic texture and oblique viewing. One might be

tempted to handle anisotropy and oblique viewing in the same way (one com-

bined affine transform of an isotropic template pattern, which is reasonable

when modeling 2D texture), but this would be fundamentally wrong for 3D

texture. The theory of chapter 2 is refined in chapter 3 by using matrix

formulations and further compacted by exploiting general properties of the

structure tensor. Theoretical predictions based on the revised theory are

presented, and compared with experimental results on rendered images, and

shown to conform well. The results of this chapter are also applicable to

other areas of computer vision. The structure tensor is used as the state-

of-the-art in affine invariant texture matching (where it is renamed to the

second moment matrix). Our theory (of both chapters 2 and 3) predicts how

the tensor will behave when there is 3D texture present.

Chapter 4 is more practical and takes an engineering approach to the

problem of illuminance flow estimation. We investigate the estimation of il-

luminance flow using standard, state-of-the-art computer vision techniques.

We choose a set of low-level features (Histograms of Oriented Gradient fea-

tures (HOGs)) and in a regression setting we see how well a predictor for

supervised flow estimation can be achieved. Support vector machines, with
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Summary

different kernels, as well as a regular linear ridge regressor are used. We

found that the optimal solution shows close resemblance to the gradient

based structure tensor, for all the regressors used.

The chapter also presents new theoretical results arrived at during this

work, showing in detail how the structure tensor and the HOGs are con-

nected. This relation will benefit affine invariant texture/object matching

and object tracking using HOGs. HOGs are treated (as they should always

be) as crude (yet fast) non-parametric density estimation.

Chapter 5 addresses the issue of shape from illuminance flow. It is

the first attempt at using the flow for recovering the shape of the underlying

surface. The chapter focuses on strictly local shape inference, and shows how

the differential invariants of the flow field can be used for this purpose. In

addition, the global position of the light source can be partly inferred as well,

at least for the experimental surfaces we consider. A simple algorithm for

estimating the second order local shape (the Hessian) is derived and shown

experimentally to perform quite well on simulations of Gaussian surfaces.

Being local, based only on the differential invariants of the flow, and totally

unsupervised one could look at this as a bottom-up approach. More global

and contextual algorithms (i.e. introducing top-down information) can quite

easily be construed, and hopefully will in future research. The properties

and relations derived in chapter 5 will then no doubt be useful.

93



Summary

This thesis investigates the concept of illuminance flow, which is a novel topic

to the area of computer vision and image analysis. Illuminance flow is a 2D

flow field in the image produced by projecting the light vector into the local

tangential plane of every visible point of a smooth object. The main applica-

tion of illuminance flow is to monocular shape inference. Specifically, given

a single image of an object, what is the shape of the visible surface of the

object? In this sense, shape from illuminance flow is similar to shape from

texture and shape from shading, but fundamentally independent of both.

Illuminance flow is only observable from objects with rough 3D surface tex-

ture. Therefore, much of the work has been on 3D texture, and its special

dependence on light direction, which is shown to be very different from “reg-

ular” 2D texture. Three fourths of the thesis work is focused on the task of

estimating the flow, especially how this can be achieved with the help of the

so-called structure tensors. One fourth of the work deals with the approach

of “shape from illuminance flow”, a subject which is still in its infancy.

To make the material more accessible, the introduction (chapter 1) ad-

dresses underlying topics in alternative and more elaborate ways. The intro-

duction outlines the general scientific view points, modeling and problems. It

has as purpose to fit the work and the approach into a broader context, and

it is hoped that a less technically versed audience will find it interesting and

transparent. The main body of work of this thesis consists of the four journal

publications that has resulted from the work done on the topic of illuminance

flow. These constitute chapters 2-5 that are presented in chronological order.
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Samenvatting

Chapter 2 investigates the use of the structure tensor to estimate illu-

minance flow when the surface meso-scale variation is anisotropic (has a fair

amount of directionality) and the view is fronto-parallel. The structure ten-

sor measures directionality within the image, and for an anisotropic texture,

there is one additional source of image directionality. The theory of illumi-

nance flow estimation by structure tensors is expanded upon, by introducing

the surface based structure tensor. How will the observable, image-based

tensor behave given some directionality as defined by the hidden structure

tensor of the surface? The Hessian-based structure tensor is used to augment

the estimate of the gradient based estimate in a very simple (yet non-linear)

scheme, to improve on the estimate of illuminance flow. This chapter con-

tains the results of rather extensive experiments on both computer simula-

tions (renderings of Gaussian surfaces) as well as real-world textures. The

theory is shown to conform well for reasonable amounts of anisotropy.

