
Algorithms, Data Structures, and Problem
Solving

Masoumeh Taromirad

Hamlstad University

DA4002, Fall 2016

Contents

An introduction to Java with
emphasis on inheritance and
polymorphism as a way of
organizing reusable
programming libraries.

Abstract data types, stacks,
queues, lists, hash tables,
graphs.

Algorithm analysis and
design. Asymptotic execution
time. Recursion, dynamic
programming, divide and
conquer.

• move the stack of
disks to another pole

• you may only place
smaller disks on larger
ones

Motivating Example:

Tower of Hanoi

André Karwath http://en.wikipedia.org/wiki/File:Tower_of_Hanoi_4.gif

lecture 4

Algorithms and Data Structures

Lecture 4:

Recursion,

Dynamic programming,

Divide & Conquer
Sequence Alignment, Quicksort

Verónica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

– p.1/36 lecture 4

Tower of Hanoi

Tower of Hanoi puzzle,
marketed in 1883 by
Professor N. CLAUS (DE
SIAM), an anagram
pseudonym for Professor
Édouard LUCAS
(D’AMEINS).

The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

– p.2/36

lecture 4

Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

– p.3/36 lecture 4

Tower of Hanoi

– p.4/36

lecture 4

Algorithms and Data Structures

Lecture 4:

Recursion,

Dynamic programming,

Divide & Conquer
Sequence Alignment, Quicksort

Verónica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

– p.1/36 lecture 4

Tower of Hanoi

Tower of Hanoi puzzle,
marketed in 1883 by
Professor N. CLAUS (DE
SIAM), an anagram
pseudonym for Professor
Édouard LUCAS
(D’AMEINS).

The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

– p.2/36

lecture 4

Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

– p.3/36 lecture 4

Tower of Hanoi

– p.4/36

A B C A B C

setup goal

Motivating Example:

Tower of Hanoi

lecture 4

Algorithms and Data Structures

Lecture 4:

Recursion,

Dynamic programming,

Divide & Conquer
Sequence Alignment, Quicksort

Verónica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

– p.1/36 lecture 4

Tower of Hanoi

Tower of Hanoi puzzle,
marketed in 1883 by
Professor N. CLAUS (DE
SIAM), an anagram
pseudonym for Professor
Édouard LUCAS
(D’AMEINS).

The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

– p.2/36

lecture 4

Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

– p.3/36 lecture 4

Tower of Hanoi

– p.4/36

lecture 4

Algorithms and Data Structures

Lecture 4:

Recursion,

Dynamic programming,

Divide & Conquer
Sequence Alignment, Quicksort

Verónica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

– p.1/36 lecture 4

Tower of Hanoi

Tower of Hanoi puzzle,
marketed in 1883 by
Professor N. CLAUS (DE
SIAM), an anagram
pseudonym for Professor
Édouard LUCAS
(D’AMEINS).

The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

– p.2/36

lecture 4

Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

– p.3/36 lecture 4

Tower of Hanoi

– p.4/36

A B C A B C

setup goal

lecture 4

Algorithms and Data Structures

Lecture 4:

Recursion,

Dynamic programming,

Divide & Conquer
Sequence Alignment, Quicksort

Verónica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

– p.1/36 lecture 4

Tower of Hanoi

Tower of Hanoi puzzle,
marketed in 1883 by
Professor N. CLAUS (DE
SIAM), an anagram
pseudonym for Professor
Édouard LUCAS
(D’AMEINS).

The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

– p.2/36

lecture 4

Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

– p.3/36 lecture 4

Tower of Hanoi

– p.4/36

A B C

step 1:
move N-1 disks

from A to B

Motivating Example:

Tower of Hanoi

lecture 4

Algorithms and Data Structures

Lecture 4:

Recursion,

Dynamic programming,

Divide & Conquer
Sequence Alignment, Quicksort

Verónica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

– p.1/36 lecture 4

Tower of Hanoi

Tower of Hanoi puzzle,
marketed in 1883 by
Professor N. CLAUS (DE
SIAM), an anagram
pseudonym for Professor
Édouard LUCAS
(D’AMEINS).

