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Abstract. In this work-in-progress paper two types of physics-based
models, for accessing elastic and non-elastic air leakage processes, were
evaluated and compared with conventional statistical methods to detect
air leaks in city buses, via a data-driven approach. We have access to
data streamed from a pressure sensor located in the air tanks of a few
city buses, during their daily operations. The air tank in these buses
supplies compressed air to drive various components, e.g. air brake, sus-
pension, doors, gearbox, etc. We fitted three physics-based models only
to the leakage segments extracted from the air pressure signal and used
fitted model parameters as expert features for detecting air leaks. Fur-
thermore, statistical moments of these fitted parameters, over predeter-
mined time intervals, were compared to conventional statistical features
on raw pressure values, under a classification setting in discriminating
samples before and after the repair of air leak problems. The result of this
exploratory study, on six air leak cases, shows that the fitted parameters
of the physics-based models are useful for discriminating samples with
air leak faults from the fault-free samples, which were observed right
after the repair was performed to deal with the air leak problem. The
comparison based on ANOVA F-score shows that the proposed features
based on fitted parameters of physics-based models outrank the conven-
tional features. It is observed that features of a non-elastic leakage model
perform the best.

Keywords: Fault detection, Air Leaks, Elastic air leakage model, Non-
elastic air leakage model, Physics-informed machine learning, Explain-
able Predictive Maintenance

1 Introduction

Predictive maintenance enables a cost-effective approach for maintaining indus-
trial equipment and helps ensure high operational performance as well as adher-
ence to safety requirements. Different aspects of monitoring and analysis, such
as fault detection, identification or estimation of remaining useful life, can be
done using data-driven techniques that leverage historical data of the equipment.
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Approaches based on Machine Learning (ML) algorithms have shown promising
performance and were adopted by many industrial applications. Lately, deep
neural networks have became very popular among researchers, however, indus-
trial adoption is somewhat slower; one disadvantage of this approach is that it
needs a great amount of training data (i.e., it is not very data-efficient), with
a representative population including both normal operation data as well as
fault and failure cases. Furthermore, inferences and predictions made with deep
learning methods often lack interpretability and explanations of the decisions
made.

Recently, a new trend has been developing to make ML methods more effec-
tive and data-efficient: to take advantage of models inspired by physics knowledge
[10, 11, 9]. Physics-based models aim to calculate physical parameters from sen-
sor data or outputs of ML models. These calculated parameters are employed
to reduce workload on the ML model while increasing its explainability. This
trend builds on decades-long desire to infuse data-driven reasoning with exist-
ing (often partial) domain knowledge, as opposed to requiring computers to
learn completely from scratch. As a consequence of higher explainability, it is
also easier to use physics-based ML models for enforcing, for example, policies
or regulatory laws [7]. The calculated physics-based parameters can reduce the
complexity of the problem for the ML-based method and hence improve the ef-
ficiency of the whole prognosis system. Another advantage is capability to do
prognosis over an extended period of time, which might not be possible with
purely ML-based methods when training samples come from a limited length of
observation [8].

In the literature, several different approaches to combining ML and physics-
based models have been proposed. One example is reducing the dimensions of the
output space through orthogonal decomposition [9]. Another common approach
is generating extra inputs for the learning method (i.e, virtual sensors) based
on the values of other inputs [5, 3, 2]. A common theme among many works is
the usage of recurrent neural networks (RNNs), including LSTM, which makes
it possible to directly use the differential equations prevalent in physics-based
modeling [10].