An important property of all unsupervised illuminant tilt estimators in

the literature is that they are all strongly correlated to the gradient based

structure tensor. We elaborate on this dependence, and explain how that

makes our theory quite general.

Chapter 3 generalizes the theory of illuminance flow estimation by struc-

ture tensors for both anisotropic texture and oblique viewing. One might be

tempted to handle anisotropy and oblique viewing in the same way (one com-

bined affine transform of an isotropic template pattern, which is reasonable

when modeling 2D texture), but this would be fundamentally wrong for 3D

texture. The theory of chapter 2 is refined in chapter 3 by using matrix

formulations and further compacted by exploiting general properties of the

structure tensor. Theoretical predictions based on the revised theory are

presented, and compared with experimental results on rendered images, and

shown to conform well. The results of this chapter are also applicable to

other areas of computer vision. The structure tensor is used as the state-

of-the-art in affine invariant texture matching (where it is renamed to the

second moment matrix). Our theory (of both chapters 2 and 3) predicts how

the tensor will behave when there is 3D texture present.

Chapter 4 is more practical and takes an engineering approach to the

problem of illuminance flow estimation. We investigate the estimation of il-

luminance flow using standard, state-of-the-art computer vision techniques.

We choose a set of low-level features (Histograms of Oriented Gradient fea-

tures (HOGs)) and in a regression setting we see how well a predictor for

supervised flow estimation can be achieved. Support vector machines, with

95



Samenvatting

different kernels, as well as a regular linear ridge regressor are used. We

found that the optimal solution shows close resemblance to the gradient

based structure tensor, for all the regressors used.

The chapter also presents new theoretical results arrived at during this

work, showing in detail how the structure tensor and the HOGs are con-

nected. This relation will benefit affine invariant texture/object matching

and object tracking using HOGs. HOGs are treated (as they should always

be) as crude (yet fast) non-parametric density estimation.

Chapter 5 addresses the issue of shape from illuminance flow. It is

the first attempt at using the flow for recovering the shape of the underlying

surface. The chapter focuses on strictly local shape inference, and shows how

the differential invariants of the flow field can be used for this purpose. In

addition, the global position of the light source can be partly inferred as well,

at least for the experimental surfaces we consider. A simple algorithm for

estimating the second order local shape (the Hessian) is derived and shown

experimentally to perform quite well on simulations of Gaussian surfaces.

Being local, based only on the differential invariants of the flow, and totally

unsupervised one could look at this as a bottom-up approach. More global

and contextual algorithms (i.e. introducing top-down information) can quite

easily be construed, and hopefully will in future research. The properties

and relations derived in chapter 5 will then no doubt be useful.

96



Publications

• S. M. Karlsson, S.C. Pont, J.J. Koenderink, “Illuminance Flow over

Anisotropic Surfaces”. Journal of the Optical Society of America A

25, 282-291 (2008).

• S.M. Karlsson, S.C. Pont, J.J. Koenderink, “Illuminance flow over

anisotropic surfaces with arbitrary viewpoint”. Journal of the Opti-

cal Society of America A 26, 1250-1255 (2009).

• S.M. Karlsson, S.C. Pont, J.J. Koenderink,“Estimation of Illuminance

Flow over Anisotropic Surfaces for Arbitrary Viewpoints”. In: Fron-

tiers in Optics 2008 on CD-ROM, presentation nr FMC4, Optical So-

ciety of America, Washington, DC (2008).

• S.M. Karlsson, S.C. Pont, J.J. Koenderink, A. Zisserman, “Illuminance

Flow Estimation by Regression”. Submitted to International Journal

of Computer Vision (August, 2009).

• S.M. Karlsson, S.C. Pont, J.J. Koenderink, “Local shape from Illu-

minance Flow”. Submitted to Journal of Mathematical Imaging and

Vision (September, 2009).

97



Curriculum Vitae

Stefan Karlsson was born in Stafsinge, Sweden, on the 3rd of September

1978. He studied at Halmstad University, where he got a masters degree

in Computer Systems Engineering with specialization in image analysis in

2005. As a student, he pursued research in vision, real time systems and

image analysis.

His bachelors thesis work was to construct a testbed platform for finger-

print biometrics on a PDA. His master thesis work investigated a set of low

level features, Complex Moments of the Power Spectrum, their interpretation

in terms of structure tensors and application to 2D texture segmentation. Af-

ter his Masters degree, he continued to work as part of an internship at the

Intelligent Systems laboratory with prof. Josef Bigun, in Halmstad.