The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

– p.2/36

lecture 4

Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

– p.3/36 lecture 4

Tower of Hanoi

– p.4/36

lecture 4

Algorithms and Data Structures

Lecture 4:

Recursion,

Dynamic programming,

Divide & Conquer
Sequence Alignment, Quicksort

Verónica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

– p.1/36 lecture 4

Tower of Hanoi

Tower of Hanoi puzzle,
marketed in 1883 by
Professor N. CLAUS (DE
SIAM), an anagram
pseudonym for Professor
Édouard LUCAS
(D’AMEINS).

The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

– p.2/36

lecture 4

Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

– p.3/36 lecture 4

Tower of Hanoi

– p.4/36

A B C A B C

setup goal

lecture 4

Algorithms and Data Structures

Lecture 4:

Recursion,

Dynamic programming,

Divide & Conquer
Sequence Alignment, Quicksort

Verónica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

– p.1/36 lecture 4

Tower of Hanoi

Tower of Hanoi puzzle,
marketed in 1883 by
Professor N. CLAUS (DE
SIAM), an anagram
pseudonym for Professor
Édouard LUCAS
(D’AMEINS).

The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

– p.2/36

lecture 4

Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

– p.3/36 lecture 4

Tower of Hanoi

– p.4/36

A B C

lecture 4

Algorithms and Data Structures

Lecture 4:

Recursion,

Dynamic programming,

Divide & Conquer
Sequence Alignment, Quicksort

Verónica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

– p.1/36 lecture 4

Tower of Hanoi

Tower of Hanoi puzzle,
marketed in 1883 by
Professor N. CLAUS (DE
SIAM), an anagram
pseudonym for Professor
Édouard LUCAS
(D’AMEINS).

The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

– p.2/36

lecture 4

Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

– p.3/36 lecture 4

Tower of Hanoi

– p.4/36

A B C

step 2:
move biggest

disk from A to C

Motivating Example:

Tower of Hanoi

lecture 4

Algorithms and Data Structures

Lecture 4:

Recursion,

Dynamic programming,

Divide & Conquer
Sequence Alignment, Quicksort

Verónica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

– p.1/36 lecture 4

Tower of Hanoi

Tower of Hanoi puzzle,
marketed in 1883 by
Professor N. CLAUS (DE
SIAM), an anagram
pseudonym for Professor
Édouard LUCAS
(D’AMEINS).

The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

– p.2/36

lecture 4

Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

– p.3/36 lecture 4

Tower of Hanoi

– p.4/36

lecture 4

Algorithms and Data Structures

Lecture 4:

Recursion,

Dynamic programming,

Divide & Conquer
Sequence Alignment, Quicksort

Verónica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

– p.1/36 lecture 4

Tower of Hanoi

Tower of Hanoi puzzle,
marketed in 1883 by
Professor N. CLAUS (DE
SIAM), an anagram
pseudonym for Professor
Édouard LUCAS
(D’AMEINS).

The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

– p.2/36

lecture 4

Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

– p.3/36 lecture 4

Tower of Hanoi

– p.4/36

A B C A B C

setup goal

lecture 4

Algorithms and Data Structures

Lecture 4:

Recursion,

Dynamic programming,

Divide & Conquer
Sequence Alignment, Quicksort

Verónica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

– p.1/36 lecture 4

Tower of Hanoi

Tower of Hanoi puzzle,
marketed in 1883 by
Professor N. CLAUS (DE
SIAM), an anagram
pseudonym for Professor
Édouard LUCAS
(D’AMEINS).

The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

– p.2/36

lecture 4

Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

– p.3/36 lecture 4

Tower of Hanoi

– p.4/36

A B C

lecture 4

Algorithms and Data Structures

Lecture 4:

Recursion,

Dynamic programming,

Divide & Conquer
Sequence Alignment, Quicksort

Verónica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

– p.1/36 lecture 4

Tower of Hanoi

Tower of Hanoi puzzle,
marketed in 1883 by
Professor N. CLAUS (DE
SIAM), an anagram
pseudonym for Professor
Édouard LUCAS
(D’AMEINS).

