
Embedded Systems Programming - PA8001
http://bit.ly/15mmqf7

Lecture 5

Mohammad Mousavi
m.r.mousavi@hh.se

Center for Research on Embedded Systems
School of Information Science, Computer and Electrical Engineering

Concurrency

struct Params params;

void controller_main() {

int dist, signal;

while(1){

dist = sonar_read();

control(dist,

&signal,

¶ms);

servo_write(signal);

}

}

void decoder_main() {

struct Packet packet;

while(1){

radio_read(&packet);

decode(&packet,¶ms);

}

}

Providing means for two mains to execute concurrently! As if we
had 2 CPUs!

Concurrency

struct Params params;

void controller_main() {

int dist, signal;

while(1){

dist = sonar_read();

control(dist,

&signal,

¶ms);

servo_write(signal);

}

}

void decoder_main() {

struct Packet packet;

while(1){

radio_read(&packet);

decode(&packet,¶ms);

}

}

Providing means for two mains to execute concurrently! As if we
had 2 CPUs!

Concurrent programming

main(){

spawn(decoder_main);

controller_main();

}

Notice that spawn takes a
function as an argument.

spawn: provides an extra
Program Counter and Stack
Pointer

We also need to interleave the
threads.

yield: seizing control to another
thread

Concurrent programming

main(){

spawn(decoder_main);

controller_main();

}

Notice that spawn takes a
function as an argument.

spawn: provides an extra
Program Counter and Stack
Pointer

We also need to interleave the
threads.

yield: seizing control to another
thread

Concurrent programming

main(){

spawn(decoder_main);

controller_main();

}

Notice that spawn takes a
function as an argument.

spawn: provides an extra
Program Counter and Stack
Pointer

We also need to interleave the
threads.

yield: seizing control to another
thread

Concurrent programming

main(){

spawn(decoder_main);

controller_main();

}

Notice that spawn takes a
function as an argument.

spawn: provides an extra
Program Counter and Stack
Pointer

We also need to interleave the
threads.

yield: seizing control to another
thread

Concurrent programming

main(){

spawn(decoder_main);

controller_main();

}

Notice that spawn takes a
function as an argument.

spawn: provides an extra
Program Counter and Stack
Pointer

We also need to interleave the
threads.

yield: seizing control to another
thread

Calling yield()

Explicitly

ld a, r1

ld b, r2

add r, r2

st r2, c

jsr yield

ld c, r0

cmp #37, r0

ble label34

...

yield:

sub #2, sp

...

mov #0, r0

rts

Calling yield()

Explicitly

ld a, r1

ld b, r2

add r, r2

st r2, c

jsr yield

ld c, r0

cmp #37, r0

ble label34

...

yield:

sub #2, sp

...

mov #0, r0

rts

Calling yield()

Implicitly

ld a, r1

ld b, r2

add r, r2

st r2, c

←− Interrupt on pin 3!

ld c, r0

cmp #37, r0

ble label34

...

vector_3:

push r0-r2

jsr yield

pop r0-r2

rti

yield:

sub #2, sp

...

mov #0, r0

rts

Calling yield()

Implicitly

ld a, r1

ld b, r2

add r, r2

st r2, c

←− Interrupt on pin 3!

ld c, r0

cmp #37, r0

ble label34

...

vector_3:

push r0-r2

jsr yield

pop r0-r2

rti

yield:

sub #2, sp

...

mov #0, r0

rts

Calling yield()

Implicitly

ld a, r1

ld b, r2

add r, r2

st r2, c

←− Interrupt on pin 3!

ld c, r0

cmp #37, r0

ble label34

...

vector_3:

push r0-r2

jsr yield

pop r0-r2

rti

yield:

sub #2, sp

...

mov #0, r0

rts

Calling yield()

Implicitly

ld a, r1

ld b, r2

add r, r2

st r2, c

←− Interrupt on pin 3!

ld c, r0

cmp #37, r0

ble label34

...

vector_3:

push r0-r2

jsr yield

pop r0-r2

rti

yield:

sub #2, sp

...

mov #0, r0

rts

Installing interrupt handlers

#include<avr/interrupt.h>

...

ISR(interrupt_name){

...

// code as in a function body!

...

}

Preventing interrupts in avr-gcc

cli();

// ... code that must not be interrupted ...

sei();

Installing interrupt handlers

#include<avr/interrupt.h>

...

ISR(interrupt_name){

...

// code as in a function body!

...

}

Preventing interrupts in avr-gcc

cli();

// ... code that must not be interrupted ...

sei();

Preventing interrupts

Why should we consider disabling interrupts? What parts of the
program should be protected?

The critical section problem

What if params is read (by the controller) at the same time as it is
written (by the decoder)?

I.e., what if the scheduler interleaves read and write instructions
from the controller and the decoder?

Mutual exclusion: a central issues in concurrency.

The critical section problem

What if params is read (by the controller) at the same time as it is
written (by the decoder)?

I.e., what if the scheduler interleaves read and write instructions
from the controller and the decoder?

Mutual exclusion: a central issues in concurrency.

The critical section problem

What if params is read (by the controller) at the same time as it is
written (by the decoder)?

I.e., what if the scheduler interleaves read and write instructions
from the controller and the decoder?

Mutual exclusion: a central issues in concurrency.

