
Input-Output Conformance Testing
Based on Featured Transition Systems

Harsh Beohar
Center for Research on Embedded Systems

Halmstad University, Sweden
harsh.beohar@hh.se

Mohammad Reza Mousavi
Center for Research on Embedded Systems

Halmstad University, Sweden
m.r.mousavi@hh.se

ABSTRACT
We extend the theory of input-output conformance testing
to the setting of software product lines. In particular, we
allow for input-output featured transition systems to be used
as the basis for generating test suites and test cases. We
introduce refinement operators both at the level of models
and at the level of test suites that allow for projecting them
into a specific product configuration (or product sub-line).
We show that the two sorts of refinement are consistent and
lead to the same set of test-cases.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal Methods; D.2.5 [Software Engineering]:
Testing and Debugging

Keywords
Model based testing, Input-output conformance testing, Soft-
ware product lines, Input-output featured transition systems

1. INTRODUCTION

1.1 Motivation
Software Product Lines (SPLs) have become common prac-

tice in software development and have been proven effective
in mass production and customization of software. There
have been several attempts to provide a structured discipline
for testing SPLs. However, it appears from recent surveys
[4, 5, 8, 7] that several fundamental approaches to model-
based testing (based on finite state machines and labeled
transition systems) are not yet fully adapted to and adopted
in this domain. The theory of Input-Output Conformance
(IOCO) [11], is one such fundamental approach, which uses
labeled transition systems for model-based testing. We are
not aware of any prior work in adapting the theory of IOCO
to cater for variability in SPLs. The present paper addresses
this gap by extending IOCO to the setting of SPLs. To

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

this end, we propose Input-Output Featured Transition Sys-
tems (IOFTSs) as simple yet expressive behavioral models of
SPLs and adapt the traditional IOCO theory to allow for us-
ing IOFTS (instead of plain input-output transition system
models) as test models for model-based testing. We define
the test suite and the test cases that are generated from an
IOFTS, which can be used for checking conformance. We
define two notions of refinement, one at the level of IOFTSs
and another one at the level of test suites, that allow for
focusing on particular sets of features and eventually on a
particular product. We show that these two refinements in-
teract nicely, in that they lead to the same set of test cases.

1.2 Running Example
To illustrate the concepts throughout the paper, we for-

malize various aspects of the following SPL (due to Asirelli
et al. [2]) and study its testing in the remainder of this paper.

Example 1. We model an SPL for vending machines, which
accept one-Euro coins (1e) exclusively for the European mar-
ket and one-Dollar coins (1d) exclusively for the American
market. Then, a user has the choice of adding sugar or
nosugar, after which the user is allowed to chose a bever-
age among coffee, tea, and cappuccino. Furthermore, the
following constraints hold on each product:

1. Coffee must be offered by each and every variant of
this product line.

2. Cappuccino is served only by the European machines
and whenever cappuccino is served, a ring-tone must
ring.

3. Tea is an optional feature for both markets.

1.3 Organization
In Section 2, we define the notion of input-output featured

transition systems as our basic modeling language. In Sec-
tion 3, a notion of refinement is proposed that allows for
projecting the SPL behavior into the behavior of a product
or a product sub-line. In Section 4, we define the notions
of test suite and test cases. In Section 5, a notion of re-
finement is given on test suites, which allows for deriving
more specific test suites from the more generic ones. In the
same section, we show that the above-mentioned notions of
refinement (i.e., on models and test suites) are consistent in
that they lead to the same set of test cases. In Section 5,
we also show that the intensional and extensional notions
of conformance testing coincide, i.e., non-conformance can
always be established by means of running test-cases. In

Machine
m

Coin
o

Ringtone
r

Beverage
b

1e
e

1d
d

Cappuccino
p

Coffee
c

Tea
t

Figure 1: Vending machine feature diagram [2].

Section 6, we conclude the paper and present directions for
future research.

2. INPUT-OUTPUT FEATURED TRANSITION
SYSTEMS

Feature diagrams [6, 10] have been used to model vari-
ability constraints in SPLs using a graphical notation. A
feature diagram represents all valid products of an SPL in
terms of features that are arranged hierarchically. Usually,
feature diagrams are represented by a directed acyclic graph,
of which each node is a feature. There are different kinds
of edges between a parent node (feature) and its children
(sub-features), namely, the ones representing the mandatory
sub-features, and the others representing the optional sub-
features. Furthermore, a feature diagram can specify three
additional type of constraints on features:

1. Alternative relationship, i.e., the designated sub-features
can never be simultaneously present in any product.

2. Exclude relationship, i.e., different features at different
levels of hierarchy can never be simultaneously present
in any product.