The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

– p.2/36

lecture 4

Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

– p.3/36 lecture 4

Tower of Hanoi

– p.4/36

A B C

step 3:
move N-1 disks

from B to C

Motivating Example:

Tower of Hanoi

lecture 4

Algorithms and Data Structures

Lecture 4:

Recursion,

Dynamic programming,

Divide & Conquer
Sequence Alignment, Quicksort

Verónica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

– p.1/36 lecture 4

Tower of Hanoi

Tower of Hanoi puzzle,
marketed in 1883 by
Professor N. CLAUS (DE
SIAM), an anagram
pseudonym for Professor
Édouard LUCAS
(D’AMEINS).

The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

– p.2/36

lecture 4

Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

– p.3/36 lecture 4

Tower of Hanoi

– p.4/36

lecture 4

Algorithms and Data Structures

Lecture 4:

Recursion,

Dynamic programming,

Divide & Conquer
Sequence Alignment, Quicksort

Verónica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

– p.1/36 lecture 4

Tower of Hanoi

Tower of Hanoi puzzle,
marketed in 1883 by
Professor N. CLAUS (DE
SIAM), an anagram
pseudonym for Professor
Édouard LUCAS
(D’AMEINS).

The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

– p.2/36

lecture 4

Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

– p.3/36 lecture 4

Tower of Hanoi

– p.4/36

A B C A B C

setup goal

step 3:
move N-1 disks

from B to C

smaller sub-problem:
use recursion to solve it,

reapplying the same method

Motivating Example:

Tower of Hanoi

Today’s Lecture

• detecting container types from code
• exercise discussion
• estimating runtimes with Big-Oh
• when is Big-Oh useful?
• Divide & Conquer
• maximum subsequence
• closest pair of points

• memoization
• memoization for Fibonacci sequence
• outlook on Dynamic Programming

exercise discussion

• A: T(N) = 150 N log N

• B: T(N) = N*N
‣ program A better for large N (but not “always faster”!)
‣ program B better for small N (but not “always faster”!)
‣ cannot answer about average performance

T (N) = cF (N)

T (N 0) = cF (N 0)

T

F (N)
=

T 0

F (N 0)

T 0 =
F (N 0)

F (N)
T

T

F (N)
=

T 0

F (N 0)

F (N 0) =
T 0

T
F (N)

N 0 = F�1

✓
T 0

T
F (N)

◆

T (N) = cF (N)
T (N 0) = cF (N 0)

�
, T

F (N)
=

T 0

F (N 0)
,

8
<

:
T 0 = F (N 0)

F (N) T

N 0 = F�1
⇣

T 0

T F (N)
⌘

1

Estimating Runtimes
with Big-Oh

another good exam question...

When is Big-Oh Useful?
formulate advantages and disadvantages

Divide & Conquer
problem-solving methodology

To solve a problem with the Divide and Conquer
methodology, do the following.

1. Identify (significantly) smaller sub-problems of
the same type as the original problem.

2. Solve each sub-problem using recursion,
terminating at trivially small sub-problems.

3. Combine sub-solutions into overall solution.

Divide & Conquer
problem-solving methodology

• D&C is a simple idea...

• ...and also more of an art than a science.

• We look at some examples today.

• Beware of a common pitfall: overlapping subproblems.

• easy answer: memoization (today)

• better answer: Dynamic Programming (next week)

Example: Max Subsequence Sum

given a sequence of integers

find the subsequence (from i to j)
which maximizes the sum

(the sum is zero if all integers are negative)

T (N) ⇧ O(F (N)) (21)

⌅ ⌥ c,N0 > 0 ⇤ T (N) � cF (N) ⌃ N ⇥ N0 (22)

T (N) ⇧ ⇥(F (N)) (23)

⌅ ⌥ c,N0 > 0 ⇤ T (N) ⇥ cF (N) ⌃ N ⇥ N0 (24)

T (N) ⇧ �(F (N)) (25)

⌅ T (N) ⇧ O(F (N)) � T (N) ⇧ ⇥(F (N)) (26)

T (N) ⇧ o(F (N)) (27)

