Difference between revisions of "Object Tracking and Anticipation"

From ISLAB/CAISR
 
(One intermediate revision by one user not shown)
Line 1: Line 1:
 
{{StudentProjectTemplate
 
{{StudentProjectTemplate
|Summary=The thesis presents an experimental study of different object-tracking and trajectory anticipation algorithms in the context of autonomous driving. The student will analyze how different tracking and anticipation algorithms in scenes with falling snowflakes. Given the detected object bounding boxes, the student will experiment with Kalman Filtering, Extended Kalman Filtering, Particle Filtering, and Deep Learning-based tracking methods. 
+
|Summary=The thesis presents an experimental study of different object-tracking and trajectory anticipation algorithms in the context of autonomous driving.  
 
|Prerequisites=A solid background in Python
 
|Prerequisites=A solid background in Python
 
and Machine Learning.
 
and Machine Learning.

Latest revision as of 11:06, 23 September 2024

Title Object Tracking and Anticipation
Summary The thesis presents an experimental study of different object-tracking and trajectory anticipation algorithms in the context of autonomous driving.
Keywords
TimeFrame
References
Prerequisites A solid background in Python

and Machine Learning.

Author
Supervisor Eren Aksoy
Level Master
Status Open