
Organization Why? What? How?, When?

Software Testing: Introduction

Mohammad Mousavi

Halmstad University, Sweden

http://bit.ly/TAV16

Testing and Verification,
January 22, 2016

Mousavi: Software Testing: Introduction

http://bit.ly/TAV16

Organization Why? What? How?, When?

Outline

Organization

Why?

What?

How?, When?

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Contact information

Courses Web Pages

http://bit.ly/TAV16

Check for news, updates, course material and much more!

Mohammad Mousavi

Office Halmstad University, E 305
Fridays: Jupiter, 428

E-mail M.R.Mousavi@hh.se

Telephone (035 16) 7122

WWW http://ceres.hh.se/mediawiki/Mohammad Mousavi

Mousavi: Software Testing: Introduction

http://bit.ly/TAV16

Organization Why? What? How?, When?

Objectives and assessment

Learning objectives: Knowledge

1. describe the distinction between software verification and
software validation name and

2. describe the basic concepts on testing, as well as different
testing techniques and approaches

3. describe the connection between software development phases
and kinds of testing, and

4. exemplify and describe a number of different test methods.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Objectives and assessment

Learning objectives: Skills

1. write models in timed automata

2. construct appropriate and meaningful test cases, and interpret
and explain

3. plan and produce appropriate documentation for testing

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Objectives and assessment

Learning objectives: Judgment

1. exemplify and describe tools used for testing software, and

2. exemplify and describe the area of formal verification,
including model checking, and

3. identify and hypothesize about sources of program failures

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Objectives and assessment

I Practical assignments (U, G, or VG):
VG only if you have VG in 2 out of 3 assignments,
G if you have G or VG in all 3 assignments (and the above
rule does not apply),
U otherwise

I Written exams (U, G, or VG):
VG if you score 80 or higher,
G if you score 60 to 79, and
U otherwise.

The final mark (U, G, or VG):
VG if you score VG in both parts,
G if you score G or VG in both part (but not VG in both),
U otherwise.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Objectives and assessment

I Practical assignments (U, G, or VG):
VG only if you have VG in 2 out of 3 assignments,
G if you have G or VG in all 3 assignments (and the above
rule does not apply),
U otherwise

I Written exams (U, G, or VG):
VG if you score 80 or higher,
G if you score 60 to 79, and
U otherwise.

The final mark (U, G, or VG):
VG if you score VG in both parts,
G if you score G or VG in both part (but not VG in both),
U otherwise.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Objectives and assessment

I Practical assignments (U, G, or VG):
VG only if you have VG in 2 out of 3 assignments,
G if you have G or VG in all 3 assignments (and the above
rule does not apply),
U otherwise

I Written exams (U, G, or VG):
VG if you score 80 or higher,
G if you score 60 to 79, and
U otherwise.

The final mark (U, G, or VG):
VG if you score VG in both parts,
G if you score G or VG in both part (but not VG in both),
U otherwise.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Project: GUCar Protocol

General Description

A USB-based communication protocol between
the Aduino and the Odroid process-boards,

I test-driven development in Java using jUnit,

I integration testing using Mockito,

I Visual UI testing using Sikuli, and

I model-checking using UPPAAL.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Project: GUCar Protocol

General Description: Phase 1

TDD of the Arduino module with the following
interfaces:

I Send Sensor Data (torque, ultra distance
and ir distance),

I Read speed and torque,

I Write to input buffer, and

I Read from output buffer

Test design, TDD and self-evaluation.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Project: GUCar Protocol

Schedule and Deadlines

I Forming Groups of 4: Jan. 29 at 17:00

I Phase 1: TDD of a Unit: Feb. 5,

I Phase 2: Integration Testing (Mocking):
Feb. 19

I Phase 3: UI Testing and Model Checking:
Mar. 5

Final exam: March 15.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Project: GUCar Protocol

Schedule and Deadlines
By the deadline:

I Deliverable to be presented by all group
members to the lecturer.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Our Order of Business

I Terminology and Functional Testing

I Test-Driven Development and jUnit

I Coverage Criteria

I Model Checking

I GUI Testing

I Slicing and Debugging

I Reviewing Model Examination

I Guest Lectures

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

General Information

I Text book: P.C. Jorgensen. Software
Testing: A Craftsmans Approach. Auerbach
Publications, 4th edition, 2013.