The case study presented in this paper focuses on detecting leak-related
faults in a vehicle air system. The vehicle air supply, and the corresponding
distribution system, were designed to provide compressed air to drive various
components, e.g., air brakes, suspension, doors, gearbox, etc. The air pressure
is regulated within a predefined range which is of crucial importance for the
driver since without compressed air the vehicle will not operate. Air leaks in the
system, depending on the severity, may render a lower operation efficiency, and,
in the worst case, compromise the braking system, and thus jeopardize overall
safety. The specific case presented in this study is based on a commercial fleet
of buses, of the same model, driving in city and intercity traffic. Previous work
on predicting air compressor failures in the same fleet by incorporating expert
knowledge, using the charging rate of the air pressure as an expert feature, for
predicting air compressor failures, is available in [4]. The air leak events (the time



Title Suppressed Due to Excessive Length 3

of the occurrences, the types of the leakage, and any additional relevant details)
were inferred from the vehicle service record. The six air leak cases included
in this study have occurred in four buses, during their daily operation. Repairs
were performed in a workshop to deal with the air leak problems. It is crucial
to point out that the information is quite limited, and details such root cause
or fault mode are approximate at best – there is no guarantee that all six cases
exhibit similar symptoms. We have acquired sensor data of three months for
each of these cases, around the repair date, for analysis. Naturally, we label the
samples prior to the repair as faulty, and samples following the repair as healthy,
or fault-free.

In this study, we have investigated the use of two types of physics-based
model, namely elastic and non-elastic air leakage models. They are used to gen-
erate expert features suitable for detecting air leaks. The general idea is to fit
these physical models to the pressure data, during the leakage periods, and esti-
mate the model parameters that correspond to current physical properties. One
particular challenge is that we do not have access to the exact system schematic
design, nor did a dedicated simulator for the underlying physical process of the
air system is available. In earlier work those were typically considered prereq-
uisites for using physics-based techniques. The nature of the six air leaks were
also not available, such as the exact location or type of the air leak. Therefore,
it is not known a priori which physics-based model (e.g., elastic or non-elastic
leakage) they correspond to. Finally, the number of the air leak cases available
is not sufficient to train an effective machine learning model for fault detection
or prognosis.

The contribution of this exploratory study is to evaluate and compare the
usefulness of two relevant physics-based leakage models in detecting real air
leak cases for city buses. The fitted parameters of the physics-based models are
used as expert features, and the performance of these features is evaluated for
discriminating faulty samples from fault-free ones. The results show that, in three
out of the six cases, the fitted parameters are useful for the fault detection task.
Furthermore, it is shown that the statistical features computed using the fitted
parameters of the physics-based models outperform the conventional statistical
features computed directly from the raw sensor data.

2 Background

The air system on-board buses in this fleet consist of the supply system, the
control system, the distribution network, and the end-use components that con-
sume the air for different purposes. A conceptual diagram of the air system in
the city buses investigated in this study was illustrated in Figure 1. Compressed
air flow was generated from the air compressor, and afterward regulated, dry
filtered, and supplied to the air tank, which serves as a reservoir to store and
facilitates the air supply when needed. The air pressure was maintained within a
certain range, normally from 10 to 12 bars, to ensure the air demand of the end-
use components was always met. Whenever the air pressure dropped below the
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Fig. 1: A conceptual diagram of the air system in this study

bottom threshold, the compressor started charging the air into the system until
the upper bound of the pressure level is reached. Through the control system
(e.g., foot brake, valves, buttons, etc.), the operator determines the usage of the
air, to activate different end-use components, e.g., air brake, doors, suspension
bellows, gearbox, etc.

The only observation directly available for monitoring the air system behavior
is the Wet Tank Air Pressure (WTAP), collected via a pressure sensor placed in
the air tank. This data stream was accessed through the vehicle CAN network.
The brake pedal position and selected gear were available as the control signals.
The availability of the control signals varies over different time periods and
buses in the fleet. Unfortunately, the signal indicating the door operation was
not available for these buses. On the other hand, it can be derived, at least with
some level of approximation, from the GPS signal and the vehicle speed. Figure 2
shows the pressure signal in the air tank, and the associated activation of the
end-use components, derived from the control signals.

