
TDD	
(Test	 Driven	 Development)

Goals of this presentation
• Automated Testing Theory (Skipped)

– To introduce and motivate Automated Tests
– To describe how Automated Testing fits within a Software Development Process
– To provide a classification of Automated Testing Strategies and Tools

• Unit Testing
– Provide theoretical background for Unit Testing
– Hands-on experience with Unit Testing tools and frameworks

• Mocking
– Provide theoretical background for Mocking and some examples

• Test Driven Development (TDD)
– Provide theoretical background for TDD and some examples

• Integration Testing
– Provide theoretical background for and overview of Integration Testing

2

TDD	 Training

Introduction
to

Unit Testing with JUnit and Eclipse
Training provided from CLL

Combitech

Unit Tests
• Black-box or White-box test of a logical unit, which

verifies that the logical unit behaves correctly – honors
its contract.

4

What exactly is a Unit Test?
• A self-contained software module (in OO languages

typically a Class) containing one or more test
scenarios which tests a Unit Under Test in isolation.

• Each test scenario is autonomous, and tests a
separate aspect of the Unit Under Test.

5

PlantStructureService PlantStructureDAOPlantStructureServiceTest

Data

Smoke Tests
• A set of Unit Tests (which tests a set of logical units)

executed as a whole provides a way to perform a
Smoke Test: Turn it on, and make sure that it doesn’t
come smoke out of it!

• A relatively cheap way to see that the units “seems to
be working and fit together”, even though there are
no guarantees for its overall function (which requires
functional testing)

6

Developer testing vs Acceptance testing

• Unit Tests are written by developers, for developers.

• Unit Tests do not address formal validation and
verification of correctness (even though it has indirect
impact on it!) - Unit Tests prove that some code does
what we intended it to do

• Unit Tests complements Acceptance Tests (it does not
replace it)

7

Why should I (as a Developer) bother?
• Well-tested code works better. Customers like it better.
• Tests support refactoring. Since we want to ship useful function early

and often, we know that we'll be evolving the design with refactoring.
• Tests give us confidence. We're able to work with less stress, and we're

not afraid to experiment as we go.
• Hence Unit Testing will make my life easier

– It will make my design better
– It will give me the confidence needed to refactor when necessary
– It will dramatically reduce the time I spend with the debugger
– It will make me sleep better when deadlines are closing in

8

Requirements on Unit Tests
• Easy to write a test class
• Easy to find test classes
• Easy to test different aspects of a contract
• Easy to maintain tests
• Easy to run tests

9

XUnit: A Framework for Unit Tests

• www.junit.org
• www.csunit.org
• www.vbunit.org
• cppunit.sourceforge.net

10

http://cppunit.sourceforge.net

JUnit Test Example
public interface Account {
 public void deposit(int amount);
 public void withdraw(int amount) throws AccountException;
 public int getBalance();
 …  
}

public class AccountImplTest {
 @Test
 public void testWithdraw() throws AccountException {
 AccountImpl account = new AccountImpl(“1234-9999”, 2000);
 account.withdraw(300);
 Assert.assertEquals(1700, account.getBalance());
 }

 @Test
 public void testWithdrawTooMuch() throws AccountException { … }
 …  
}

11

Naming Conventions and Directory Structure

• Unit Tests should be named after the Unit that is tested, with "Test"
appended. 
A class usually represents a noun, it is a model of a concept. An
instance of one of your tests would be a 'MyUnit test'. In contrast, a
method would model some kind of action, like 'test [the] calculate
[method]'.

12

• the MyUnit test --> MyUnitTest
• test the calculate method -->

testCalculate()
• JUnit tests should be placed

within the same Java package
as the Unit under Test, but in a
different directory structure.