I Recommended: P. Ammann and J. Offutt,
Introduction to Software Testing, Cambridge
University Press, 2008.

I Papers and other recommended books
posted on the course page.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Outline

Organization

Why?

What?

How?, When?

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Software at Your Heart. . .

Software glitches in pacemakers

Company said it has not received any reports of
deaths or clinical complications resulting from the
glitch, which appears in about 53 out of every
199,100 cases.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Software at Your Heart. . .

At least 212 deaths from device failure in five
different brands of implantable
cardioverter-defibrillator (ICD) according to a
study reported to the FDA

[Killed by Code, 2010]

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Why?

“Bugs”

I Facts of life! (correct by construction: not
always possible / affordable)

I Serious consequences (Pentium bug, OV
Chipcard, etc.)

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Why?

A Classic Bug

I Ariane 5 explosion report:

This loss of information was due to specification and
design errors in the software ... caused during execution
of a data conversion from 64-bit floating point to 16-bit
signed integer value. The floating point number which
was converted had a value greater than what could be
represented ...

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Why?

A Classic Bug

I Ariane 5 explosion report:

This loss of information was due to specification and
design errors in the software ... caused during execution
of a data conversion from 64-bit floating point to 16-bit
signed integer value. The floating point number which
was converted had a value greater than what could be
represented ...

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Why?

The NorthWest Blackout “Bug”

I Widespread blackouts in 2003

I Affecting 8 US states and a part of Canada

I Traced back to a race condition bug

I Surfaced after 3 million hours of operation

Moral of the Story

If it can go wrong, it will go wrong.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Why?

“Bugs”

I 2002 Costs: 60 Billion USD (only USA).
I Coders introduce bugs at the rate

of 4.2 defects per hour of
programming. If you crack the
whip and force people to move
more quickly, things get even
worse. [Watts Humphreys]

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Why?

Quest for Quality

I Software quality will become the
dominant success criterion in the
software industry.

[ACM Workshop on Strategic
Directions in Software Quality]

I Testing:
I a way to achieve better quality
I >50% of the development costs

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Why?

Bezier’s Testing Levels

L0 debugging (ad hoc, few input/outputs)

L1 showing that software works (validating
some behavior)

L2 showing that software does not work
(scrutinizing corner cases)

L3 reducing risks (organizing and prioritizing
test goals)

L4 mental discipline for quality (central to
development)

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Outline

Organization

Why?

What?

How?, When?

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What?

Sorts of “Bug”

I Fault: incorrect implementation
I commission: implement the wrong

specification
I omission: forget to implement a

specification
(the more difficult one to find and resolve)

I Error: incorrect system state (e.g., incorrect
value for a variable)

I Failure (anomaly, incident) : visible error in
the behavior

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What?

Sorts of “Bug”

I Fault: incorrect implementation
I commission: implement the wrong

specification
I omission: forget to implement a

specification
(the more difficult one to find and resolve)

I Error: incorrect system state (e.g., incorrect
value for a variable)

I Failure (anomaly, incident) : visible error in
the behavior

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What?

Sorts of “Bug”

I Fault: incorrect implementation
I commission: implement the wrong

specification
I omission: forget to implement a

specification
(the more difficult one to find and resolve)

I Error: incorrect system state (e.g., incorrect
value for a variable)

I Failure (anomaly, incident) : visible error in
the behavior

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

Spec: A program that inputs an integer, and outputs 2 ∗ i3.

int i;
i << cin;
i = 2 * i;
i = exp(i,3);
cout << i;

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?
Spec: A program that inputs an integer, and outputs 2 ∗ i3.