Air leaks may occur at various locations within the air system; the leakage
mechanism and the cause of it may vary. In this work, we focus on the six
air leak cases: i) bus A had leaks in the pipe and in the air bellow; ii) bus B
had its air regulator replaced due to malfunctioning once it was unable to meet
the operation requirements; iii) after 14 weeks, bus B had reports of leaks in
the air bellows; iv) the fleet operator reported that there was a compressed air
leak in Bus C, and the bus would not start; v) After ten months, bus C was
reported to exhibit leaks in the air bellows; vi) oil and water were found to have
leaked into the air tank through other components in bus D. In this study, we
focus on the two-month period before and after the repair event, and on the air
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Fig. 2: Wet Tank Air Pressure (WTAP) and the corresponding activities of dif-
ferent vehicle components (represented as horizontal bars of various colors).

leakage faults. Samples prior to the repair event were labeled as faulty, and the
subsequent samples after the repair event were labeled as fault-free, i.e., healthy.

3 Method

In this study, since the exact model of the faults is unknown, we analyze three
physics-based models: one non-elastic leakage model, and two variants of elastic
leakage models.

The first step in the proposed approach is to identify the portions of the
data where the system behaves in as simple as possible way. Particularly in
the case of vehicle air system, different components use the air in very different
fashion, and the specific often depend, in quite complex manner, on external
circumstances. Those internal control processes are too complex to model here,
and they often use inputs that are not available in the data collected from CAN
network. Therefore, we have decided to identify segments where none of the end-
usage components are active. In a perfect world, this means WTAP signal should
remain constant during those periods – any change in value can be attributed to
a leak. Moreover, the parameters of any such potential leak are going to be the
most clearly visible, and easiest to estimate. Therefore, the model parameters
were estimated during such “leakage segments” extracted from the air pressure
signal, and statistical features of the fitted parameters were adopted as expert
features for air leak detection.



6 Y. Fan et al.

3.1 Physics-based Air Leakage Models

We take advantage of a formula inspired by the physics of leakage. The formula
of the leak rate [6] of a vessel is defined by:

R = −V
dPv

dt
, (1)

where R is the leak rate, V is the volume of the vessel, Pv is the pressure inside
the vessel, and t represents time. Also, assuming the leak is big enough to have
a non-molecular flow the leak rate can be approximated [1] as:

R = L(Pv − Po), (2)

where L is called “leak size” and is proportional to the area of the leak, and Po

is the pressure outside of the leakage. Equating the two formulas leads to:

−V
dPv

dt
= L(Pv − Po). (3)

Solving the differential equation and assuming L, Po and V are constant, we
obtain:

Pv = k

[
exp

(
−L

V
t

)]
+

LPo

V
. (4)

Since there might be also elastic leaks (e.g., in the seals of the vessel), we sim-
ulate them by assuming that Po can be higher than its actual value. Therefore,
we can re-parameterize the formula to account for a general leak:

Pv = k [exp (−at)] + b (5)

This way one can fit the data to our physics-inspired model simply by estimating
the three parameters: a, b, and k.

An alternative way of modeling elastic leaks is to make the leak size pressure-
dependent. For this purpose, we define:

L = α(Pv − Po)2 (6)

This leads to the following solution to Equation 3:

Pv =
1

α
V t + C

+ Po, (7)

where C is a constant. After re-parametrization we get:

Pv =
1

mt + n
+ Po. (8)

To summarize, in this study we investigate the use of a non-elastic leak-
age model (equation 4) and two elastic leakage models (equations 5 and 8) for
detecting air leak events.
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3.2 Fitting Model Parameters

Conceptually, the Wet Tank Air Pressure signal is affected by all components
within the air system: i) during the charging period the compressor charges the
air into the air tank and raises the pressure; ii) during the air releasing period
the end-use components use the air; iii) and as one would expect, during the
period when none of the components are activated, the pressure changes only
due to air leakage. The air pressure segments without any components in use
were extracted for analysis.

