You do not have permission to edit this page, for the following reason:
The action you have requested is limited to users in the group: Users.
Project description (free text)
Give a concise project description. Include:
Transfer Learning (TL) [1, 2, 11] refers to methods for transferring knowledge learned in one setting (the source domain) to another setting (the target domain) and it is needed in many fields, especially in the application area of machine diagnosis and prognosis. The current industrial approach for machine diagnosis and prognosis usually relies on data acquired in experiments under controlled conditions prior to deployment of the equipment, which might not represent the (operating/environment) conditions after being deployed to the real-world application. Moreover, since industrial systems are not allowed to run until failure (for safety reasons), collecting data that has comprehensive coverage on usages patterns, faults, and equipment deterioration patterns are very challenging. Utilizing available data (including fault and failure cases) from other equipment that shares a similar mechanical structure and/or being operated in a similar way with adaptation will be helpful if done properly. Therefore, machine diagnosis and prognosis need to: (i) adapt to more complex scenarios where unseen degradation patterns and new operating conditions are present (in the testing data); (ii) learn to utilize and transfer knowledge gained from operations of similar equipment/assets. A suitable solution is to apply transfer learning (or domain adaptation) methods, utilize and transfer knowledge between different tasks, e.g. [6], and/or dealing with new conditions/faults, e.g. [10]. As a popular feature-representation-based TL method, Domain Adversarial Neural Networks (DANN) [3, 9] has been applied for fault diagnosis and machine prognosis [4, 5, 6, 7, 8]. The idea is to train a deep neural network for extracting domain-invariant features that has predictive power for the classification/regression tasks. The main objective of this work is to develop a DANN based method, e.g. designing network structure and cost functions, etc., to perform machine diagnosis and prognosis, under transfer learning scenarios. The thesis is expected to address the generality of DANN based approaches in dealing with different types of transfer learning scenarios. The proposed method will be evaluated using simulated data and/or real data from industrial systems.
Summary:
This is a minor edit Watch this page
Cancel
Home
Research
Education
Partners
People
Contact