1: int i;
2: i << cin;
3: i = 2 * i;
4: i = exp(i,3);
5: cout << i;

I Conceptual mistake: confusing the binding power of operators

I Fault: Statements 3 and 4 are in the wrong order

I Failure:
Test-case: on input 1, the program must output 2.
input 1 ... output 8!

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?
Spec: A program that inputs an integer, and outputs 2 ∗ i3.

1: int i;
2: i << cin;
3: i = 2 * i;
4: i = exp(i,3);
5: cout << i;

I Conceptual mistake: confusing the binding power of operators

I Fault: Statements 3 and 4 are in the wrong order

I Failure:
Test-case: on input 1, the program must output 2.
input 1 ... output 8!

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?
Spec: A program that inputs an integer, and outputs 2 ∗ i3.

1: int i;
2: i << cin;
3: i = 2 * i;
4: i = exp(i,3);
5: cout << i;

I Conceptual mistake: confusing the binding power of operators

I Fault: Statements 3 and 4 are in the wrong order

I Failure:
Test-case: on input 1, the program must output 2.
input 1 ... output 8!

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What?

Validation vs. Verification

I Validation: Have we made the right product; compliance with
the intended usage
often: user-centered, manual process, on the end product

I Verification: Have we made the product right; compliance
between artifacts of different phases
often: artifact-driven, formalizable and mechanizable process
among all phases

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What?

Testing

I Planned experiments to:

1. reveal bugs (turn faults into failures, test to fail),

Testing can show the presence of bugs, but not the
absence. [Dijkstra]

2. gain confidence in software quality (test to pass)

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What?

RIP Process

I Reachability: triggering the statements containing the fault,

I Infection: triggering the fault to produce incorrect state

I Propagation: carrying the fault to the visible behavior
(output)

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What?

I Test case (the plan):
input (execution condition / behavior) and output (pass / fail
conditions)

I Testing: planning and executing test-cases (how?).

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What?

Quality Attributes

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Outline

Organization

Why?

What?

How?, When?

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

Testing

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

Testing

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

I Testing: planning and executing test-cases.

1. designing test-cases (manual, automatic: models, formal
specs),

2. executing them (manual or automatic: scaffolding, fixture),
3. distinguishing failures or correct executions (manual: experts,

automatic: oracles, models)
4. giving feed back for debugging / changing specification

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

Moral of the Story

Testing aims at covering some (abstract) artifacts; examples:

I Functional testing: requirements (logical partitions, formulae,
graphs, trees)

I Structural testing: program (control or data flow graphs)

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

Coverage Criterion

A set of predicates on test cases (formalization of a test
requirement)
Examples:

1. For a software with an integer input x :
C = {x < 0, x = 0, 0 ≤ x ≤ 10, x = 10, x > 10}

2. For a program with a set of statements S C = {s is executed
at least once | s ∈ S}.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

Coverage

A test suite T satisfies a coverage criterion C , if for each c ∈ C ,
there exists a t ∈ T such that t satisfies C .
Examples:

1. The set of (x , y) input-output
{(−1,−1), (0, 0), (10, 100), (11,−1)} satisfies
C = {x < 0, x = 0, 0 < x < 10, x = 10, x > 10}

2. A test suite that runs every control-flow simple path satisfies
C = {s is executed at least once | s ∈ S}.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

Aspects of Testing

I Functional testing:
assumption: software is a function from inputs to outputs
coverage criterion defined based onspecification
suitable for black-box testing (but can be enhanced with
information from the code)

+ program independent: tests can be planned early
+ tests are re-usable
- gaps: untested pieces of software
- redundancies: the same statements may be tested several times

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Functional Testing: Mortgage Example

Spec. Write a program that takes
three inputs: gender (boolean), age([18-55]), salary ([0-10000])
and output the total mortgage for one person

Mortgage = salary * factor,
where factor is given by the following table.