Our embedded system

struct Params p;

while(1){

...

p.minDistance = e1;

p.maxSpeed = e2;

}

while(1){

local_minD = p.minDistance;

local_maxS = p.maxSpeed;

...

}

Possible interleaving

p.minDistance = 1;

p.maxSpeed = 1;

local_minD = 1;

p.minDistance = 200;

p.maxSpeed = 150;

local_maxS = 150

Our embedded system

struct Params p;

while(1){

...

p.minDistance = e1;

p.maxSpeed = e2;

}

while(1){

local_minD = p.minDistance;

local_maxS = p.maxSpeed;

...

}

Possible interleaving

p.minDistance = 1;

p.maxSpeed = 1;

local_minD = 1;

p.minDistance = 200;

p.maxSpeed = 150;

local_maxS = 150

The classical solution

Apply an access protocol to the critical sections that ensures
mutual exclusion

Require that all parties follow the protocol

Access protocols are realized by means of a shared datastructure
known as a mutex or a lock.

The classical solution

Apply an access protocol to the critical sections that ensures
mutual exclusion

Require that all parties follow the protocol

Access protocols are realized by means of a shared datastructure
known as a mutex or a lock.

The classical solution

Apply an access protocol to the critical sections that ensures
mutual exclusion

Require that all parties follow the protocol

Access protocols are realized by means of a shared datastructure
known as a mutex or a lock.

Mutual exclusion

struct Params p;

mutex m;

while(1){

...

lock (&m);

p.minDistance = e1;

p.maxSpeed = e2;

unlock (&m);

}

while(1){

lock (&m);

local_minD = p.minDistance;

local_maxS = p.maxSpeed;

unlock (&m);

...

}

The datatype mutex and the operations lock and unlock are
defined in the kernel: each mutex has a queue of threads that are
not in the ready queue. The operations move threads to and from
the ready queue!

What we have learned . . .

I We know how to read and write to I/O device registers

I We know how to run several computations in parallel by
time-slicing the CPU

I We know how to protect critical sections by means of a mutex

But . . .

What we have learned . . .

I We know how to read and write to I/O device registers

I We know how to run several computations in parallel by
time-slicing the CPU

I We know how to protect critical sections by means of a mutex

But . . .

What we have learned . . .

I We know how to read and write to I/O device registers

I We know how to run several computations in parallel by
time-slicing the CPU

I We know how to protect critical sections by means of a mutex

But . . .

What we have learned . . .

I We know how to read and write to I/O device registers

I We know how to run several computations in parallel by
time-slicing the CPU

I We know how to protect critical sections by means of a mutex

But . . .

What we have learned . . .

I We know how to read and write to I/O device registers

I We know how to run several computations in parallel by
time-slicing the CPU

I We know how to protect critical sections by means of a mutex

But . . .

Still not satisfied!

void controller_main() {

int dist, signal;

while(1){

dist = sonar_read();

control(dist,

&signal,

¶ms);

servo_write(signal);

}

}

void decoder_main() {

struct Packet packet;

while(1){

radio_read(&packet);

decode(&packet,¶ms);

}

}

←− Time slicing −→

Each thread gets half of the CPU cycles, irrespective of whether it
is waiting or computing !

Still not satisfied!

void controller_main() {

int dist, signal;

while(1){

dist = sonar_read();

control(dist,

&signal,

¶ms);

servo_write(signal);

}

}

void decoder_main() {

struct Packet packet;

while(1){

radio_read(&packet);

decode(&packet,¶ms);

}

}

←− Time slicing −→

Each thread gets half of the CPU cycles, irrespective of whether it
is waiting or computing !

Consequence 1

t(ms)

A A A

B B B

Say each thread gets Tms for execution, both waiting and
computing!

Consequence 1

AA

t(ms)

BBB

A

Say that an event that A is waiting for occurs now . . .

Consequence 1

AAA

t(ms)

BBB

. . . it will not be noticed until now!

Consequence 1

With N threads in the system, each getting Tms for execution, a
status change might have to wait up to T*(N-1)ms to be noticed!

Consequence 2

Average time between input events

Average time between input events

Thread B

Thread ABusy WaitCompute

AA BBBBBBBBB AAAAAAAA

Busy waiting makes waiting indistinguishable from computing.
Thread A cannot keep up with event rate!

Busy waiting and Time slicing

Minus . . .

1. Not a satisfactory technique for input synchronization if the
system must meet real-time constraints!

2. Not a satisfactory technique for a system that is battery
driven: 100% CPU cycle usage (100% power usage!).

Could we do otherwise?
An input synchronization technique that does not require the
receiver of data to actively ask whether data has arrived.

Busy waiting and Time slicing

Minus . . .

1. Not a satisfactory technique for input synchronization if the
system must meet real-time constraints!

2. Not a satisfactory technique for a system that is battery
driven: 100% CPU cycle usage (100% power usage!).

Could we do otherwise?
An input synchronization technique that does not require the
receiver of data to actively ask whether data has arrived.

Busy waiting and Time slicing

Minus . . .

1. Not a satisfactory technique for input synchronization if the
system must meet real-time constraints!

2. Not a satisfactory technique for a system that is battery
driven: 100% CPU cycle usage (100% power usage!).

Could we do otherwise?
An input synchronization technique that does not require the
receiver of data to actively ask whether data has arrived.

Busy waiting and Time slicing

Minus . . .