⌅ T (N) ⇧ O(F (N)) � T (N) /⇧ ⇥(F (N)) (28)

Nmax = 2x (29)

x = log2 Nmax (30)

x � logN (31)

{Ai ⇧ N} = {A1, A2, . . . , AN} (32)
jX

k=i

Ak (33)

2

T (N) ⇧ O(F (N)) (21)

⌅ ⌥ c,N0 > 0 ⇤ T (N) � cF (N) ⌃ N ⇥ N0 (22)

T (N) ⇧ ⇥(F (N)) (23)

⌅ ⌥ c,N0 > 0 ⇤ T (N) ⇥ cF (N) ⌃ N ⇥ N0 (24)

T (N) ⇧ �(F (N)) (25)

⌅ T (N) ⇧ O(F (N)) � T (N) ⇧ ⇥(F (N)) (26)

T (N) ⇧ o(F (N)) (27)

⌅ T (N) ⇧ O(F (N)) � T (N) /⇧ ⇥(F (N)) (28)

Nmax = 2x (29)

x = log2 Nmax (30)

x � logN (31)

{Ai ⇧ N} = {A1, A2, . . . , AN} (32)
jX

k=i

Ak (33)

2

maxSum = 0;
for (ii = 0; ii < length; ++ii) {
 for (jj = ii; jj < length; ++jj) {
 sum = 0;
 for (kk = ii; kk <= jj; ++kk) {
 sum += aa[kk];
 }
 if (sum > maxSum) {
 maxSum = sum;
 first = ii;
 last = jj;
 }
 }
}

Example: Max Subsequence Sum

O(N³)

maxSum = 0;
for (ii = 0; ii < length; ++ii) {
 for (jj = ii; jj < length; ++jj) {
 sum = 0;
 for (kk = ii; kk <= jj; ++kk) {
 sum += aa[kk];
 }
 if (sum > maxSum) {
 maxSum = sum;
 first = ii;
 last = jj;
 }
 }
}

Example: Max Subsequence Sum

maxSum = 0;
for (ii = 0; ii < length; ++ii) {
 sum = 0;
 for (jj = ii; jj < length; ++jj) {
 sum += aa[jj];
 if (sum > maxSum) {
 maxSum = sum;
 first = ii;
 last = jj;
 }
 }
}

Example: Max Subsequence Sum

O(N²)

Divide and Conquer the
Max Subsequence

apply D&C to a specific problem

Group Activity

maxSum = 0;
for (ii = 0; ii < length; ++ii) {
 sum = 0;
 for (jj = ii; jj < length; ++jj) {
 sum += aa[jj];
 if (sum > maxSum) {
 maxSum = sum;
 first = ii;
 last = jj;
 }
 }
}

Max Subsequence Revisited

we can eliminate this loop!

maxSum = 0;
sum = 0;
for (ii=0, jj=0; jj < length; ++jj) {
 sum += aa[jj];
 if (sum > maxSum) {
 maxSum = sum;
 first = ii;
 last = jj;
 }
 else if (sum < 0) {
 ii = jj + 1;
 sum = 0;
 }
}

Max Subsequence Revisited

The max subsequence never
starts with a negative-sum
sub-subsequence.

So we only scan for its end,
resetting the beginning so it
never contains negatives.

Closest Pair of Points

Subproblem Overlap

• Divide & Conquer (and recursion generally)
is great, but it can also go wrong.

Subproblem Overlap Example:

Fibonacci Numbers

F (0) = F (1) = 1 (1)

F (n � 2) = F (n� 2) + F (n� 1) (2)

1

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...

int fibRec(int nn) {
 if (2 > nn) {
 return 1;
 }
 return fibRec(nn - 2) + fibRec(nn - 1);
}

Subproblem Overlap Example:

Fibonacci Numbers

int fibRec(int nn) {
 if (2 > nn) {
 return 1;
 }
 return fibRec(nn - 2) + fibRec(nn - 1);
}

solve smaller subproblems

Subproblem Overlap Example:

Fibonacci Numbers

will call F(n-4) and F(n-3) will call F(n-3) and F(n-2)

