Difference between revisions of "Directionality Analysis"

From ISLAB/CAISR
Line 5: Line 5:
 
}}
 
}}
  
text
+
Welcome to this lecture on Directionality Analysis.
  
== Notes ==
 
  
== Teaching Material ==
+
== Part 1: Edges, corners, lines, circles ==
 +
 
 +
=== Teaching Material ===
  
'''Edges, corners, lines, circles'''
 
  
 
Get slides from Google docs (ppt) [https://drive.google.com/open?id=0B95UheoCtOzoQjhxWHhKYlR2WEk&authuser=0 here]
 
Get slides from Google docs (ppt) [https://drive.google.com/open?id=0B95UheoCtOzoQjhxWHhKYlR2WEk&authuser=0 here]
  
'''Structure tensor'''
+
 
 +
=== References and sources ===
 +
 
 +
R. Szeliski, “Computer Vision:  Algorithms and Applications”, Springer 2010
 +
* Sections 4.2.1 (edges), 4.3.2 (Hough)
 +
* Full book available online: http://szeliski.org/Book/
 +
 
 +
 
 +
Simon J.D. Prince, “Computer Vision:  Models, Learning, and Inference”, Cambridge University Press, 2012
 +
* Sections 13.1.3 (edges), 13.2 (Canny, Harris)
 +
* Full book available online: http://www.computervisionmodels.com/
 +
 
 +
 
 +
R. Klette, “Concise Computer Vision”,  Springer, 2014
 +
* Sections 2.3.3, (edges), 2.3.4 (corners), 2.4. (edges), 3.4 (lines and circles)
 +
* Get [https://drive.google.com/open?id=0B95UheoCtOzobnhLXzhfRnNxUnc&authuser=0 chapter 2] and [https://drive.google.com/open?id=0B95UheoCtOzobnhLXzhfRnNxUnc&authuser=0 chapter 3]
 +
 
 +
 
 +
== Part 2: Structure tensor ==
 +
 
 +
=== Teaching Material ===
 +
 
  
 
Get slides from Google docs (ppt) [https://drive.google.com/open?id=0B95UheoCtOzoSXBGbnZjdkZBSm8&authuser=0 here]
 
Get slides from Google docs (ppt) [https://drive.google.com/open?id=0B95UheoCtOzoSXBGbnZjdkZBSm8&authuser=0 here]
  
== Additional Resources ==
+
 
 +
=== References and sources ===
 +
 
 +
 
 +
“Hard” references (full mathematical description):
 +
 
 +
J. Bigun, Vision with Direction, Springer, 2006
 +
* Chapters 10, 11
 +
 
 +
J. Bigun, T. Bigun, K.Nilsson, Recognition by Symmetry Derivatives and the Generalized Structure Tensor, IEEE Trans on Pattern Analysis and Machine Intelligence,  vol. 26, n. 12, December 2004
 +
 
 +
 
 +
A more “soft” source with a light, introductory description:
 +
 
 +
D. Teferi, Recognition and Evaluation by Video Synthesis Methods and Symmetry Features,  PhD Thesis, Chalmers University of Technology, 2009
 +
* Sections 2.4, 5.2

Revision as of 18:28, 7 January 2015

Lane picture.png
Directionality Analysis
Contact: Fernando Alonso-Fernandez

Welcome to this lecture on Directionality Analysis.


Part 1: Edges, corners, lines, circles

Teaching Material

Get slides from Google docs (ppt) here


References and sources

R. Szeliski, “Computer Vision: Algorithms and Applications”, Springer 2010


Simon J.D. Prince, “Computer Vision: Models, Learning, and Inference”, Cambridge University Press, 2012


R. Klette, “Concise Computer Vision”, Springer, 2014

  • Sections 2.3.3, (edges), 2.3.4 (corners), 2.4. (edges), 3.4 (lines and circles)
  • Get chapter 2 and chapter 3


Part 2: Structure tensor

Teaching Material

Get slides from Google docs (ppt) here


References and sources

“Hard” references (full mathematical description):

J. Bigun, Vision with Direction, Springer, 2006

  • Chapters 10, 11

J. Bigun, T. Bigun, K.Nilsson, Recognition by Symmetry Derivatives and the Generalized Structure Tensor, IEEE Trans on Pattern Analysis and Machine Intelligence, vol. 26, n. 12, December 2004


A more “soft” source with a light, introductory description:

D. Teferi, Recognition and Evaluation by Video Synthesis Methods and Symmetry Features, PhD Thesis, Chalmers University of Technology, 2009

  • Sections 2.4, 5.2