1. Not a satisfactory technique for input synchronization if the
system must meet real-time constraints!

2. Not a satisfactory technique for a system that is battery
driven: 100% CPU cycle usage (100% power usage!).

Could we do otherwise?
An input synchronization technique that does not require the
receiver of data to actively ask whether data has arrived.

The naked computer – a mismatch

writereadwrite
read

PortRAMPort

CPU

The naked computer – alternative

Port initiated "write" writereadwrite

PortRAMPort

CPU

An analogy

You are expecting delivery of your latest web-shop purchase

Busy waiting

Go to the post-office again and
again to check if the delivery has
arrived.

Reacting to an interrupt

Receive a note in your mailbox
that the goods can be picked up.

The CPU reacts to an interrupt signal by executing a designated
ISR (interrupt service routine)

This has consequences for the way we structure programs. They
become inside-out!

An analogy

You are expecting delivery of your latest web-shop purchase

Busy waiting

Go to the post-office again and
again to check if the delivery has
arrived.

Reacting to an interrupt

Receive a note in your mailbox
that the goods can be picked up.

The CPU reacts to an interrupt signal by executing a designated
ISR (interrupt service routine)

This has consequences for the way we structure programs. They
become inside-out!

An analogy

You are expecting delivery of your latest web-shop purchase

Busy waiting

Go to the post-office again and
again to check if the delivery has
arrived.

Reacting to an interrupt

Receive a note in your mailbox
that the goods can be picked up.

The CPU reacts to an interrupt signal by executing a designated
ISR (interrupt service routine)

This has consequences for the way we structure programs. They
become inside-out!

An analogy

You are expecting delivery of your latest web-shop purchase

Busy waiting

Go to the post-office again and
again to check if the delivery has
arrived.

Reacting to an interrupt

Receive a note in your mailbox
that the goods can be picked up.

The CPU reacts to an interrupt signal by executing a designated
ISR (interrupt service routine)

This has consequences for the way we structure programs. They
become inside-out!

An analogy

You are expecting delivery of your latest web-shop purchase

Busy waiting

Go to the post-office again and
again to check if the delivery has
arrived.

Reacting to an interrupt

Receive a note in your mailbox
that the goods can be picked up.

The CPU reacts to an interrupt signal by executing a designated
ISR (interrupt service routine)

This has consequences for the way we structure programs. They
become inside-out!

ISRs vs functions

Busy waiting

We defined functions like
sonar read that can be called in
the program. The CPU decides
when to call the function:

while(1){

sonar_read();

control();

}

Input detection = the exit from
the busy waiting fragment (a
function return)

Reacting

We define ISRs. These are not
called from the program, but the
code is executed when an
interrupt occurs:

ISR(SIG_SONAR){

control();

}

Input detection = invocation of
the ISR (as if the hardware did a
function call)

ISRs vs functions

Busy waiting

We defined functions like
sonar read that can be called in
the program. The CPU decides
when to call the function:

while(1){

sonar_read();

control();

}

Input detection = the exit from
the busy waiting fragment (a
function return)

Reacting

We define ISRs. These are not
called from the program, but the
code is executed when an
interrupt occurs:

ISR(SIG_SONAR){

control();

}

Input detection = invocation of
the ISR (as if the hardware did a
function call)

ISRs vs functions

Busy waiting

We defined functions like
sonar read that can be called in
the program. The CPU decides
when to call the function:

while(1){

sonar_read();

control();

}

Input detection = the exit from
the busy waiting fragment (a
function return)

Reacting

We define ISRs. These are not
called from the program, but the
code is executed when an
interrupt occurs:

ISR(SIG_SONAR){

control();

}

Input detection = invocation of
the ISR (as if the hardware did a
function call)

ISRs vs functions

Busy waiting

We defined functions like
sonar read that can be called in
the program. The CPU decides
when to call the function:

while(1){

sonar_read();

control();

}

Input detection = the exit from
the busy waiting fragment (a
function return)

Reacting

We define ISRs. These are not
called from the program, but the
code is executed when an
interrupt occurs:

ISR(SIG_SONAR){

control();

}

Input detection = invocation of
the ISR (as if the hardware did a
function call)

ISRs vs functions

Busy waiting

We defined functions like
sonar read that can be called in
the program. The CPU decides
when to call the function:

while(1){

sonar_read();

control();

}

Input detection = the exit from
the busy waiting fragment (a
function return)

Reacting

We define ISRs. These are not
called from the program, but the
code is executed when an
interrupt occurs:

ISR(SIG_SONAR){

control();

}

Input detection = invocation of
the ISR (as if the hardware did a
function call)

Two ways of organizing programs

CPU centric
One thread of control that runs
from start to stop (or forever)
reading and writing data as it
goes.

Reacting CPU

A set of code fragments that
constitute the reactions to
recognized events.

The main part of the course from now on will focus on the reactive
view.

Two ways of organizing programs

CPU centric
One thread of control that runs
from start to stop (or forever)
reading and writing data as it
goes.

Reacting CPU

A set of code fragments that
constitute the reactions to
recognized events.

The main part of the course from now on will focus on the reactive
view.

Two ways of organizing programs

CPU centric
One thread of control that runs
from start to stop (or forever)
reading and writing data as it
goes.

Reacting CPU

A set of code fragments that
constitute the reactions to
recognized events.

The main part of the course from now on will focus on the reactive
view.