3. Require relationship, i.e., if a feature is present in a
product, the related feature should also be present in
the same product.

Example 2. Consider the feature diagram depicted in Fig-
ure 1 [2], which represents the features and the feature con-
straints of Example 1. In this diagram every machine must
consist of features machine (m), coin (o), and beverage (b)
and may comprise an optional feature ring-tone (r). The coin
feature is further decomposed into two alternative features
euro (e) and dollar (d). Furthermore, Figure 1 also specifies
that cappuccino (p) requires ring-tone (r), which is denoted
by a uni-directional dashed line and cappuccino is absent in
the machine that takes dollars, which is represented by a
bi-directional dashed line.

A feature diagram only specifies the structural aspects
of variability in an SPL; however, to formally analyze the
behavior of an SPL, we follow the approach of [3] in an-
notating the transitions of a labeled transition system with
logical constraints on the presence or absence of features;
the features used in such logical constraints are assumed to
be already specified in a feature diagram. We slightly ex-
tend the featured transition system of [3] to cater for the
distinction between input and output actions. This is a nec-
essary ingredient for extending the theories of testing, and
particularly IOCO, to this setting.

Let B = {>,⊥} be the set of Boolean constants and let
B(F) be the set of all propositional formulae generated by

interpreting the elements of the set F as propositional vari-
ables. For instance, in the context of Example 2, formula
e ∧ ¬d asserts the presence of euro coin and the absence of
dollar coin. We let ϕ,ϕ′ range over the set B(F).

Definition 1. A input-output featured transition system
(IOFTS) is a 6-tuple (S, s,A, F, T,Λ), where

1. S is the set of states,

2. s ∈ S is the initial state,

3. A = AI]AO is the set of actions partitioned into two
disjoint sets of input AI and output AO actions,

4. F is the set of features,

5. T ⊆ S×Aτ×B(F)×S is the transition relation (Aτ =
A ∪ {τ} and τ 6∈ A is the so-called internal action)
satisfying the following condition (for every s1, s2 ∈
S, a ∈ Aτ , ϕ, ϕ′ ∈ B(F)):

(s1, a, ϕ, s2) ∈ T ∧ (s1, a, ϕ
′, s2) ∈ T ⇒ ϕ = ϕ′,

6. Λ ⊆ {λ : F → B} is the set of product configurations.

We write s
a−→ϕ s′ to denote an element (s, a, ϕ, s′) ∈ T

and drop the subscript ϕ whenever it is clear from the con-
text. We usually refer to an IOFTS by its initial state and
graphically denote the initial state by an incoming arrow
with no source state. Following the standard notation, we
denote the reachability relation by→→ ⊆ S×A∗×S, induc-
tively defined as follows:

s
ε→→ s

s
σ→→ s′, s′

τ−→ s′′

s
σ→→ s′′

s
σ→→ s′, s′

a−→ s′′, a 6= τ

s
σa→→ s′′

.

The set of reachable states from a state s by a trace σ ∈ A∗
is denoted by Reach(s, σ) = {s′ | s σ→→ s′}. Furthermore, we

fix Reach(s) = {s′ | ∃σ s
σ→→ s′}.

Example 3. Consider the FTS in Figure 2(a) with the as-
sociated annotation function γ defined in the following way.

Transitions γ()

s1
1e−→ s2 e

s1
1d−→ s2 d

s2
coffee−−−→ s5 c

s2
tea−→ s6 t

Transitions γ()

s2
cappuccino−−−−−−→ s7 p

s12
ringatone−−−−−→ s13 p⇒ r

remaining transitions m

In Figure 2(a), inputs and outputs are prefixed with symbols
? and !, respectively. The transition labeled with !ringatone,
τ stands for two transitions. The set of product configu-
rations of the IOFTS is the following set of 10 products
specified by the feature diagram of Example 2 [1]:

Λ ={{m, o, b, c, e}, {m, o, b, c, e, r}, {m, o, b, c, e, t},
{m, o, b, c, e, t, r}, {m, o, b, c, e, p, r}, {m, o, b, c, d},
{m, o, b, c, d, r}, {m, o, b, c, d, t},
{m, o, b, c, d, t, r}, {m, o, b, c, e, p, r, t}}.