Test cases and test methods
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;

public class AccountImplTest {
 @Test
 public void testWithdraw() throws AccountException {
 AccountImpl account = new AccountImpl(“1234-9999”, 2000);
 account.withdraw(300);
 Assert.assertEquals(1700, account.getBalance());
 }

 @Test
 public void testWithdrawTooMuch() throws AccountException { … }
 …  
}

13

All methods annotated with

@Test are considered test

scenarios

Assert: Support for verifying conditions

static void assertEquals(int expected, int actual);  
 // Asserts that two ints are equal.

static void assertEquals(double expected, double actual, double delta);  
 // Asserts that two doubles are equal concerning a delta.

static void assertEquals(java.lang.Object expected, java.lang.Object actual);  
 // Asserts that two objects are equal.

static void assertFalse(java.lang.String message, boolean condition);  
 // Asserts that a condition is false.

static void assertTrue (java.lang.String message, boolean condition);  
 // Asserts that a condition is true.

static void assertNull(java.lang.String message, java.lang.Object object);  
 // Asserts that an object is null.

static void assertNotNull(java.lang.String message, java.lang.Object object);  
 // Asserts that an object isn't null.

// Etc…

14

Exercise 1 description
Sometimes you need to write Unit tests to already
existing software when you want to implement a change
request e.t.c. In this example we have the source code
but no tests, your task is to write them.

15

Exercise 1

• Create an Unit test case which tests the initial
balance of an Account (i e. tests the constructor and
GetBalance() method of Account).
@Test
public void testInitialBalance() { … }

• Add tests for the Deposit() method of Account.
@Test
public void testDeposit() { … }

16

Typical unit test scenario – The Three A’s
1. Arrange - Instantiate Unit under Test and set up test data

2. Act - Execute one or more methods on the Unit Under Test

3. Assert - Verify the results
public interface Account {
 public void deposit(int amount);
 public void withdraw(int amount) throws AccountException;
 public int getBalance();
 …  
}
public class AccountImplTest {
 @Test
 public void testWithdraw() throws AccountException {
 AccountImpl account = new AccountImpl(“1234-9999”, 2000); // ARRANGE
 account.withdraw(300); // ACT
 Assert.assertEquals(1700, account.getBalance()); // ASSERT
 }

… … …
}

17

General Rules of Thumb
• Create a single test class for each non-trivial application class you have.
• Give a readable, meaningful name to each test method. A good name candidates

are to name the test method using the same name as the method that it is testing,
with some additional info appended to the name. For instance if testing a method
called "Withdraw" in an Account class, create a few test methods to test different
ways of withdrawal:

@Test
 public void testWithdrawTooMuch() throws AccountException {…}

@Test
 public void withdrawBigAmount() throws AccountException {…}

@Test
 public void withdrawNegativeAmount() throws AccountException {…}

• The scope of how much checking to do in a single test case (test method) is a
judgment call. It is usually better to test only one scenario (and hence one potential
error condition) in each test method. Remember : tests should be “to the point”.

18

Setup and teardown
• Methods annotated with @Before are executed before every test

method.
• Methods annotated with @After are executed after every test

method.
public class AccountImplTest {

private AccountImpl account;

@Before
public void setUp() {

account = new AccountImpl(“1234-9999", 2000);
}
@Test
public void testInitialBalance() {

int actualBalance = account.getBalance();
Assert.assertEquals(2000, actualBalance);

}
@Test
public void testWithdraw() throws AccountException {

account.withdraw(300);
 int actualBalance = account.getBalance();

Assert.assertEquals(1700, actualBalance);
}

 …  
}

19

Working with Exceptions
• Unexpected exceptions thrown during execution of a test will be caught by the

JUnit framework and reported as Errors (i.e. test will fail)
• A Test method must declare that it throws any checked exceptions that the Unit

under Test may throw. If there are several checked exceptions that may occur, it
is perfectly valid for a test method to declare throwing java.lang.Exception.

• Expected exceptions (exceptions that the test is expecting the Unit under Test
should throw in a certain situation) are expressed using the
@Test(expected=ExpectedException.class) attribute

@Test(expected=NastyException.class)
public void doSomethingNastyTest() {

SomeUnit target = new SomeUnit();
target.doSomethingNasty();

}

20

Working with Exceptions (Contd.)
• Or using the following idiom:

SomeUnit target = new SomeUnit();
try {

target.doSomethingNasty();
Assert.fail("NastyException expected");

} catch (NastyException expected) {
// Expected

}

21

Ignore a Test
• To temporary ignore a test, use the Ignore attribute:

@Test
@Ignore("Not right now, but most definitely later")
public void testThatDoesNotWorkYet(){

SomeUnit target = new SomeUnit();
 target.doSomethingThatDoesNotWork();
 Assert.assertTrue(target.isValid());
}

22

Exercise 2
• Refactor your test data from the last example into a

@Before annotated setUp() method
• Add tests for the withdraw() method.