Category Male Female
Young (18-35 years) 75 (18-30 years) 70
Middle (36-45 years) 55 (31-40 years) 50
Old (46-55 years) 30 (41-50 years) 35

From: P.C. Jorgensen. Software Testing: A Craftsmans Approach.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

An Implementation

Mortgage (male:Boolean, age:Integer, salary:Integer): Integer
if male then
return ((18 ≤ age < 35)?(75 ∗ salary) : (31 ≤ age <
40)?(55 ∗ salary) : (30 ∗ salary))

else {female}
return ((18 ≤ age < 30)?(75 ∗ salary) : (31 ≤ age <
40)?(50 ∗ salary) : (35 ∗ salary))

end if

Is this implementation correct?

No way, 12 bugs!

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

An Implementation

Mortgage (male:Boolean, age:Integer, salary:Integer): Integer
if male then
return ((18 ≤ age < 35)?(75 ∗ salary) : (31 ≤ age <
40)?(55 ∗ salary) : (30 ∗ salary))

else {female}
return ((18 ≤ age < 30)?(75 ∗ salary) : (31 ≤ age <
40)?(50 ∗ salary) : (35 ∗ salary))

end if

Is this implementation correct? No way, 12 bugs!

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Functional Testing

Mortgage (male:Boolean, age:Integer, salary:Integer): Integer
if male then
return ((18 ≤ age < 35)?(75 ∗ salary) : (31 ≤ age <
40)?(55 ∗ salary) : (30 ∗ salary))

else {female}
return ((18 ≤ age < 30)?(75 ∗ salary) : (31 ≤ age <
40)?(50 ∗ salary) : (35 ∗ salary))

end if

Possible coverage:
for each age range and for each gender and salary 1, the input
combination is in this range
output: factors as given by the table
(similar to equivalence testing; wait till next sessions!)

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

Aspects of Testing

I Structural testing:
coverage criterion based on abstraction of program
examples: code coverage, branch coverage

+ giving insight to the effectiveness of test
- more complicated than functional testing
- incapable of detecting errors of omission

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Structural Testing

Spec.: input: an integer x [1..216]
output: x incremented by two, if x is less than 50,
x decremented by one, if x is greater than 50, and
50, otherwise.

if x < 50 then
x = x + 1;

end if
if x > 50 then

x = x - 1;
end if
return x

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Structural Testing
if x < 50 then

x = x + 1;
end if
if x > 50 then

x = x - 1;
end if
return x

Coverage criterion: all statements are at least executed once,
manually check the outputs with the spec.

Input Output Pass/Fail
1540 1539 P
2783 2782 P
3222 3221 P
30 31 F

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Structural Testing
First “Debugged” Version:

if x < 50 then
x = x + 2;

end if
if x > 50 then

x = x - 1;
end if
return x

Input Output Pass/Fail
1540 1539 P
2783 2999 P
3222 3221 P
30 32 P

Have we tested enough?

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Structural Testing

if x < 50 then
x = x + 2;

end if
if x > 50 then

x = x - 1;
end if
return x

Input Output Pass/Fail
49 50 F

Pesticide paradox: debugging old faults may produce new bugs (or
“wake” old bugs up).

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

Ideal Mix

I Functional and structural testing at various levels (unit,
integration, system)

I Structural measures for the effectiveness of functional
test-cases

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

When?

V Model

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

When?

V Model

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

When?

Boehm’s Curve

requirement designspecification implementation

development

cost

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

When?

Dealing with Bugs

1-4 Putting errors in (producing bugs),

5-7 finding bugs:
I testing
I fault classification
I fault isolation

8 removing bugs

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What Else?

Alternatives

I Static Analysis:
test abstract properties without running the program,
e.g., uninitialized/unused variables, empty/unspecified cases,
coding standards, checking for design (anti)patterns.

+ automatic and scalable for generic and abstract properties;
+ existing powerful tools;
- involves approximation (true negatives and false positives);

complicated (may involve theorem proving) for concrete and
specific properties (proving the abstraction function to be
“correct”)

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What Else?

Alternatives

I Model Checking:
test the state-space for formally specified properties.

+ rigorous analysis, push-button technology;
- not (yet) applicable to many industrial cases (state-space

explosion)

Mousavi: Software Testing: Introduction

	Organization
	Why?
	What?
	How?, When?