Two ways of organizing programs

CPU centric
One thread of control that runs
from start to stop (or forever)
reading and writing data as it
goes.

Reacting CPU

A set of code fragments that
constitute the reactions to
recognized events.

The main part of the course from now on will focus on the reactive
view.

The reactive embedded system

Application

Sensor A

Sensor

Sensor

ActuatorPort

Port

Port

Sensor B

The reactive embedded system

Port

Port

Application

app

driver

driver

Sensor B

Sensor A

Sensor

Sensor

ActuatorPort

Reactive Objects

Boxes
Represent software or hardware reactive objects that:

I Maintain an internal state (variables, registers, etc)

I Provide a set of methods as reactions to external events
(ISRs, etc)

I Simply rest between reactions!

Arrows
Represent event or signal or message flow between objects that can
be either

I asynchronous
I synchronous

Reactive Objects

Boxes
Represent software or hardware reactive objects that:

I Maintain an internal state (variables, registers, etc)

I Provide a set of methods as reactions to external events
(ISRs, etc)

I Simply rest between reactions!

Arrows
Represent event or signal or message flow between objects that can
be either

I asynchronous
I synchronous

Reactive Objects

Boxes
Represent software or hardware reactive objects that:

I Maintain an internal state (variables, registers, etc)

I Provide a set of methods as reactions to external events
(ISRs, etc)

I Simply rest between reactions!

Arrows
Represent event or signal or message flow between objects that can
be either

I asynchronous
I synchronous

Reactive Objects

Boxes
Represent software or hardware reactive objects that:

I Maintain an internal state (variables, registers, etc)

I Provide a set of methods as reactions to external events
(ISRs, etc)

I Simply rest between reactions!

Arrows
Represent event or signal or message flow between objects that can
be either

I asynchronous

I synchronous

Hardware objects

Hardware devices are reactive objects

A black box that does nothing unless stimulated by external events.

Serial port - state

Internal registers

Serial port - stimuli

I Signal change

I Bit pattern received

I Clock pulse

Serial port - emissions

I Signal change

I Interrupt signal

Hardware objects

Hardware devices are reactive objects

A black box that does nothing unless stimulated by external events.

Serial port - state

Internal registers

Serial port - stimuli

I Signal change

I Bit pattern received

I Clock pulse

Serial port - emissions

I Signal change

I Interrupt signal

Hardware objects

Hardware devices are reactive objects

A black box that does nothing unless stimulated by external events.

Serial port - state

Internal registers

Serial port - stimuli

I Signal change

I Bit pattern received

I Clock pulse

Serial port - emissions

I Signal change

I Interrupt signal

Hardware objects

Hardware devices are reactive objects

A black box that does nothing unless stimulated by external events.

Serial port - state

Internal registers

Serial port - stimuli

I Signal change

I Bit pattern received

I Clock pulse

Serial port - emissions

I Signal change

I Interrupt signal

Software objects

We would like to regard software objects as reactive objects . . .

The Counter example

class Counter{

int x;

Counter(){x=0;}

void inc(){x++;}

int read(){return x;}

void reset(){x=0;}

void show(){

System.out.print(x);}

}

Counter state
x

Counter - stimuli
inc(), read(),

reset(), show()

Counter - emissions
print() to the object
System.out

Software objects

We would like to regard software objects as reactive objects . . .

The Counter example

class Counter{

int x;

Counter(){x=0;}

void inc(){x++;}

int read(){return x;}

void reset(){x=0;}

void show(){

System.out.print(x);}

}

Counter state
x

Counter - stimuli
inc(), read(),

reset(), show()

Counter - emissions
print() to the object
System.out

Software objects

We would like to regard software objects as reactive objects . . .

The Counter example

class Counter{

int x;

Counter(){x=0;}

void inc(){x++;}

int read(){return x;}

void reset(){x=0;}

void show(){

System.out.print(x);}

}

Counter state
x

Counter - stimuli
inc(), read(),

reset(), show()

Counter - emissions
print() to the object
System.out

Software objects

We would like to regard software objects as reactive objects . . .

The Counter example

class Counter{

int x;

Counter(){x=0;}

void inc(){x++;}

int read(){return x;}

void reset(){x=0;}

void show(){

System.out.print(x);}

}

Counter state
x

Counter - stimuli
inc(), read(),

reset(), show()

Counter - emissions
print() to the object
System.out

Software objects

We would like to regard software objects as reactive objects . . .

The Counter example

class Counter{

int x;

Counter(){x=0;}

void inc(){x++;}

int read(){return x;}

void reset(){x=0;}

void show(){

System.out.print(x);}

}

Counter state
x

Counter - stimuli
inc(), read(),

reset(), show()

Counter - emissions
print() to the object
System.out

Back to our running example

data signals
Servo

Radio
packets

Input Output

Input

Object

Distance

Sonar

Params

Controller

Decoder

Control

All messages/events are asynchronous! Either generated by the
CPU or by the sonar hw or by the communication hardware.

Reactive Objects

Object Oriented Programming?

I Objects have local state

I Objects export methods

I Objects communicate by sending messages

I Objects rest between method invocation

Examples of intuitive objects

People, cars, molecules, . . .

Bonus
Principles and methodologies from OOP become applicable to
embedded, event-driven and concurrent systems!

Reactive Objects

Object Oriented Programming?