Subproblem Overlap Example:

Fibonacci Numbers
int fibRec(int nn) {
 if (2 > nn) {
 return 1;
 }
 return fibRec(nn - 2) + fibRec(nn - 1);
}

int fibRec(int nn) {
 if (2 > nn) {
 return 1;
 }
 return fibRec(nn - 2) + fibRec(nn - 1);
}

will call F(n-4) and F(n-3) will call F(n-3) and F(n-2)

Subproblem Overlap Example:

Fibonacci Numbers

duplicate!

duplicate!

will call F(n-4) and F(n-3)

will call F(n-3) and F(n-2)

will call F(n-5) and F(n-4)will call F(n-6) and F(n-5)

will call F(n-4) and F(n-3)will call F(n-5) and F(n-4)

Subproblem Overlap Example:

Fibonacci Numbers

will call F(n-4) and F(n-3)

will call F(n-3) and F(n-2)

will call F(n-5) and F(n-4)will call F(n-6) and F(n-5)

will call F(n-4) and F(n-3)will call F(n-5) and F(n-4)

Subproblem Overlap Example:

Fibonacci Numbers

fibRec(6)
 fibRec(4)
 fibRec(2)
 fibRec(0)
 fibRec(1)
 fibRec(3)
 fibRec(1)
 fibRec(2)
 fibRec(0)
 fibRec(1)

 fibRec(5)
 fibRec(3)
 fibRec(1)
 fibRec(2)
 fibRec(0)
 fibRec(1)
 fibRec(4)
 fibRec(2)
 fibRec(0)
 fibRec(1)

• Execution trace for F(n=6)

Subproblem Overlap Example:

Fibonacci Numbers

The dependency structure
is not a tree, but a graph.

Figure 2. The
subproblem graph
for the Fibonacci
sequence. The
fact that it is not a
tree indicates
overlapping
subproblems.

optimal substructure and overlapping subproblems. However, when the overlapping problems are much
smaller than the original problem, the strategy is called "divide and conquer" rather than "dynamic
programming". This is why mergesort, quicksort, and finding all matches of a regular expression are not
classified as dynamic programming problems.

Optimal substructure means that the solution to a given optimization problem can be obtained by the
combination of optimal solutions to its subproblems. Consequently, the first step towards devising a dynamic
programming solution is to check whether the problem exhibits such optimal substructure. Such optimal
substructures are usually described by means of recursion. For example, given a graph G=(V,E), the shortest
path p from a vertex u to a vertex v exhibits optimal substructure: take any intermediate vertex w on this
shortest path p. If p is truly the shortest path, then the path p1 from u to w and p2 from w to v are indeed the
shortest paths between the corresponding vertices (by the simple cut-and-paste argument described in
CLRS). Hence, one can easily formulate the solution for finding shortest paths in a recursive manner, which
is what the Bellman-Ford algorithm does.

Overlapping subproblems means that the space of subproblems must be small, that is, any recursive
algorithm solving the problem should solve the same subproblems over and over, rather than generating new
subproblems. For example, consider the recursive formulation for generating the Fibonacci series: Fi = Fi-1 +
Fi-2, with base case F1=F2=1. Then F43 = F42 + F41, and F42 = F41 + F40. Now F41 is being solved in the
recursive subtrees of both F43 as well as F42. Even though the total number of subproblems is actually small
(only 43 of them), we end up solving the same problems over and over if we adopt a naive recursive solution
such as this. Dynamic programming takes account of this fact and solves each subproblem only once. Note
that the subproblems must be only slightly smaller (typically taken to mean a constant additive
factor[citation needed]) than the larger problem; when they are a multiplicative factor smaller the problem is no
longer classified as dynamic programming.

This can be achieved in either of two ways:[citation needed]

Top-down approach: This is the direct fall-out of the recursive formulation
of any problem. If the solution to any problem can be formulated recursively
using the solution to its subproblems, and if its subproblems are overlapping,
then one can easily memoize or store the solutions to the subproblems in a
table. Whenever we attempt to solve a new subproblem, we first check the
table to see if it is already solved. If a solution has been recorded, we can use
it directly, otherwise we solve the subproblem and add its solution to the
table.