23

Testing private or protected methods/members
JUnit will only test those methods in my class that are
public or protected, but…
In principle you got four options

• Don't test private methods. (Good or Bad?)
• Give the methods package-private access. (Good or

Bad?)
• Use a inner class or anonymous class. (Does it work?)
• Use reflection. (Is this good?)

http://stackoverflow.com/questions/34571/whats-the-
proper-way-to-test-a-class-with-private-methods-using-
junit

24

http://stackoverflow.com/questions/34571/whats-the-proper-way-to-test-a-class-with-private-methods-using-junit

Testing private or protected methods/members
The best way to test a private method is via another public method. If
this cannot be done, then one of the following conditions is true:
 1. The private method is dead code.
 2. There is a design smell near the class that you are testing.
 3. The method that you are trying to test should not be private.

When I have private methods in a class that is sufficiently
complicated that I feel the need to test the private methods directly,
that could be a code smell: my class is too complicated.
But, it might also be SDK or Framework code or Security or
encryption/decryption code. That type of code also need tests, but
no publicity…

25

Testing protected methods (Java)
• Protected methods are visible by default when using the same parallel package

structure for tests, but if in different packages, it will not work!

package productionpackage;
public class ProtectedMethod {

protected String myProtectedMethod (String s) {
return "MyClass: " + s; }

}

package testpackage;
public class ProtectedMethodTest {

@Test
public void testProtectedMethod() {

String expected = "MyClass: Hello";
ProtectedMethod unitUnderTest = new ProtectedMethod();
String actual = unitUnderTest.myProtectedMethod("Hello");
boolean equal = actual.equalsIgnoreCase(expected);
Assert.assertTrue("Strings not equal", equal);

}
}

26

Will not work!

Testing protected methods (Java)
The Subclass and Override idiom is used to write unit tests for protected methods:
package productionpackage;
public class ProtectedMethodClass {

protected String protectedMethod (String s) {
return "Protected: " + s; }

}

package testpackage;
public class ProtectedMethodClassTest {

// Create an inner class to expose the protected method
class ExposeProtectedMethodClass extends ProtectedMethodClass {

public String exposeProtectedMethod(String s) {
return super.protectedMethod(s);

}
}
@Test
public void testProtectedMethod() {

String expected = "Protected: Hello";
ExposeProtectedMethodClass unitUnderTest = new ExposeProtectedMethodClass();
String actual = unitUnderTest.exposeProtectedMethod("Hello");
boolean equal = actual.equalsIgnoreCase(expected);
Assert.assertTrue("Strings not equal", equal);

}
}

27

We can live with
this since the
exposure is done
in test package,
that will be
stripped out in the
production code!

Testing Interfaces or Abstract Classes (Java only)
• Sometimes, you want to write tests for an Interface or Abstract Class,

and have those tests executed against all implementations.
• Specify the tests in an Abstract Test class, with one concrete Test class

for each concrete implementation

28

Testing Interfaces - Java example
package testpackage;
import org.junit.*;

public abstract class AbstractSomeInterfaceTest {
 private SomeInterface unitUnderTest;
 @Before
 public void setUp() {
 unitUnderTest = implementSomeInterfaceTest();
 }
 @Test
 public void testSomeMethodReturnsTrue () {
 Assert.assertTrue("someMethod() should return true", unitUnderTest.someMethod());
 }
 protected abstract SomeInterface implementSomeInterfaceTest();
}

public class ImplementationXTest extends AbstractSomeInterfaceTest {
@Override
protected SomeInterface implementSomeInterfaceTest() {

 return new ImplementationX();
}

}

29

package testpackage;
public class ImplementationX implements SomeInterface {

@Override
public boolean someMethod() {

return false;
}

}

Instances like this
one, will run
automatically
according to test
scheme in the
abstract class.

What should be tested?
• Everything that could possibly break!
• Corollary: Don’t test stuff that is too simple to break!
• Typical problematic areas:

– Boundary conditions
• Conformance
• Ordering
• Range
• Reference
• Existence
• Cardinality
• Time

– Error conditions

30

Exercise 4

Given the following interface for a fax sender service:
/* Send the named file as a fax to the given phone number.
* Phone numbers should be of the form 0nn-nnnnnn where n is
* digit in the range [0-9]
*/
public boolean SendFax(String phone, String filename) {

. . .
}

What tests for boundary conditions can you think of?