I Objects have local state

I Objects export methods

I Objects communicate by sending messages

I Objects rest between method invocation

Examples of intuitive objects

People, cars, molecules, . . .

Bonus
Principles and methodologies from OOP become applicable to
embedded, event-driven and concurrent systems!

Reactive Objects

Object Oriented Programming?

I Objects have local state

I Objects export methods

I Objects communicate by sending messages

I Objects rest between method invocation

Examples of intuitive objects

People, cars, molecules, . . .

Bonus
Principles and methodologies from OOP become applicable to
embedded, event-driven and concurrent systems!

Reactive Objects

Object Oriented Programming?

I Objects have local state

I Objects export methods

I Objects communicate by sending messages

I Objects rest between method invocation

Examples of intuitive objects

People, cars, molecules, . . .

Bonus
Principles and methodologies from OOP become applicable to
embedded, event-driven and concurrent systems!

Reactive Objects

Object Oriented Programming?

I Objects have local state

I Objects export methods

I Objects communicate by sending messages

I Objects rest between method invocation

Examples of intuitive objects

People, cars, molecules, . . .

Bonus
Principles and methodologies from OOP become applicable to
embedded, event-driven and concurrent systems!

Reactive Objects

Object Oriented Programming?

I Objects have local state

I Objects export methods

I Objects communicate by sending messages

I Objects rest between method invocation

Examples of intuitive objects

People, cars, molecules, . . .

Bonus
Principles and methodologies from OOP become applicable to
embedded, event-driven and concurrent systems!

Reactive Objects

Object Oriented Programming?

I Objects have local state

I Objects export methods

I Objects communicate by sending messages

I Objects rest between method invocation

Examples of intuitive objects

People, cars, molecules, . . .

Bonus
Principles and methodologies from OOP become applicable to
embedded, event-driven and concurrent systems!

Java? C++?

The Counter example again

class Counter{

int x;

Counter(){x=0;}

void inc(){x++;}

int read(){return x;}

void reset(){x=0;}

}

One thread

public static void main(){

Counter c = new Counter();

c.inc();

System.out.println(c.read());

}

Creating a new object just creates a passive piece of storage! Not
a thread of control!

Other threads that use the same counter are sharing the state!

Counting visitors to a park

Java? C++?

The Counter example again

class Counter{

int x;

Counter(){x=0;}

void inc(){x++;}

int read(){return x;}

void reset(){x=0;}

}

One thread

public static void main(){

Counter c = new Counter();

c.inc();

System.out.println(c.read());

}

Creating a new object just creates a passive piece of storage! Not
a thread of control!

Other threads that use the same counter are sharing the state!

Counting visitors to a park

Java? C++?

The Counter example again

class Counter{

int x;

Counter(){x=0;}

void inc(){x++;}

int read(){return x;}

void reset(){x=0;}

}

One thread

public static void main(){

Counter c = new Counter();

c.inc();

System.out.println(c.read());

}

Creating a new object just creates a passive piece of storage! Not
a thread of control!

Other threads that use the same counter are sharing the state!

Counting visitors to a park

Java? C++?

The Counter example again

class Counter{

int x;

Counter(){x=0;}

void inc(){x++;}

int read(){return x;}

void reset(){x=0;}

}

One thread

public static void main(){

Counter c = new Counter();

c.inc();

System.out.println(c.read());

}

Creating a new object just creates a passive piece of storage! Not
a thread of control!

Other threads that use the same counter are sharing the state!

Counting visitors to a park

Java? C++?

The Counter example again

class Counter{

int x;

Counter(){x=0;}

void inc(){x++;}

int read(){return x;}

void reset(){x=0;}

}

One thread

public static void main(){

Counter c = new Counter();

c.inc();

System.out.println(c.read());

}

Creating a new object just creates a passive piece of storage! Not
a thread of control!

Other threads that use the same counter are sharing the state!

Counting visitors to a park

OO and Concurrency

OO Languages:

I An object is a passive piece
of global state

I A method is a function

I Sending a message is calling
a function

Our model says

I An object is an independent
process with local state

I A method is a process
fragment

I Sending a message is
interprocess communication

This is one of the reasons why we choose to build our own kernel
supporting reactive objects and programming in C.

OO and Concurrency

OO Languages:

I An object is a passive piece
of global state

I A method is a function

I Sending a message is calling
a function

Our model says

I An object is an independent
process with local state

I A method is a process
fragment

I Sending a message is
interprocess communication

This is one of the reasons why we choose to build our own kernel
supporting reactive objects and programming in C.

OO and Concurrency

OO Languages:

I An object is a passive piece
of global state

I A method is a function

I Sending a message is calling
a function

Our model says

I An object is an independent
process with local state

I A method is a process
fragment

I Sending a message is
interprocess communication

This is one of the reasons why we choose to build our own kernel
supporting reactive objects and programming in C.

OO and Concurrency

OO Languages:

I An object is a passive piece
of global state

I A method is a function

I Sending a message is calling
a function

Our model says

I An object is an independent
process with local state

I A method is a process
fragment

I Sending a message is
interprocess communication

This is one of the reasons why we choose to build our own kernel
supporting reactive objects and programming in C.

OO and Concurrency

OO Languages:

I An object is a passive piece
of global state

I A method is a function

I Sending a message is calling
a function

Our model says

I An object is an independent
process with local state

I A method is a process
fragment

I Sending a message is
interprocess communication

This is one of the reasons why we choose to build our own kernel
supporting reactive objects and programming in C.