In October, 2005, he got an appointment as a PhD student at physics of

man group at Utrecht University, under the supervision of Jan Koenderink

and Sylvia Pont.

98



References

[1] R. Dawkins, “The God delusion”, Bantam Press UK (2006).

[2] S. M. Karlsson, J. Bigun, “Multiscale complex moments of the local power
spectrum”, JOSA A 24, 618–625 (2007).

[3] J. Bigun, T. Bigun, K. Nilsson, “Recognition by symmetry derivatives and
the generalized structure tensor”, PAMI 26, 1590–1605 (2004).

[4] J. Bigun, G.H. Granlund, “Optimal orientation detection of linear symme-
try”, ICCV, 433–438 (1987).

[5] M. Chantler, “Photex photometric image database,” Online resource
http://www.macs.hw.ac.uk/texturelab/resources/databases/Photex/index.htm
(October, 2007).

[6] O. Drbohlav, M. Chantler, “Illumination-invariant texture classification us-
ing single training images”, intern. workshop on texture analysis and syn-
thesis, 31–36 (2005).

[7] M. Chantler, “Why illuminant direction is fundamental to texture analysis”,
Vision, Image and Signal Processing 142, 199-206 (1995).

[8] M. Chantler, M. Petrou, A. Penirsche, M. Schmid, G. McGunnigle, “Clas-
sifying surface texture while simultaneously estimating illumination direc-
tion”, IJCV 62, 83–96 (2005).

[9] M. Chantler, G. Delguste, “lluminant-tilt estimation from images of isotropic
texture”, Vision, Image and Signal Processing 144, 213 – 219 (1997).

99



References

[10] J.J. Koenderink, S.C. Pont, “Irradiation direction from texture,” JOSA A
20, 1875–1882 (2003).

[11] S.C. Pont, J.J. Koenderink, “Irradiation orientation from obliquely viewed
texture,” DSSCV workshop, 205–210 (2005).

[12] S. M. Karlsson, S.C. Pont, J.J. Koenderink, “Illuminance flow over
anisotropic surfaces,” JOSA A 25, 282–291 (2008).

[13] S. K. Nayar, M. Oren, “Visual appearance of matte surfaces”, Science
267,1153 – 1156 (1995).

[14] R. Gregory, “Knowledge in perception and illusion”, Phil. Trans. R. Soc.
Lond. B 352. 1121–1128 (1997).

[15] J. P. Sartre, “La Nausee”, Editions Gallimard (1938).

[16] J. Wu, “Rotation invariant classification of 3D surface texture using photo-
metric stereo”, Ph.D. Thesis, Heriot-Watt University (2003).

[17] E.W. Hobson, “The theory of spherical and ellipsoidal harmonics”, Chelsea
Publishing Co. (1955).

[18] J. Schlag, “Fast embossing effects on raster image data”, Academic Press,
Cambridge (1994).

[19] J. F. Blinn, “Simulation of wrinkled surfaces”, SIGGRAPH 12, 286–292
(1978).

[20] R. C. Dubes, A. K. Jain, “Random field models in image analysis”, J. Appl.
Stat. 16, 131–164 (1989).

[21] J. Dong, “Three-dimensional surface texture synthesis”, Ph.D. Thesis,
Heriot-Watt University (2003).

[22] J. J. Koenderink, A. J. van Doorn, K. J. Dana, S. Nayar, “Bidirectional
reflection distribution function of thoroughly pitted surfaces”, IJCV 31,
129–144 (1999).

[23] B. M. ter Haar Romeny, L. Florack, J. J. Koenderink, M. A. Viergever,
“Scale-space: Its natural operators and differential invariants”, IPMI, 239–
255 (1991).

[24] J.J. Koenderink, A.J. van Doorn, “Geometrical modes as a general method
to treat diffuse interreflections in radiometry”, JOSA A 73, 843–850 (1983).

100



References

[25] J.A. Ogilvy, “Wave scattering from rough surfaces”, Reports on Progress in
Physics 50, 1553–1608 (1987).

[26] D. Mahmoud-Ghoneim et al.,“Three dimensional texture analysis in MRI:
A preliminary evaluation in gliomas”, JMRI 21, 983–987 (2003).

[27] C. E. Rasmussen, C. K. I. Williams, “Gaussian processes for machine learn-
ing”, The MIT Press (2006).

[28] A. Pentland, “Fractal-based description of natural scenes”, PAMI 6, 661-764
(1984).

[29] A. Pentland, “Finding the illuminant direction,” JOSA 72,448–455 (1982).

