You do not have permission to edit this page, for the following reason:
The action you have requested is limited to users in the group: Users.
Project description (free text)
Give a concise project description. Include:
Transfer Learning (TL) [1, 2] refers to methods for transferring knowledge learned in one setting (the source domain) to another setting (the target domain) and it is needed in the field of machine diagnostics and prognostics. The current industrial approach for developing machine diagnostic and prognostic methods usually relies on data acquired in experiments under controlled conditions prior to deployment of the equipment. Detecting or predicting failures and estimating machine health in this paradigm assumes that future field data will have a very similar distribution to the experiment data. However, many machines were operated under dynamic environmental conditions and were operated in a variety of ways. This makes the assumption that pre-deployment data and post-deployment data follow a very similar distribution is unlikely to hold. Moreover, since industrial systems are not allowed to run until failure (for safety reasons), collecting data that has comprehensive coverage on various usages patterns and deterioration patterns is very challenging. Therefore, machinery diagnosis and prognosis need to: (i) adapt to more complex scenarios where unseen degradation patterns and new operating conditions are present (in the testing data); (ii) learn to utilize and transfer knowledge gained from operations of similar equipment/assets. A suitable solution is to perform TL, using feature-representation based TL or domain adaptation methods, for transferring knowledge between tasks, e.g. [5], and/or dealing with new conditions/faults, e.g. [9]. Feature-representation based TL and domain adaptation methods aim at discovering meaningful common structures between the source and the target domain, finding transformations that project the source data and the target data into a common latent feature space, which has predictive qualities for solving the target task. The discrepancy of marginal distributions between the source and the target data in the latent feature space is expected to be reduced at the same time. Recently, Domain Adversarial Neural Networks (DANN) [3, 7, 8] has been applied for fault diagnosis and machine prognosis [4, 5, 6, 9]. The idea is to train a deep neural network for extracting domain-invariant features that has predictive power for the classification/regression task. DANN includes a deep feature extractor and a label predictor, which is a standard architecture for performing supervised learning. The unsupervised domain adaptation task is carried out by a domain classifier, which backpropagates gradients for making features domain-invariant. The main objective of this work is to develop a DANN based method, e.g. designing network structure and cost functions, to perform machine diagnostics and prognostics, using multivariate time series data. The proposed method will be evaluated using both simulated data and real data coming from heaving duty vehicles.
Summary:
This is a minor edit Watch this page
Cancel
Home
Research
Education
Partners
People
Contact