OO and Concurrency

OO Languages:

I An object is a passive piece
of global state

I A method is a function

I Sending a message is calling
a function

Our model says

I An object is an independent
process with local state

I A method is a process
fragment

I Sending a message is
interprocess communication

This is one of the reasons why we choose to build our own kernel
supporting reactive objects and programming in C.

OO and Concurrency

OO Languages:

I An object is a passive piece
of global state

I A method is a function

I Sending a message is calling
a function

Our model says

I An object is an independent
process with local state

I A method is a process
fragment

I Sending a message is
interprocess communication

This is one of the reasons why we choose to build our own kernel
supporting reactive objects and programming in C.

OO and Concurrency

OO Languages:

I An object is a passive piece
of global state

I A method is a function

I Sending a message is calling
a function

Our model says

I An object is an independent
process with local state

I A method is a process
fragment

I Sending a message is
interprocess communication

This is one of the reasons why we choose to build our own kernel
supporting reactive objects and programming in C.

Reactive objects in C

We will need to provide ways for

I Create reactive objects

I Declare protected local state
I Receive messages

I synchronously
I asynchronously

I Bridge the hardware/software divide (run ISRs)

I Schedule a system of reactive software objects.

This will be the contents of a kernel called TinyTimber that we
will learn how to design and use!

Reactive objects in C

We will need to provide ways for

I Create reactive objects

I Declare protected local state
I Receive messages

I synchronously
I asynchronously

I Bridge the hardware/software divide (run ISRs)

I Schedule a system of reactive software objects.

This will be the contents of a kernel called TinyTimber that we
will learn how to design and use!

Reactive objects in C

We will need to provide ways for

I Create reactive objects

I Declare protected local state
I Receive messages

I synchronously
I asynchronously

I Bridge the hardware/software divide (run ISRs)

I Schedule a system of reactive software objects.

This will be the contents of a kernel called TinyTimber that we
will learn how to design and use!

Reactive objects in C

We will need to provide ways for

I Create reactive objects

I Declare protected local state
I Receive messages

I synchronously
I asynchronously

I Bridge the hardware/software divide (run ISRs)

I Schedule a system of reactive software objects.

This will be the contents of a kernel called TinyTimber that we
will learn how to design and use!

Reactive objects in C

We will need to provide ways for

I Create reactive objects

I Declare protected local state
I Receive messages

I synchronously
I asynchronously

I Bridge the hardware/software divide (run ISRs)

I Schedule a system of reactive software objects.

This will be the contents of a kernel called TinyTimber that we
will learn how to design and use!

Reactive objects in C

We will need to provide ways for

I Create reactive objects

I Declare protected local state
I Receive messages

I synchronously
I asynchronously

I Bridge the hardware/software divide (run ISRs)

I Schedule a system of reactive software objects.

This will be the contents of a kernel called TinyTimber that we
will learn how to design and use!

Reactive objects in C

We will need to provide ways for

I Create reactive objects

I Declare protected local state
I Receive messages

I synchronously
I asynchronously

I Bridge the hardware/software divide (run ISRs)

I Schedule a system of reactive software objects.

This will be the contents of a kernel called TinyTimber that we
will learn how to design and use!

Hardware objects

Black boxes that do nothing unless stimulated by external events.

Class
The kind or type or model of a
circuit.

Instance
A particular circuit on a particular
board.

State
Internal register status or logic
status of an object instance.

Provided interface
The set of pins on a circuit that
recognize signals.

Required interface

The set of pins on a circuit that
generate signals.

Method call
To raise an input signal and wait
for a response (synchronous) or
just continue (asynchronous).

Hardware objects

Black boxes that do nothing unless stimulated by external events.

Class
The kind or type or model of a
circuit.

Instance
A particular circuit on a particular
board.

State
Internal register status or logic
status of an object instance.

Provided interface
The set of pins on a circuit that
recognize signals.

Required interface

The set of pins on a circuit that
generate signals.

Method call
To raise an input signal and wait
for a response (synchronous) or
just continue (asynchronous).

Hardware objects

Black boxes that do nothing unless stimulated by external events.

Class
The kind or type or model of a
circuit.

Instance
A particular circuit on a particular
board.

State
Internal register status or logic
status of an object instance.

Provided interface
The set of pins on a circuit that
recognize signals.

Required interface

The set of pins on a circuit that
generate signals.

Method call
To raise an input signal and wait
for a response (synchronous) or
just continue (asynchronous).

Hardware objects

Black boxes that do nothing unless stimulated by external events.

Class
The kind or type or model of a
circuit.

Instance
A particular circuit on a particular
board.

State
Internal register status or logic
status of an object instance.

Provided interface
The set of pins on a circuit that
recognize signals.

Required interface

The set of pins on a circuit that
generate signals.

Method call
To raise an input signal and wait
for a response (synchronous) or
just continue (asynchronous).

Hardware objects

Black boxes that do nothing unless stimulated by external events.

Class
The kind or type or model of a
circuit.

Instance
A particular circuit on a particular
board.

State
Internal register status or logic
status of an object instance.

Provided interface
The set of pins on a circuit that
recognize signals.

Required interface

The set of pins on a circuit that
generate signals.

Method call
To raise an input signal and wait
for a response (synchronous) or
just continue (asynchronous).