s1

s2

s3 s4

s5 s6 s7 s8 s9 s10

s11

s12s13

?sugar ?nosugar

?coffee ?coffee

!pour
sugar

!pourcoffee

?takecup

!pour
coffee

!pour
milk !pour

tea

!poursugar

!poursugar

?1e, ?1d

?tea
?cappuccino

?cappuccino

?tea

!ringatone,
τ

(a) The vending machine product line.

t1

t2

t3 t4

t5 t7 t8 t10

t11

t12t13

?sugar ?nosugar

?coffee ?coffee

!pour
sugar

!pourcoffee

?takecup

!pour
coffee

!pour
milk

!poursugar

?1e

?cappuccino

?cappuccino

!ringatone,
τ

(b) The behavior of all products in European market
that do not serve tea.

Figure 2: IOFTSs of the vending machine example [2].

3. REFINEMENT OF MODELS
In [3], a family of operators, parameterized by product

configuration, have been introduced to project an FTS into
a labeled transition system describing the behavior of a spe-
cific product. In this paper, we generalize this approach by
defining a family of product derivation operators (parame-
terized by feature constraints), which project the behavior
of an IOFTS into another IOFTS representing a selection of
products (a product sub-line).

Definition 2. Given a feature constraint ϕ and an IOFTS
T = (S, s,A, F, T,Λ), the projection of T with respect to ϕ,
denoted by ∆ϕ(T), is an IOFTS (S′,∆ϕ(s), Aδ, F, T

′,Λ′),
where

1. S′ = {∆ϕ(s′) | s′ ∈ S} is the set of states,

2. ∆ϕ(s) is the initial state,

3. Aδ = A ∪ {δ} is the set of actions, where δ is the
special action label modeling quiescence (the absence
of output and internal actions) [11],

4. T ′ is the smallest relation satisfying the following rules:

∃λ∈Λ λ |= (γ(s, a, s′) ∧ ϕ)

∆ϕ(s)
a−→γ(s,a,s′)∧ϕ ∆ϕ(s′)

(1)

@λ,s′,a λ |= (γ(s, a, s′) ∧ ϕ) ∧ a ∈ AO ∪ {τ}

∆ϕ(s)
δ−→ϕ ∆ϕ(s)

(2)

5. Λ′ = {λ ∈ Λ | λ |= ϕ} is the set of product configura-
tions.

In the above-given rules λ |= ϕ, denotes that valuation λ
of features satisfies feature constraint ϕ. Intuitively, rule (1)
describes the behavior of those valid products that satisfy
the feature constraint ϕ in addition to the original annota-
tion of the transition emanating from s. Rule (2) models qui-
escence (the absence of outputs and internal actions) from
the state ∆ϕ(s). This ability to observe that no outputs are
enabled is crucial in defining the input-output conformance
relation between a specification s and an implementation i
(see Section 4).

Example 4. Consider the vending machine product line
and suppose we are interested in analyzing the behavior of
all products in the European markets that do not serve tea.
This can be formulated as ∆ϕ(1), where ϕ = 1e∧¬tea and 1
is the initial state in Figure 2(a). The behavior induced by
this feature constraint is given in Figure 2(b). Notice that
the one-dollar (1d) transition does not occur at state 1 in
Figure 2(b) even though this constraint is unspecified in ϕ.

In the sequel, we use the phrase “a feature specification
∆ϕ(s)” to mean an IOFTS (Reach(∆ϕ(s)),∆ϕ(s), Aδ, F, T,
Λ). Henceforth, we work only with feature specifications (we
interpret the original IOFTS of Definition 1 as ∆>(s0); this
has the implicit advantage of always including quiescence
in appropriate states). We end this section by the following
proposition which states that for any sequence of transitions
of the form ∆ϕ∧ϕ′(s)

σ→→ ∆ϕ∧ϕ′(s
′) such that σ ∈ A∗, there

exists a sequence of transitions ∆ϕ(s)
σ→→ ∆ϕ(s′) in the fea-

ture specification ∆ϕ(s).

Proposition 1. If ∆ϕ∧ϕ′(s)
σ→→ ∆ϕ∧ϕ′(s

′) and σ ∈ A∗ then

∆ϕ(s)
σ→→ ∆ϕ(s′).

Proof. Straightforward by induction on σ, since for any
product configurations λ of the feature specification ∆ϕ∧ϕ′(s)
we have λ |= ϕ ∧ ϕ′ ⇒ λ |= ϕ.