The pressure values are denoted as xi
v,t, where i indicates the i-th segment

Si,τ
v,t it associates to, v and t corresponds to the vehicle and time the value being

collected, and τ denotes a set of the time indices (e.g. τ = {t1, t2, ..., tn}) of the
corresponding leakage segment.All pressure values of the leak segments Si,τ

V,T of
vehicle V over the period T are denoted as XV,T . In this study, T is selected to
be one day period. The parameters θi of the physics-based model fθi are fitted
over each segment Si,τ

v,t , minimizing squared errors between real pressure values
and model prediction:

argmin
θi

∥∥∥∥∥
(∑

t∈τ

fθi(t) − xi
v,t

)∥∥∥∥∥
2

(9)

Fitted model parameters of all segments Si,τ
V,T over time interval T of bus V were

denoted as ΘV,T . For the non-elastic leakage model (equation 4), {k, L
V } are the

model parameters; for the elastic leakage model, {k, a, b} are the parameters for
model equation 5, and {m,n} for model equation 8.

3.3 Computing Statistical Features

A conventional data-driven approach for fault detection would take statistical
features of the raw sensor readings as the input to train a model. In this study,
we investigate the usefulness of the fitted parameter of the three physics-based
models, denoted as Γ (Θv,t), and we compare them against the statistical features
computed on raw sensor readings Γ (Xv,t).

For fitted parameters ΘV,T of the physics-models and the raw pressure val-
ues XV,T collected from one bus V over one day period T , a set of statistical
features Γ (·) were computed, including the arithmetic mean µ, the standard
deviation σ, the 3rd and 4th standardized moments (Skewness µ3

σ3
and Kurtosis

µ4

σ4
), percentiles (the 10-th, 25-th, 50-th, 75-th, 90-th were selected), the entropy,

and the root mean squared (RMS) values 1
|T |
∑

t∈T (xt)
2 (where | · | denotes the

cardinality).
ANOVA F-test was conducted, and the F-score was used for ranking different

types of features. In addition, machine learning models were trained with the
two types of the features, i.e., Γ (Θv,t) and Γ (Xv,t), and the area under the
ROC curve were used for comparing the performance in discriminating the faulty
samples (prior to air leak repair event) from the healthy sample (after repair was
performed and the fault was dealt with).
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4 Results

The results section is organized as follows: i) illustration of fitted physics-based
models on the WTAP air leak segments; ii) visual inspection of fitted parameters
of the physics-based models using box plot, focusing on two air leak cases; iii)
comparing histograms of fitted parameters between the healthy and the faulty
populations; iv) the ranking of the features with ANOVA F-score, and compar-
ison of the area under the ROC curve.

Figure. 3 shows three example air leak segments and the corresponding fit
of the three selected model equations. Since the sensor has a relatively low res-
olution, the pressure values are quantized into the levels shown. The two elastic
models (Eq. 5 and Eq. 8) skew in different directions, while the non-elastic model
behaves, in all three example segments, similarly to a linear model. For the elas-
tic leakage model (equation 5), the parameter k and a corresponds to the leakage
speed of the air pressure, while b corresponds to the offset of the segments; for
the elastic leakage model (equation 8), m and n corresponds to the change in
curvature of the fitted model; the fitting of parameters k and L

V of the non-elastic
leakage model (equation 4), which has a stronger constrain in the offset term
compared to the model equation 5, leads to the term LP0

V dominating over the
exponential decreasing term; therefore the fitted model behaves similarly to a
linear model.

Table. 1 shows a set of box plots summarizing the fitted parameters Θv,t

(of the three selected model equations, in rows) for the two air leak cases (in
columns). The vertical solid lines mark the time of the repair action performed
to fix the air leak fault. It can be observed that there is a clear distinction in
the parameters b of model Eq. 5, as well as m and n of model Eq. 4, between
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Fig. 3: Visual demonstration of the fitted parameters of three different physics-
based models on three example air leak segments.
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the faulty and healthy time periods in “Air Leak Case 2” (left column). It is
also visible, in the right column, that there are obvious distinctions in the fitted
parameter L

V of model Eq. 8 and both parameters (m and n) of model Eq.
4 between the “before” and “after” the repair. Moreover, there are differences
(albeit not obvious) in the model parameters (k and b of model Eq. 5) between
healthy and faulty samples.