Hardware objects

Black boxes that do nothing unless stimulated by external events.

Class
The kind or type or model of a
circuit.

Instance
A particular circuit on a particular
board.

State
Internal register status or logic
status of an object instance.

Provided interface
The set of pins on a circuit that
recognize signals.

Required interface

The set of pins on a circuit that
generate signals.

Method call
To raise an input signal and wait
for a response (synchronous) or
just continue (asynchronous).

Hardware objects

Black boxes that do nothing unless stimulated by external events.

Class
The kind or type or model of a
circuit.

Instance
A particular circuit on a particular
board.

State
Internal register status or logic
status of an object instance.

Provided interface
The set of pins on a circuit that
recognize signals.

Required interface

The set of pins on a circuit that
generate signals.

Method call
To raise an input signal and wait
for a response (synchronous) or
just continue (asynchronous).

Software Objects

Black boxes that do nothing unless stimulated by external events.

Class
Program behaviour expressed as
state variable layout and method
code.

Instance
A record of state variables at at a
particular address (the object’s
identity).

State
Current state variable contents of
a particular object.

Provided interface
The set of methods a class
exports.

Required interface

Method calls issued to other
objects.

Method call
Call to a function with the
designated object address as the
first argument.

Software Objects

Black boxes that do nothing unless stimulated by external events.

Class
Program behaviour expressed as
state variable layout and method
code.

Instance
A record of state variables at at a
particular address (the object’s
identity).

State
Current state variable contents of
a particular object.

Provided interface
The set of methods a class
exports.

Required interface

Method calls issued to other
objects.

Method call
Call to a function with the
designated object address as the
first argument.

Software Objects

Black boxes that do nothing unless stimulated by external events.

Class
Program behaviour expressed as
state variable layout and method
code.

Instance
A record of state variables at at a
particular address (the object’s
identity).

State
Current state variable contents of
a particular object.

Provided interface
The set of methods a class
exports.

Required interface

Method calls issued to other
objects.

Method call
Call to a function with the
designated object address as the
first argument.

Software Objects

Black boxes that do nothing unless stimulated by external events.

Class
Program behaviour expressed as
state variable layout and method
code.

Instance
A record of state variables at at a
particular address (the object’s
identity).

State
Current state variable contents of
a particular object.

Provided interface
The set of methods a class
exports.

Required interface

Method calls issued to other
objects.

Method call
Call to a function with the
designated object address as the
first argument.

Software Objects

Black boxes that do nothing unless stimulated by external events.

Class
Program behaviour expressed as
state variable layout and method
code.

Instance
A record of state variables at at a
particular address (the object’s
identity).

State
Current state variable contents of
a particular object.

Provided interface
The set of methods a class
exports.

Required interface

Method calls issued to other
objects.

Method call
Call to a function with the
designated object address as the
first argument.

Software Objects

Black boxes that do nothing unless stimulated by external events.

Class
Program behaviour expressed as
state variable layout and method
code.

Instance
A record of state variables at at a
particular address (the object’s
identity).

State
Current state variable contents of
a particular object.

Provided interface
The set of methods a class
exports.

Required interface

Method calls issued to other
objects.

Method call
Call to a function with the
designated object address as the
first argument.

Software Objects

Black boxes that do nothing unless stimulated by external events.

Class
Program behaviour expressed as
state variable layout and method
code.

Instance
A record of state variables at at a
particular address (the object’s
identity).

State
Current state variable contents of
a particular object.

Provided interface
The set of methods a class
exports.

Required interface

Method calls issued to other
objects.

Method call
Call to a function with the
designated object address as the
first argument.

Encoding state layout

We will use a little kernel called TinyTimber. We will use files as
modules in C.

In MyClass.h

#include "TinyTimber.h"

typedef struct{

Object super;

int x;

char y;

} MyClass;

#define initMyClass(z) \

{ initObject ,0,z}

I Mandatory! Specified and
used by the kernel!

I Unconstrained!

I initMyClass corresponds to
a constructor, it includes
programmer defined
intialization.

Using it

#include "MyClass.h"

MyClass a = initMyClass(13);

Encoding state layout

We will use a little kernel called TinyTimber. We will use files as
modules in C.

In MyClass.h

#include "TinyTimber.h"

typedef struct{

Object super;

int x;

char y;

} MyClass;

#define initMyClass(z) \

{ initObject ,0,z}

I Mandatory! Specified and
used by the kernel!

I Unconstrained!

I initMyClass corresponds to
a constructor, it includes
programmer defined
intialization.

Using it

#include "MyClass.h"

MyClass a = initMyClass(13);

Encoding state layout

We will use a little kernel called TinyTimber. We will use files as
modules in C.

In MyClass.h

#include "TinyTimber.h"

typedef struct{

Object super;

int x;

char y;

} MyClass;

#define initMyClass(z) \

{ initObject ,0,z}

I Mandatory! Specified and
used by the kernel!

I Unconstrained!

I initMyClass corresponds to
a constructor, it includes
programmer defined
intialization.

Using it

#include "MyClass.h"

MyClass a = initMyClass(13);

Encoding state layout

We will use a little kernel called TinyTimber. We will use files as
modules in C.

In MyClass.h

#include "TinyTimber.h"

typedef struct{

Object super;

int x;

char y;

} MyClass;

#define initMyClass(z) \

{ initObject ,0,z}

I Mandatory! Specified and
used by the kernel!

