Difference between revisions of "Publications:An intelligent system for tuning magnetic field of a cathode ray tube deflection yoke"

From ISLAB/CAISR
(Created page with "<div style='display: none'> == Do not edit this section == </div> {{PublicationSetupTemplate|Author=Antanas Verikas, M. Bacauskiene, A. Dosinas, V. Bartkevicius, A. Gelzinis, ...")
 
 
Line 4: Line 4:
 
{{PublicationSetupTemplate|Author=Antanas Verikas, M. Bacauskiene, A. Dosinas, V. Bartkevicius, A. Gelzinis, M. Vaitkunas, A. Lipnickas
 
{{PublicationSetupTemplate|Author=Antanas Verikas, M. Bacauskiene, A. Dosinas, V. Bartkevicius, A. Gelzinis, M. Vaitkunas, A. Lipnickas
 
|PID=237391
 
|PID=237391
|Name=Verikas, Antanas [av] (Högskolan i Halmstad [2804], Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE) [3905], Halmstad Embedded and Intelligent Systems Research (EIS) [3938], Intelligenta system (IS-lab) [3941]);Bacauskiene, M. (Department of Applied Electronics, Kaunas University of Technology, Kaunas, Lithuania);Dosinas, A. (Department of Applied Electronics, Kaunas University of Technology, Kaunas, Lithuania);Bartkevicius, V. (Department of Applied Electronics, Kaunas University of Technology, Kaunas, Lithuania);Gelzinis, A. (Department of Applied Electronics, Kaunas University of Technology, Kaunas, Lithuania);Vaitkunas, M. (Department of Applied Electronics, Kaunas University of Technology, Kaunas, Lithuania);Lipnickas, A. (Department of Applied Electronics, Kaunas University of Technology, Kaunas, Lithuania)
+
|Name=Verikas, Antanas (av) (0000-0003-2185-8973) (Högskolan i Halmstad (2804), Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE) (3905), Halmstad Embedded and Intelligent Systems Research (EIS) (3938), Intelligenta system (IS-lab) (3941));Bacauskiene, M. (Department of Applied Electronics, Kaunas University of Technology, Kaunas, Lithuania);Dosinas, A. (Department of Applied Electronics, Kaunas University of Technology, Kaunas, Lithuania);Bartkevicius, V. (Department of Applied Electronics, Kaunas University of Technology, Kaunas, Lithuania);Gelzinis, A. (Department of Applied Electronics, Kaunas University of Technology, Kaunas, Lithuania);Vaitkunas, M. (Department of Applied Electronics, Kaunas University of Technology, Kaunas, Lithuania);Lipnickas, A. (Department of Applied Electronics, Kaunas University of Technology, Kaunas, Lithuania)
 
|Title=An intelligent system for tuning magnetic field of a cathode ray tube deflection yoke
 
|Title=An intelligent system for tuning magnetic field of a cathode ray tube deflection yoke
 
|PublicationType=Journal Paper
 
|PublicationType=Journal Paper
Line 55: Line 55:
 
|CreatedDate=2006-11-24
 
|CreatedDate=2006-11-24
 
|PublicationDate=2006-11-24
 
|PublicationDate=2006-11-24
|LastUpdated=2014-05-08
+
|LastUpdated=2014-11-10
 
|diva=http://hh.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:237391}}
 
|diva=http://hh.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:237391}}
 
<div style='display: none'>
 
<div style='display: none'>

Latest revision as of 22:42, 30 September 2016

Do not edit this section

Keep all hand-made modifications below

Title An intelligent system for tuning magnetic field of a cathode ray tube deflection yoke
Author Antanas Verikas and M. Bacauskiene and A. Dosinas and V. Bartkevicius and A. Gelzinis and M. Vaitkunas and A. Lipnickas
Year 2003
PublicationType Journal Paper
Journal Knowledge-Based Systems
HostPublication
Conference
DOI http://dx.doi.org/10.1016/S0950-7051(02)00081-3
Diva url http://hh.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:237391
Abstract This short communication concerns identification of the number of magnetic correction shunts and their positions for deflection yoke tuning to correct the misconvergence of colours of a cathode ray tube. The misconvergence of colours is characterised by the distances measured between the traces of red and blue beams. The method proposed consists of two phases, namely, learning and optimisation. In the learning phase, the radial basis function neural network is trained to learn a mapping: correction shunt position→changes in misconvergence. In the optimisation phase, the trained neural network is used to predict changes in misconvergence depending on a correction shunt position. An optimisation procedure based on the predictions returned by the neural net is then executed in order to find the minimal number of correction shunts needed and their positions. During the experimental investigations, 98% of the deflection yokes analysed have been tuned successfully using the technique proposed.