31

TDD	 Training

Breaking dependencies
and

Mocking
Training provided from CLL

Combitech

Design properties and Design goals
For Units:
• Modularity
• High cohesion
• Low coupling
For Tests:
• Modularity
• Locality

33

Unit Under Test
(UUT)Test

Side effects

But what about units that
depend on other units (with
potential side effects)?

34

Unit Under Test

Data Access
Object

insert
update
delete
get

RDBMS

Strategies for testing Units that depend on other units

• Break the dependency: Let the Test create a synthetic
‘Mock’ context

• Run and test the Unit within it’s natural context (In
Container in the case of Java EE or .NET)

• Let the Test create the real context

35

Unit Under Test
(UUT)

Test Dependee

Synthetic context – Mocking
• Implements the same interface

as the resource that it
represents

• Enables configuration of its
behavior from outside (i.e. from
the test class, in order to
achieve locality)

• Enables registering and
verifying expectations on how the
resource is used

36

Frameworks and tools for mocking
• code.google.com/p/mockito/ (Active 2015)

– No expect-run-verify also means that Mockito
mocks are often ready without expensive setup
upfront

• www.mockobjects.org (latest update 2010)
– Commonly used assertions refactored into a

number of Expectation classes, which facilitate
writing Mock Objects.

• www.mockmaker.org (latest update 2002)
– Tool which automatically generates a MockObject

from a Class or Interface

• www.easymock.org (Active 2015)
– Class library which generates Mock Objects

dynamically using the Java Proxy class

37

http://code.google.com/p/mockito/
http://www.mockobjects.org
http://www.mockmaker.org
http://www.easymock.org

Mockito
• Mocks concrete classes as well as interfaces
• Little annotation syntax sugar - @Mock
• Verification errors are clean - click on stack trace to see failed

verification in test; click on exception's cause to navigate to
actual interaction in code. Stack trace is always clean.

• Allows flexible verification in order (e.g: verify in order what
you want, not every single interaction)

• Supports exact-number-of-times and at-least-once verification
• Flexible verification or stubbing using argument matchers

(anyObject(), anyString() or refEq() for reflection-based
equality matching)

• Allows creating custom argument matchers or using existing
ham crest matchers

38

http://mockito.googlecode.com/svn/branches/1.6/javadoc/org/mockito/Matchers.html

Typical usage scenario for mocking in a test case
1. Instantiate mock objects
2. Set up state in mock objects, which govern their

behavior
3. Set up expectations on mock objects
4. Execute the method(s) on the Unit Under Test,

using the mock objects as resources
5. Verify the results & expectations

39

Mockito - example usage
@Test
public void testNotificationVetoShouldBeHonoured() {
 int amount = AccountImpl.SUPERVISION_TRESHOLD;

 Supervisor mockSupervisor = Mockito.mock(Supervisor.class);

 Mockito.when(mockSupervisor.notify(Mockito.anyString(),
 Mockito.anyString(), (Transaction) Mockito.anyObject())).thenReturn(false);

 account.setSupervisor(mockSupervisor);

 try {
 account.deposit(amount);
 Assert.fail("SupervisorException expected");
 } catch (SupervisorException expected) {
 // expected
 System.err.println(expected);
 }

 Mockito.verify(mockSupervisor).notify(account.getAccountID(), account.getOwnerName(),
 new Transaction(Transaction.DEPOSIT, amount));
}

• Create MockObject
• Let the mock object know how to answer on

an expected call
• Inject the MockObject in the class to be tested
• Run the test
• Verify that the mock object received the

expected calls and parameters

40

Exercise 7
• Extend the tests for AccountImpl to use Mockito for

validating correct usage of the Supervisor
collaborator!

41

When to use mocking (and when not to)
• Mocking is great for

– Breaking dependencies between well-architected layers or tiers
– Testing corner cases and exceptional behavior

• Mocking is less ideal for
– Replacing awkward 3rd party APIs
– Responsibilities which involves large amounts of state or data,

which could be more conveniently expressed in a ”native” format
• This is clearly a judgement call: If breaking a dependency using mock

objects cost more effort than living with the dependency, then the mock
strategy is probably not a good idea

42

Designing for Testability : Law of Demeter
(LoD or principle of least knowledge)

• Any method should have limited knowledge about its
surrounding object structure.