Bottom-up approach: This is the more interesting case. Once we formulate
the solution to a problem recursively as in terms of its subproblems, we can
try reformulating the problem in a bottom-up fashion: try solving the
subproblems first and use their solutions to build-on and arrive at solutions
to bigger subproblems. This is also usually done in a tabular form by
iteratively generating solutions to bigger and bigger subproblems by using
the solutions to small subproblems. For example, if we already know the
values of F41 and F40, we can directly calculate the value of F42.

Some programming languages can automatically memoize the result of a function call with a particular set of

Dynamic programming - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Dynamic_programming

3 of 16 10/3/11 6:59

Subproblem Overlap Example:

Fibonacci Numbers

Figure 2. The
subproblem graph
for the Fibonacci
sequence. The
fact that it is not a
tree indicates
overlapping
subproblems.

optimal substructure and overlapping subproblems. However, when the overlapping problems are much
smaller than the original problem, the strategy is called "divide and conquer" rather than "dynamic
programming". This is why mergesort, quicksort, and finding all matches of a regular expression are not
classified as dynamic programming problems.

Optimal substructure means that the solution to a given optimization problem can be obtained by the
combination of optimal solutions to its subproblems. Consequently, the first step towards devising a dynamic
programming solution is to check whether the problem exhibits such optimal substructure. Such optimal
substructures are usually described by means of recursion. For example, given a graph G=(V,E), the shortest
path p from a vertex u to a vertex v exhibits optimal substructure: take any intermediate vertex w on this
shortest path p. If p is truly the shortest path, then the path p1 from u to w and p2 from w to v are indeed the
shortest paths between the corresponding vertices (by the simple cut-and-paste argument described in
CLRS). Hence, one can easily formulate the solution for finding shortest paths in a recursive manner, which
is what the Bellman-Ford algorithm does.

Overlapping subproblems means that the space of subproblems must be small, that is, any recursive
algorithm solving the problem should solve the same subproblems over and over, rather than generating new
subproblems. For example, consider the recursive formulation for generating the Fibonacci series: Fi = Fi-1 +
Fi-2, with base case F1=F2=1. Then F43 = F42 + F41, and F42 = F41 + F40. Now F41 is being solved in the
recursive subtrees of both F43 as well as F42. Even though the total number of subproblems is actually small
(only 43 of them), we end up solving the same problems over and over if we adopt a naive recursive solution
such as this. Dynamic programming takes account of this fact and solves each subproblem only once. Note
that the subproblems must be only slightly smaller (typically taken to mean a constant additive
factor[citation needed]) than the larger problem; when they are a multiplicative factor smaller the problem is no
longer classified as dynamic programming.

This can be achieved in either of two ways:[citation needed]

Top-down approach: This is the direct fall-out of the recursive formulation
of any problem. If the solution to any problem can be formulated recursively
using the solution to its subproblems, and if its subproblems are overlapping,
then one can easily memoize or store the solutions to the subproblems in a
table. Whenever we attempt to solve a new subproblem, we first check the
table to see if it is already solved. If a solution has been recorded, we can use
it directly, otherwise we solve the subproblem and add its solution to the
table.

Bottom-up approach: This is the more interesting case. Once we formulate
the solution to a problem recursively as in terms of its subproblems, we can
try reformulating the problem in a bottom-up fashion: try solving the
subproblems first and use their solutions to build-on and arrive at solutions
to bigger subproblems. This is also usually done in a tabular form by
iteratively generating solutions to bigger and bigger subproblems by using
the solutions to small subproblems. For example, if we already know the
values of F41 and F40, we can directly calculate the value of F42.

Some programming languages can automatically memoize the result of a function call with a particular set of

Dynamic programming - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Dynamic_programming

3 of 16 10/3/11 6:59

For example:
there are four paths from F(5) to F(1)
and fibRec walks each of them.

Subproblem Overlap Example:

Fibonacci Numbers

Memoization

1. store new sub-solutions in a lookup table
2. reuse old sub-solutions when available

“[...] avoid repeating the calculation of results
for previously processed inputs.” (Wikipedia)

So, how do we solve this problem?