4. TEST SUITE AND TEST CASES
The ioco testing theory [11] formalizes model-based test-

ing in terms of a conformance relation between a model and
a system under test (SUT). This relation can be checked by
constantly providing the SUT with inputs that are deemed
relevant by the model (expressed as an IOTS: input-output
labeled transition system) and observing outputs from the
SUT and comparing them with the possible outputs pre-
scribed by the model. The ioco theory is based on the testing
assumption that the behavior of the system under test can
be expressed by an IOTS, which is unknown to the tester. In
addition to the above-sketched extensional definition of ioco,
there is an equivalent intensional definition, which relies on
comparing the traces of the underlying IOTSs.

In what follows, we first extend the intensional notion of
conformance between any two feature specifications. Then,
using a novel concept of an ioco test suite (Definition 5), we
give an extensional definition of the class of test cases for a
given specification ∆ϕ(s).

To formally define both the intensional and the exten-
sional notion of input-output conformance (ioco), we require
the notion of suspension traces in an IOFTS. Informally, a
suspension trace is a trace that may contain the action δ
denoting quiescence [11].

Definition 3. The set of suspension traces of a feature
specification ∆ϕ(s) is defined as: Straces(∆ϕ(s)) = {σ ∈
Aδ
∗ | ∃s′ ∆ϕ(s)

σ→→ ∆ϕ(s′)}.
Intuitively, the ioco relation asserts that the experiments
derived from a feature specification (i.e, suspension traces
of the specification) and executed on the implementation
under test, result in outputs that are always allowed by the
specification.

Definition 4. An implementation modeled as a feature
specification ∆ϕ′(s

′) is input-output conforming to a spec-
ification modeled as a feature specification ∆ϕ(s), denoted
∆ϕ(s) vioco ∆ϕ′(s

′), iff

out(Reach(∆ϕ′(s
′), σ)) ⊆ out(Reach(∆ϕ(s), σ)),

for every suspension trace σ ∈ Straces(∆ϕ(s)), where out(X)
denotes the set of output enabled from the states in the set
X, i.e., out(X) = {a ∈ AO ∪ {δ} | ∀s∈X∃s′s

a→→ s′}.

Conventionally, test cases are defined as deterministic input-
output labeled transition systems having finite number of
states (with no structure) and certain restrictions on the
transitions (see [11, Definition 10]). In this paper, we de-
fine them operationally in the sense of [9] by endowing a
structure on the states (see Definition 5). This allows for
generating a test suite for a product line and refining it into
test suites for more specific sub-lines (and eventually gener-
ating test cases for a specific product).

Definition 5. The test suite for an IOFTS (∆ϕ(S),∆ϕ(s),

Aδ, F, T,Λ) is an IOFTS (Xϕ
s ∪{pass, fail}, X̂ϕ

s , Aθ, F, T
′,Λ),

where

1. Xϕ
s =

{(
{s′ | ∆ϕ(s)

σ→→ ∆ϕ(s′)}, σ
)
| σ ∈ Straces(s)

}
is the set of states and {pass, fail} is the set of so-
called verdict states [11],

2. X̂ϕ
s = {({s′ | ∆ϕ(s)

ε→→ ∆ϕ(s′)}, ε)} is the initial state
of the test suite,

3. Aθ = A∪{θ} is the set of actions with the special label
θ modelling quiescence in the test suite (cf [11]), and

4. the transition relation T ′ is defined as the smallest
relation satisfying the following rules.

X,Y 6= ∅
(X,σ), (Y, σa) ∈ Xϕ

s

(X,σ)
f(a)−−−→ϕ (Y, σa)

(3)

a ∈ AO ∪ {θ}
(X,σ)

a−→ϕ (Y, σ′)

(X,σ)
a−→ϕ pass

(4)

(X,σ) 6 a−→ϕ pass

(X,σ)
a−→ϕ fail

(5)
a ∈ AO ∪ {θ}
pass

a−→ϕ pass

fail
a−→ϕ fail

(6)

Intuitively, the test suite for a feature specification is an
IOFTS (possibly with infinite number of states) which con-
tains all the possible test cases that can be generated. Rule (3)
states that if X and Y are nonempty sets of reachable states
from s (under feature restriction ϕ) with the suspension
traces σ and σa, respectively, then there exists a transition

of the form (X,σ)
f(a)−−−→ϕ (Y, σa) in the test suite. The func-

tion f renames the quiescence action label δ into θ as done
in [11], while the input and output actions are unchanged.
Formally, the function f is defined as follows:

f(a) =

{
a, if a 6= δ
θ, if a = δ

.