• Named in honor of Demeter, “distribution-mother”, Greek
goddess of agriculture

• Hence
 public class SomeUnit
 {
 private IDependee dependee;
 public SomeUnit()
 {
 this.dependee = new Dependee();
 }
 ...
 }

43

Law of Demeter (Contd.)
• becomes
 public class SomeUnit
 {
 private IDependee dependee;
 public SomeUnit()
 {
 }
 public SetDependee(IDependee dependee)
 {
 this.dependee = dependee;
 }
 ...
 }

44

Designing for Testability: LoD - Don’t Talk To Strangers
• If there are no strong reasons why two classes should

talk to each other directly, they shouldn’t!

45

becomes

Unit Under Test
(UUT) Dependee

«interface»
IDependee

Unit Under Test
(UUT) Dependee

Designing for Testability: Dependency Injection
• What is it?

• Dependency Management

• Dependency Injection provides a mechanism for managing  
dependencies between components in a decoupled way

• Makes it easier to unit test components in isolation

• Out of container and with mocked dependencies

46

TDD	 Training

Introduction
to TDD

(Test-Driven Development)
Training provided from CLL

Combitech

Test-Driven Development
Unit Tests may be written very early. In fact, they may even

be written before any production code exists:

• Write a test that specifies a tiny bit of functionality
• Ensure the test fails (you haven't built the functionality yet!)
• Write the code necessary to make the test pass
• Refactoring the code to remove redundancy

There is a certain rhythm to it: Design a little – test a little –
code a little – design a little – test a little – code a little – ...

48

Test-Driven Development process
1. Think about what you want to do.
2. Think about how to test it.
3. Write a small test. Think about the desired API.
4. Write just enough code to fail the test.
5. Run and watch the test fail (and you’ll get the "Red Bar").
6. Write just enough code to pass the test (and pass all your previous tests).
7. Run and watch all of the tests pass (and you’ll get the "Green Bar").
8. If you have any duplicate logic, or inexpressive code, refactor to remove

duplication and increase expressiveness.
9. Run the tests again (you should still have the “Green Bar”).
10.Repeat the steps above until you can't find any more tests that drive

writing new code.

49

Test-Driven Development process (TDD process)

50

Add a test

Run tests see
new failure

Write code to fix itRun tests see all
pass

Refactor

Simple Design
• “Simplicity is more complicated than you think. But it’s

well worth it.” 
 Ron Jeffries  

• Satisfy Requirements
– No Less
– No More

51

You can use your
developer intuition
to find best choice

Simple Design Criteria
• In Priority Order

– The code is appropriate for the intended audience
– The code passes all the tests
– The code communicates everything it needs to
– The code has the smallest number of classes
– The code has the smallest number of methods

Should we then have all code in one class and only have the
one method the “main”-method?
Of course not, but why?

52

Refactoring
• Definition: Improve the code without changing its

functionality
• Code needs to be refined as additional requirements

(tests) are added
• For more information see  

Refactoring: Improve the Design of Existing Code – Martin
Fowler

53

Working Breadth First - Using a Test List
• Work Task Based

– 4-8 hour duration (maximum)
• Brainstorm a list of developer tests
• Do not get hung up on completeness… you can

always add more later
• Describes completion requirements

54

Exercise 5
Use TDD to test, design and implement a Stack class for
integers. You are not allowed to use any of the built-in
collection classes!
• Specification:

– “A stack is a data structure in which you can
access only the item at the top. With a computer,
Stack like a stack of dishes—you add items to the
top and remove them from the top.”

Remember: Every single line of production code written
must be motivated by a failing test!