Memo * memo_create ();
void memo_destroy (Memo * memo);
int memo_get (Memo * memo, int ii);
void memo_set (Memo * memo, int ii, int fi);

int fibMemo (int ii) {
 static Memo * memo = NULL;
 int fi;
 if (NULL == memo) {
 memo = memo_create ();
 }
 fi = memo_get (memo, ii);
 if (0 < fi) {
 return fi;
 }
 fi = fibMemo (ii-1) + fibMemo (ii-2);
 memo_set (memo, ii, fi);
 return fi;
}

fibRecMemo: compute(6)...
 fibRecMemo: compute(4)...
 fibRecMemo: compute(2)...
 fibRecMemo: lookup[0] = 1
 fibRecMemo: lookup[1] = 1
 fibRecMemo: compute(3)...
 fibRecMemo: lookup[1] = 1
 fibRecMemo: lookup[2] = 2
 fibRecMemo: compute(5)...
 fibRecMemo: lookup[3] = 3
 fibRecMemo: lookup[4] = 5

• execution trace for F(n=6)

Fibonacci with Memoization

Detecting Container
Types from Code

this makes a good exam question...

Group Activity

Memoization for
Fibonacci

implement according to a given interface

Group Activity

int fibIter(int nn) {
 int v1 = 1;
 int v2 = 1;
 int vv = 1;
 for (int ii = 2; ii <= nn; ++ii) {
 vv = v1 + v2;
 v2 = v1;
 v1 = vv;
 }
 return vv;
}

Outlook on Dynamic Programming:
Memoization is not the only way...

int fibIter(int nn) {
 int v1 = 1;
 int v2 = 1;
 int vv = 1;
 for (int ii = 2;
 ii <= nn; ++ii) {
 vv = v1 + v2;
 v2 = v1;
 v1 = vv;
 }
 return vv;
}

Memo * memo_create ();
void memo_destroy (Memo * memo);
int memo_get (Memo * memo, int ii);
void memo_set (Memo * memo, int ii, int fi);

int fibMemo (int ii) {
 static Memo * memo = memo_create ();
 int fi;
 fi = memo_get (ii);
 if (0 < fi) {
 return fi;
 }
 fi = fibMemo (ii-1) + fibMemo (ii-2);
 memo_set (ii, fi);
 return fi;
}

How do these alternatives compare?

int fibIter(int nn) {
 int v1 = 1;
 int v2 = 1;
 int vv = 1;
 for (int ii = 2;
 ii <= nn; ++ii) {
 vv = v1 + v2;
 v2 = v1;
 v1 = vv;
 }
 return vv;
}

Memo * memo_create ();
void memo_destroy (Memo * memo);
int memo_get (Memo * memo, int ii);
void memo_set (Memo * memo, int ii, int fi);

int fibMemo (int ii) {
 static Memo * memo = memo_create ();
 int fi;
 fi = memo_get (ii);
 if (0 < fi) {
 return fi;
 }
 fi = fibMemo (ii-1) + fibMemo (ii-2);
 memo_set (ii, fi);
 return fi;
}

this also takes effort to implement

Dynamic Programming is a methodology
to help find this kind of solution.

Take-Home Message

Divide and Conquer:
1. identify sub-problems
2. solve sub-problems recursively
3. combine sub-solutions

Memoization
• avoid duplicate computation due to

sub-problem overlap by storing sub-
solutions in a lookup table

• “shallow” but practical solution

Function Call
Mechanism

A quick look into
implementation

int cumul (int val) {
 if (1 >= val) {
 return 1;
 }
 return val +
 cumul(val-1);
}
/* ...later... */
int val =
 cumul(2);

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9

instruction pointer: i9

stack pointer: s0

instruction pointer: i9

stack pointer: s1

argument val 2

return value ?

return address i8

s1

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9

int cumul (int val) {
 if (1 >= val) {
 return 1;
 }
 return val +
 cumul(val-1);
}
/* ...later... */
int val =
 cumul(2);

instruction pointer: i1

stack pointer: s1

argument val 2

return value ?

