You do not have permission to edit this page, for the following reason:
The action you have requested is limited to users in the group: Users.
Project description (free text)
Give a concise project description. Include:
Music style transfer [1, 5, 6, 7] can be considered as the counterpart of image style transfer [2]. The aim of this thesis project is to develop a system that, given a piece of music in one genre, changes its style into another genre. For example, this transition can be from classical to jazz, e.g. Alla Turca Jazz by Fazıl Say [3], and Bach Jazz such as BWV.1043 by Taro Hakase [4]. The specific type of music style transfer, in this work, is Composition Style Transfer [1, 5], i.e. preserving the identifiable melody contour of the input pieces, while altering some other score features in a meaningful way, i.e. interpretation in other music style/genre. One of the challenges when it comes to study/research music from a scientific perspective is that music is, by nature, very subjective and it is difficult to evaluate the results objectively. In this work, the genre of the music pieces will be evaluated using a trained genre classifier, which discriminates different genres from each other. One approach to address music style transfer is using adversarial deep networks [6]. A generator takes a piece of music in a specific genre as input and tries to generate the transferred version of the same piece in another genre. A discriminator then tries to discern between generated music and real music. This way through adversarial training, the generator will hopefully end up generating a genre-transferred version of the inputs. The generated genre-transferred music can be evaluated using a genre classifier. The mentioned architecture is one way of doing a style transfer.
Summary:
This is a minor edit Watch this page
Cancel
Home
Research
Education
Partners
People
Contact