55

Push operation

Pop operation

Top operation

Recap: The TDD process Red/Green/Refactor

Write a test for
new capability

Start

Compile

Fix compile
errors

Run the test
And see it failWrite the code

Run the test
And see it pass

Refactor as needed

Solution 5 - Step 1a
• Add test of isEmpty() – see it fail

public class SimpleStackTest {

@Test
public void testNewStackIsEmpty() {

SimpleStack stack = new SimpleStack();
Assert.assertTrue("New stack should be empty!",true == stack.isEmpty());

}
}

public class SimpleStack {
public boolean isEmpty() {

return false; // See it fail!
}

}

60

Solution 5 - Step 1b
• Add test of isEmpty() – make it work

public class SimpleStackTest {

@Test
public void testNewStackIsEmpty() {

SimpleStack stack = new SimpleStack();
Assert.assertTrue("New stack should be empty!",true == stack.isEmpty());

}
}

public class SimpleStack {
public boolean isEmpty() {

return true; // See it work!
}

}

61

Solution 5 - Step 2a
• Add test of push() – see it fail
public class SimpleStackTest {

@Test
public void testNewStackPush() {

SimpleStack stack = new SimpleStack();
Assert.assertTrue("New stack should be empty!",true == stack.isEmpty());
int item = 1;
stack.push(item);
Assert.assertFalse("Stack should not be empty after an item has been pushed!”,
stack.isEmpty());

}
}

public class SimpleStack {
public boolean isEmpty() {

return true; // See it work!
}
public void push(int item) {

// Pushes to void, but that ok, see it fail.
}

}

62

Solution 5 - Step 2b
• Add test of push() – make it work
public class SimpleStackTest {

@Test
public void testNewStackPush() {

SimpleStack stack = new SimpleStack();
Assert.assertTrue("New stack should be empty!",true == stack.isEmpty());
int item = 1;
stack.push(item);
Assert.assertFalse("Stack should not be empty after an item has been pushed!”,
stack.isEmpty());

}
}

public class SimpleStack {
boolean empty = true; // Add variable to keep a state
public boolean isEmpty() {

return empty; // Return the state
}

 public void push(int item) {
 empty = false; // Still pushes to void, but that is ok, see it work.
 }
}

63

Solution 5 - Step 3
• We now have got two tests, refactor (@Before)

public class SimpleStackTest {

@Test
public void testNewStackIsEmpty() {

SimpleStack stack = new SimpleStack();
Assert.assertTrue("New stack should be empty!",true == stack.isEmpty());

}

@Test
public void testNewStackPush() {

SimpleStack stack = new SimpleStack();
int item = 1;
stack.push(item);
Assert.assertFalse("Stack should not be empty after an item has been pushed!", stack.isEmpty());

}
}

64

Solution 5 - Step 4
• We now have got two tests, make it work

public class SimpleStackTest {

SimpleStack stack = null; // Declare for commonalities

@Before
public void setUp() { // Break out commonalities !

stack = new SimpleStack();
}

@Test
public void testNewStackIsEmpty() {

Assert.assertTrue("New stack should be empty!",true == stack.isEmpty());
}

@Test
public void testNewStackPush() {

int item = 1;
stack.push(item);
Assert.assertFalse("Stack should not be empty after an item has been pushed!", stack.isEmpty());

 }
}

65

Solution 5 - Step 5
• Add test of pop() of empty stack, see it fail, make it work

@Test
public void testEmptyStackPop() {

try { // expect an empty stack to throw exception when pop:ed
@SuppressWarnings("unused")
int topItem = stack.pop();
Assert.fail("IllegalStateException expected");

} catch (java.lang.IllegalStateException e) {
// Expected

}
}
// Production code
public int pop() {

if (isEmpty()) {
throw new java.lang.IllegalStateException();

}
return 0; // Don’t think ahead, this works for our tests

}

66

Solution 5 - Step 6a (The test)
• Add test of pop() of stack with content

@Test
public void testPopOfStackWithOneItem() {

int item = 10;
stack.push(item);
int topItem = stack.pop();
Assert.assertEquals("Popped item was expected to be 10.", item, topItem);

}

67

Solution 5 - Step 6b (The production code)
• Add implementation of pop() of stack with content

public class SimpleStack {
boolean empty = true;
int stackValue = 0; // We need a variable to hold the stack

public int pop() {
if (isEmpty()) {

throw new java.lang.IllegalStateException();
}
return stackValue;

}

public void push(int item) {
stackValue = item;
empty = false;

}
}

68

Solution 5 - Step 7a (The test code)
• Add test for multiple push() and pop() – see it fail

@Ignore
public void testStackPushTwice() {

int item = 1;
stack.push(item);
item = 2;
stack.push(item);
Assert.assertFalse("New stack should not be empty after an item has been pushed!",
stack.isEmpty());