return address i8

s1

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9

int cumul (int val) {
 if (1 >= val) {
 return 1;
 }
 return val +
 cumul(val-1);
}
/* ...later... */
int val =
 cumul(2);

instruction pointer: i1

stack pointer: s1

argument val 2

return value ?

return address i8

s1

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9

int cumul (int val) {
 if (1 >= val) {
 return 1;
 }
 return val +
 cumul(val-1);
}
/* ...later... */
int val =
 cumul(2);

instruction pointer: i5

stack pointer: s1

argument val 2

return value ?

return address i8

s1

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9

int cumul (int val) {
 if (1 >= val) {
 return 1;
 }
 return val +
 cumul(val-1);
}
/* ...later... */
int val =
 cumul(2);

instruction pointer: i5

stack pointer: s2

argument val 2

return value ?

return address i8

s1

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9

argument val 1

return value ?

return address i4

s2

int cumul (int val) {
 if (1 >= val) {
 return 1;
 }
 return val +
 cumul(val-1);
}
/* ...later... */
int val =
 cumul(2);

instruction pointer: i1

stack pointer: s2

argument val 2

return value ?

return address i8

s1

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9

argument val 1

return value ?

return address i4

s2

int cumul (int val) {
 if (1 >= val) {
 return 1;
 }
 return val +
 cumul(val-1);
}
/* ...later... */
int val =
 cumul(2);

instruction pointer: i1

stack pointer: s2

argument val 2

return value ?

return address i8

s1

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9

argument val 1

return value ?

return address i4

s2

int cumul (int val) {
 if (1 >= val) {
 return 1;
 }
 return val +
 cumul(val-1);
}
/* ...later... */
int val =
 cumul(2);

instruction pointer: i2

stack pointer: s2

argument val 2

return value ?

return address i8

s1

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9

argument val 1

return value 1

return address i4

s2

int cumul (int val) {
 if (1 >= val) {
 return 1;
 }
 return val +
 cumul(val-1);
}
/* ...later... */
int val =
 cumul(2);

int cumul (int val) {
 if (1 >= val) {
 return 1;
 }
 return val +
 cumul(val-1);
}
/* ...later... */
int val =
 cumul(2);

instruction pointer: i4

stack pointer: s1

argument val 2

return value ?

return address i8

s1

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9

argument val 1

return value 1

return address i4

s21

int cumul (int val) {
 if (1 >= val) {
 return 1;
 }
 return val +
 cumul(val-1);
}
/* ...later... */
int val =
 cumul(2);

instruction pointer: i4

stack pointer: s1

argument val 2

return value ?

return address i8

s1

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9

1

int cumul (int val) {
 if (1 >= val) {
 return 1;
 }
 return val +
 cumul(val-1);
}
/* ...later... */
int val =
 cumul(2);

instruction pointer: i4

stack pointer: s1

argument val 2

return value ?

return address i8

s1

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9

2 1

int cumul (int val) {
 if (1 >= val) {
 return 1;
 }
 return val +
 cumul(val-1);
}
/* ...later... */
int val =
 cumul(2);

instruction pointer: i4

stack pointer: s1

argument val 2

return value 3

return address i8

s1

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9

2 1

int cumul (int val) {
 if (1 >= val) {
 return 1;
 }
 return val +
 cumul(val-1);
}
/* ...later... */
int val =
 cumul(2);

instruction pointer: i8

stack pointer: s0

argument val 2

return value 3

return address i8

s1

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9

3

int cumul (int val) {
 if (1 >= val) {
 return 1;
 }
 return val +
 cumul(val-1);
}
/* ...later... */
int val =
 cumul(2);

instruction pointer: i8

stack pointer: s0

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9

3

• arguments are not modified in the calling function
the passed values live in the previous stack frame

• arguments are local variables in the called function
they live in the current stack frame

• functions can “call themselves” without interference
the stack keeps track of suspended computations

	
	Motivating Example
	Outline
	Divide & Conquer
	Memoization
	Function Call Mechanism