[30] P. Kube, A. Pentland, “On the imaging of fractal surfaces,” PAMI 10, 704–
707 (1988).

[31] A. Pentland, “The visual inference of shape: Computation from local fea-
tures,”, Ph.D. Thesis. (MIT, 1982).

[32] S. Louw, A.M.L. Kappers, J.J. Koenderink, “Haptic detection thresholds
of Gaussian profiles over the whole range of spatial scales”, Experimental
Brain Research 132, 369–374 (2000).

[33] M. Varma, A. Zisserman, “Estimating illumination direction from textured
images,” CVPR, 179–186 (2004).

[34] R. Gohar, Gohar, H. Rahnejat. “Fundamentals of tribology”, Imperial Col-
lege Press (2008).

[35] D. Knill, “Estimating illuminant direction and degree of surface relief”,
JOSA A 7, 759–775 (1990).

[36] Q. Zheng, R. Chellappa, “Estimation of illuminant direction, albedo and
shape from shading” , Physics-Based Vision: Shape Recovery, 39–61, (1992).

[37] Y. Zhang, Y.H. Yang, “Illuminant direction determination for multiple light
sources,” in Proc. of the CVPR, (IEEE, 2000), pp. 269–276.

[38] X. Llado, A. Oliver, M. Petrou, J. Freixenet, J. Marti “Simultaneous surface
texture classification and illumination tilt angle prediction” Brit. Mach. Vis.
Conf. (2003), Norwich.

[39] M. Brooks, B. Horn, “Shape and source from shading”, Proc. of 9th Int.
Joint Conference on Artificial Intelligence, . 932–936 (1985).

101



References

[40] E. Cartan, “La theorie des groupes finis et continus et la geometrie differ-
entielle traitees par la methode du repere mobile”. Gauthier-Villars, Paris
(1937).

[41] N. Dalal, B. Triggs, “Histograms of oriented gradients for human detection,”
CVPR, 886–893 (2005).

[42] D. G. Lowe, “Object recognition from local scale-invariant features,” In
Proc. of ICCV, (IEEE, 1999) pp. 1150–1157.

[43] E. Parzen,“On estimation of a probability density function and mode,” Ann.
Math. Stat. 33, 1065–1076 (1962).

[44] K. V. Mardia, P. E. Jupp, “Directional statistics,” Wiley Series (2000).

[45] K. Mikolajczyk et al., “A comparison of affine region detectors,” IJCV 65,
43–72 (2005).

[46] V. N. Vapnik, “The nature of statistical learning theory,” (Springer, 1995).

[47] V. N. Vapnik, S. Golowich, A. Smola, “Support vector method for mul-
tivariate density estimation,” Advances in Neural Information Processing
Systems 12, 659–665, MIT Press (1999).

[48] M. Aizerman, E. Braverman, L. Rozonoer, “Theoretical foundations of the
potential function method in pattern recognition learning,” Automation and
Remote Control 25, 821–837 (1964).

[49] T. Joachims, “Making large-Scale SVM learning practical,” Advances in ker-
nel methods - support vector learning, (MIT-Press, 1999). Software available
online at “http://svmlight.joachims.org/” (June, 2008).

[50] M. Berry, V. Hannay, “Umbilic points on Gaussian random surfaces,” J.
Phys. A: Math. Gen. 10, 1809–1821 (1977).

[51] M. S. Longuet-Higgins, “The statistical analysis of a random moving sur-
face,” Phil. Trans. R. Soc. A 249, 321–64 (1956).

[52] A. Gershun, “The light field” translated by P. Moon and G. Timoshenko,
J. Math. Phys. 18 51–151 (1939).

[53] D.J. Kriegman, P.N. Belhumeur, “What is the set of images of an object
under all possible illumination conditions?” IJCV 28, 245 – 60 (1998).

102



References

[54] W. Li , C. Wang , D. Xu, B. Luo, Z. Chen, “A study on illumination
invariant face recognition methods based on multiple eigenspaces”. LNCS
3497, 131–136 (2005).

[55] P.N. Belhumeur, D. Kriegman, A. Yuille, “The bas-relief ambiguity,” IJCV
35, 33–44 (1999).

[56] F. E. Nicodemus, J.C. Richmond, J.J. Hsia, I.W. Ginsberg and T. Limperis,
“Geometrical considerations and nomenclature for reflectance”, National
Bureau of Standards (1977).

[57] D. Marr, “Vision: A computational investigation into the human represen-
tation and processing of visual information”, Freeman NY (1982).

103