}
@Test
public void testStackPopTwice() {

int item1 = 1;
 stack.push(item1);

int item2 = 2;
stack.push(item2);
int topItem = stack.pop();
Assert.assertEquals("Popped item was expected to be 2.", item2, topItem);
topItem = stack.pop();

Assert.assertEquals("Popped item was expected to be 1.", item1, topItem);
Assert.assertTrue("Stack should be empty after all items has been pushed!", stack.isEmpty());

}

69

Solution 5 - Step 7b (The production code)
• So far so good. It works, but we need to push our solution to be able to take more push. Time for redesign

public class SimpleStack {
private ListElement stackTop = null;

public boolean isEmpty() {
return stackTop == null;

}

public int pop() {
int returnValue = 0;
if (isEmpty()) {

throw new java.lang.IllegalStateException();
} else {

returnValue = stackTop.value;
stackTop = stackTop.nextElement;

}
return returnValue;

}
public void push(int item) {

ListElement listElement = new ListElement();
listElement.value = item;
listElement.nextElement = stackTop;
stackTop = listElement;

}
}
• And, best of all, the tests will be reuse

70

public class ListElement {

public int value = 0;
public ListElement nextElement = null;

}

Solution 5 - Step 8
• Add tests for top() – make it work

@Test
public void testEmptyStackTop() {

try {
@SuppressWarnings("unused")
int top = stack.top();
Assert.fail("IllegalStateException expected");

} catch (java.lang.IllegalStateException e) {
// Expected

}
}

@Test
public void testStackTopTwice() {

int item1 = 1;
stack.push(item1);
int topItem = stack.top();
Assert.assertEquals("Top item was expected to be 1.", item1, topItem);
topItem = stack.top();

Assert.assertEquals("Top item was expected to be 1.", item1, topItem);
Assert.assertFalse("Stack should not be empty after stack hass beeb topped!", stack.isEmpty());

}

71

public int top() {
int returnValue = 0;
if (isEmpty()) {

throw new java.lang.IllegalStateException();
} else {

returnValue = stackTop.value;
}
return returnValue;

}

Obvious Effects of Test-Driven Development
• Already automated tests, immediately useful for

– Integration tests
– Regression tests

72

Not so obvious effects of Test-Driven Development
• Testing as we write means we spend less time

debugging. We get our programs done faster.
• Testing as we write means that we don't have those long

testing cycles at the end of our projects. We like working
without that death march thing.

• Our tests are the first users of our code. We experience
what it is like to use our code very quickly. The design
turns out better.

• Testing before coding is more interesting than testing
after we code. Because it's interesting, we find it easier
to maintain what we know is a good practice.

73

Not-so-obvious effects of TDD (Contd.)
• Intentional Design of Interfaces

– Since the code in question is not written yet, we are free to choose the interface
that is most usable.

• Non-speculative Interfaces
– Interfaces provide the functionality which is just enough for right now

• Documented requirements and intended usage
– The tests themselves provide immediately useful documentation of the Interfaces

• Good OO Design: High Cohesion and Low Coupling
– If you have to write tests first, you'll devise ways of minimizing dependencies in

your system in order to write your tests.

74

Possible week points of TDD ?
• When test code, very intensively, use production API

then it can impact the ability to refactor.

• Buggy tests – tests that is failing because of bugs in
the test themselves.

• It will simply not be worth it, when cost for maintenance
of the tests will be higher than benefits.

Hey there!
We are developers and should strive to mitigate these
week points, shouldn’t we?

75

Designing for Testability: Model-View-Control
• User Interfaces are notoriously difficult to test

• Splitting a complex application into separate,

cohesive parts which separates presentation from

application logic allows testing the application logic in

isolation

76

Code Coverage (Java)
• Which statements of my application are being executed?
• Useful to identify incomplete testing (ECLemma plug-In)
 • Option 1: Install from Eclipse Marketplace Client
 • Option 2: Installation from update site
 • Option 3: Manual download and installation

77

But …
• Focusing only on coverage is not sufficient, you may

miss:
– Missing code
– Incorrect handling of boundary conditions
– Timing problems
– Memory Leaks

• Use coverage sensibly
– Objective, but incomplete
– Too often distorts sensible action

78