I Unconstrained!

I initMyClass corresponds to
a constructor, it includes
programmer defined
intialization.

Using it

#include "MyClass.h"

MyClass a = initMyClass(13);

Encoding state layout

We will use a little kernel called TinyTimber. We will use files as
modules in C.

In MyClass.h

#include "TinyTimber.h"

typedef struct{

Object super;

int x;

char y;

} MyClass;

#define initMyClass(z) \

{ initObject ,0,z}

I Mandatory! Specified and
used by the kernel!

I Unconstrained!

I initMyClass corresponds to
a constructor, it includes
programmer defined
intialization.

Using it

#include "MyClass.h"

MyClass a = initMyClass(13);

Encoding state layout

We will use a little kernel called TinyTimber. We will use files as
modules in C.

In MyClass.h

#include "TinyTimber.h"

typedef struct{

Object super;

int x;

char y;

} MyClass;

#define initMyClass(z) \

{ initObject ,0,z}

I Mandatory! Specified and
used by the kernel!

I Unconstrained!

I initMyClass corresponds to
a constructor, it includes
programmer defined
intialization.

Using it

#include "MyClass.h"

MyClass a = initMyClass(13);

Comparing with Java

class MyClass{

int x;

char y;

MyClass(int z){

x=0;

y=z;

}

}

MyClass a = new MyClass(13);

In our programs we do
not allocate objects in
the heap (as Java
does!).

Our constructors are just
preprocessor macros!

Comparing with Java

class MyClass{

int x;

char y;

MyClass(int z){

x=0;

y=z;

}

}

MyClass a = new MyClass(13);

In our programs we do
not allocate objects in
the heap (as Java
does!).

Our constructors are just
preprocessor macros!

Comparing with Java

class MyClass{

int x;

char y;

MyClass(int z){

x=0;

y=z;

}

}

MyClass a = new MyClass(13);

In our programs we do
not allocate objects in
the heap (as Java
does!).

Our constructors are just
preprocessor macros!

Comparing with Java

class MyClass{

int x;

char y;

MyClass(int z){

x=0;

y=z;

}

}

MyClass a = new MyClass(13);

In our programs we do
not allocate objects in
the heap (as Java
does!).

Our constructors are just
preprocessor macros!

Comparing with Java

class MyClass{

int x;

char y;

MyClass(int z){

x=0;

y=z;

}

}

MyClass a = new MyClass(13);

In our programs we do
not allocate objects in
the heap (as Java
does!).

Our constructors are just
preprocessor macros!

Encoding methods declarations

In MyClass.h

typedef struct{

Object super;

int x;

char y;

} MyClass;

...

int myMethod(MyClass *self , int q);

In MyClass.c

int myMethod(MyClass *self , int q){

self -> x = self -> y + q;

}

In Java

class MyClass{

int x;

char y;

...

int myMethod(int q){

x=y+q;

}

}

Encoding methods declarations

In MyClass.h

typedef struct{

Object super;

int x;

char y;

} MyClass;

...

int myMethod(MyClass *self , int q);

In MyClass.c

int myMethod(MyClass *self , int q){

self -> x = self -> y + q;

}

In Java

class MyClass{

int x;

char y;

...

int myMethod(int q){

x=y+q;

}

}

Encoding methods declarations

In MyClass.h

typedef struct{

Object super;

int x;

char y;

} MyClass;

...

int myMethod(MyClass *self , int q);

In MyClass.c

int myMethod(MyClass *self , int q){

self -> x = self -> y + q;

}

In Java

class MyClass{

int x;

char y;

...

int myMethod(int q){

x=y+q;

}

}

Encoding methods declarations

In MyClass.h

typedef struct{

Object super;

int x;

char y;

} MyClass;

...

int myMethod(MyClass *self , int q);

In MyClass.c

int myMethod(MyClass *self , int q){

self -> x = self -> y + q;

}

In Java

class MyClass{

int x;

char y;

...

int myMethod(int q){

x=y+q;

}

}

Encoding function calls

In Java

...

MyClass a = new MyClass(13);

a.myMethod(44);

In our C programs

...

MyClass a = initMyClass(13);

myMethod(&a ,44);

But, we are doing all this to do something different than just
function calls! We want to have the possibility of introducing the
distinction between synchronous and asynchronous messages!

Encoding function calls

In Java

...

MyClass a = new MyClass(13);

a.myMethod(44);

In our C programs

...

MyClass a = initMyClass(13);

myMethod(&a ,44);

But, we are doing all this to do something different than just
function calls! We want to have the possibility of introducing the
distinction between synchronous and asynchronous messages!

Encoding function calls

In Java

...

MyClass a = new MyClass(13);

a.myMethod(44);

In our C programs

...

MyClass a = initMyClass(13);

myMethod(&a ,44);

But, we are doing all this to do something different than just
function calls! We want to have the possibility of introducing the
distinction between synchronous and asynchronous messages!

Encoding function calls

In Java

...

MyClass a = new MyClass(13);

a.myMethod(44);

In our C programs

...

MyClass a = initMyClass(13);

myMethod(&a ,44);

But, we are doing all this to do something different than just
function calls! We want to have the possibility of introducing the
distinction between synchronous and asynchronous messages!

	
	Mutual exclusion
	Busy waiting vs Interrupts
	The reactive embedded system
	Encoding state layout and methods