Table. 2 illustrates the difference in the distribution of selected statistical
features Γ (Θv,t) between healthy and faulty population. As is shown, there are
obvious distinctions between the distribution of the mean, the RMS, and the
three percentiles values of model parameter k of model Eq. 5, and L

V of model
Eq. 4.

Figure. 4 shows the ranking result of the ANOVA F-test (based on healthy
and faulty samples of all six cases), comparing conventional statistical features
Γ (Xv,t) on the raw data and the statistical features Γ (Θv,t) of physics-inspired
parameters, for all three model equations. The experiment was conducted with
6-fold cross-validation, in a leave-one-out setting, i.e. one failure case (and its cor-
responding three months of data) out of the six cases was left out of the training
set non-repeatedly in each of the 6-fold cross-validation experiments; the error
bars are generated correspondingly with the leave-one-out experiments. It is clear
that overall, across all six air leak cases, most of the fitted parameters of the
elastic model (Eq. 5) outrank the conventional features. Four fitted parameters
of model Eq. 4 were placed in the top five features, while the fitted parameters
of model Eq. 8 scored five features in the top 10 features. These results convinc-
ingly demonstrate the advantage of physics-inspired features over the raw sensor
readings.
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Table 1: Illustration of evolution over time of the physics-based model parameters
for two example air leak cases; the vertical solid lines mark the time of the air
leak repair.
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Table 2: PDF comparison of fitted parameters between “before” (red) and “after”
(blue) air leak faults being treated in workshop (from case 5)
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Γ (Θ) Γ (X)
Model Eq.5 Model Eq.4 Model Eq.8 WTAP

kNN 65.80±10.37 63.00±3.78 58.05±5.71 46.94±10.91
MLP 58.77±10.95 68.78±8.89 60.05±7.23 40.07±15.10

Table 3: Performance (AUC) comparison between using different features for
discriminating faulty samples from fault-free samples, on all failures cases with
6-fold cross-validation.

The preliminary result, presented in Table. 3, of training and testing con-
ventional machine learning models (k-Nearest-Neighbour (kNN) and multi-layer
perception (MLP) classifier), with 6-fold cross-validation, shows that using the
conventional features Γ (Xv,t) is not better than random guesses. The experi-
ment was conducted in the same way as the result presented in Figure. 4. On
the other hand, using the statistical features Γ (Θv,t) on fitted parameters of the
three physical models scored 65.80±10.37 (model Eq. 5 with kNN), 68.78±8.89
(model Eq. 4 with MLP), and 60.05 ± 7.23 (model Eq. 8 with MLP).

5 Conclusion and Future Work

In this study, we are exploring the use of physics-based air leakage models in
generating useful features for detecting air leaks in city buses. We have compared
the proposed physics-model-based features against the conventional ones and
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showed a clear advantage of the proposed features. With the visual inspection
of all box plots, we conclude that, in three out of the six air leak cases, there is
a visible difference in the distribution of fitted parameters Θv,t between samples
before and after the repair treated to the air leak faults. Although the box plot
and histogram showed that there is a visual difference in the distribution of
the features between the two classes (in half of the cases), the AUC indicated
further efforts can be made to improve the performance, e.g. finding a proper
learning setting for detecting the air leaks; further development on improving
the fitting of physics-based air leak models by imposing relevant constraints for
model fitting; exploring the vehicle service records for more air leak cases.

In this paper, only the detection of air leak faults was addressed and pressure
values only during the idle state were used to estimate physical parameters. How-
ever, the air system is rather complicated, and the air pressure in the wet tank
is affected by the usage of the end-use components. Therefore, a wider scope of
this work is to consider the impact of all end-use components in the air system:
design a comprehensive model that takes into account all possible operational
states, i.e., activation associated with all end-use components, with respect to
their physical process; utilizing fitted parameters of the physical models not only
for detecting faults but also for fault isolation and identification, based on explor-
ing the interpretability of the models; incorporating the fitted parameters into
a data-driven fault detection and prognostic framework, utilizing deep learning
methods for higher prediction performance.
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