Publications:Combined Use of Standard and Throat Microphones for Measurement of Acoustic Voice Parameters and Voice Categorization

From ISLAB/CAISR

Do not edit this section

Keep all hand-made modifications below

Title Combined Use of Standard and Throat Microphones for Measurement of Acoustic Voice Parameters and Voice Categorization
Author Virgilijus Uloza and Evaldas Padervinskis and Ingrida Uloziene and Viktoras Saferis and Antanas Verikas
Year 2015
PublicationType Journal Paper
Journal Journal of Voice
HostPublication
Conference
DOI http://dx.doi.org/10.1016/j.jvoice.2014.10.008
Diva url http://hh.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:809936
Abstract Summary: Objective. The aim of the present study was to evaluate the reliability of the measurements of acoustic voice parameters obtained simultaneously using oral and contact (throat) microphones and to investigate utility of combined use of these microphones for voice categorization.Materials and Methods. Voice samples of sustained vowel /a/ obtained from 157 subjects (105 healthy and 52 pathological voices) were recorded in a soundproof booth simultaneously through two microphones: oral AKG Perception 220 microphone (AKG Acoustics, Vienna, Austria) and contact (throat) Triumph PC microphone (Clearer Communications, Inc, Burnaby, Canada) placed on the lamina of thyroid cartilage. Acoustic voice signal data were measured for fundamental frequency, percent of jitter and shimmer, normalized noise energy, signal-to-noise ratio, and harmonic-to-noise ratio using Dr. Speech software (Tiger Electronics, Seattle, WA).Results. The correlations of acoustic voice parameters in vocal performance were statistically significant and strong (r = 0.71–1.0) for the entire functional measurements obtained for the two microphones. When classifying into healthy-pathological voice classes, the oral-shimmer revealed the correct classification rate (CCR) of 75.2% and the throat-jitter revealed CCR of 70.7%. However, combination of both throat and oral microphones allowed identifying a set of three voice parameters: throat-signal-to-noise ratio, oral-shimmer, and oral-normalized noise energy, which provided the CCR of 80.3%.Conclusions. The measurements of acoustic voice parameters using a combination of oral and throat microphones showed to be reliable in clinical settings and demonstrated high CCRs when distinguishing the healthy and pathological voice patient groups. Our study validates the suitability of the throat microphone signal for the task of automatic voice analysis for the purpose of voice screening. Copyright © 2014 The Voice Foundation.