Rules (4) and (5) model the successful and unsuccessful ob-
servation of outputs and quiescence. Note input actions are
not included in rules (4) and (5) because the implementation
is assumed to be AI-input-enabled in ioco testing theory (cf.
[11]); hence, they are only covered in rule (3). Rule (6) states
that the verdict states contains self-loop for every output ac-
tion and quiescence.

Example 5. Consider the feature specification ∆ϕ(s1) given
in Figure 2(a). An illustration of the test suite (up to depth
2) for the specification ∆ϕ(s1) is shown in Figure 3. The

edge ({s1}, ε)
AO−−→ fail in Figure 3 denotes the transition

({s1}, ε)
a−→ fail for every output a ∈ AO.

({s1}, ε) ({s2}, 1e)({s2}, 1d)

· · ·

· · ·

· · ·

· · ·

pass passpass

({s1}, δ)

· · ·

({s2}, 1eδ)

· · ·

({s2}, 1dδ)

· · ·

fail

!1e!1d !su
ga

r

!nosugar

θθθ

!sugar

1n
os

uga
r

θ

θ

θ

θ

θ

θ

θ

θ

θ

AO

AO AO

Figure 3: Test suite of the vending machine

The following properties are immediate from the rules given
in Definition 5.

Lemma 1. If (X,σ)
σ′→→ (Y, σ′′) then σ′ = σ′′.

Lemma 2. If (X̂ϕ
s , ε)

σ→→ (X,σ) then

∀s′ ∆ϕ(s)
σ→→ ∆ϕ(s′) ⇔ s′ ∈ X.

Lemma 3. If ∆ϕ(s)
σ→→ ∆ϕ(s′) for some s′ then

∃X (X̂ϕ
s , ε)

σ→→ (X,σ) ∧ s′ ∈ X.

Lemma 4. If (X,σ)
σ′→→ (Y, σ′) and (X,σ)

σ′→→ (Z, σ′) then
Y = Z.

Proof. Proof of all the above-given lemmata is straight-
forward by induction on the corresponding trace (σ′ in Lem-
mata 1 and 4 and σ in Lemmata 2 and 3).

Next, we formalise the intuition that a test case is a finite
projection of a test suite, plus the restriction that at each
moment of time at most one input can be fed into the system
under test.

Definition 6. Given a test suit T , the set of test cases of
T up depth n, denoted by tn(T), is an IOFTS, of which the
transition relation is the minimal relation satisfying both the
following deduction rules,

(X,σ)
a−→ϕ (Y, σ′) ∧ |σ′| < n

tn(X,σ)
a−→ϕ tn(Y, σ′)

(7)

(X,σ)
a−→ϕ Y ∧ (Y = pass ∨ Y = fail)

tn(X,σ)
a−→ϕ Y

(8)

and the following Tretmans’ restrictions:

1. For every reachable state X such that tn(X̂ϕ
s , ε)

σ→→
X , either init(X) = {a} ∪ AO (for some a ∈ AI) or

init(X) = AO∪{θ}, where init(X) = {a | ∃Y X
a−→ Y}.

2. For every reachable state X such that tn(X̂ϕ
s , ε)

σ→→ X ,

if X a−→ pass then ∀Y X
a−→ Y ⇒ Y = pass.

A test case of depth n for a feature specification ∆ϕ(s) is

tn(X̂ϕ
s , ε).

Example 6. Consider the feature specification ∆ϕ(s1) given
in Figure 2(a). A test case of depth 1 generated from the
test suite of the feature specification ∆ϕ(s1) is shown in
Figure 4.

({s1}, ε) ({s2}, !1e)({s2}, !1d)

pass

fail

!1e!1d
θθθ

AO

AO AO

Figure 4: A test case of the vending machine

Proposition 2. A test case is always deterministic andAO∪
{θ}-input enabled.

Proposition 3. A test case has no cycles except those in
the verdict states pass and fail.

Next, we show that the intensional and the extensional no-
tion of testing coincides. To do so, we recall the definition of
the synchronous parallel composition operator e| that allows
us to model a test run on an implementation (cf. [11]). This
synchronous parallel composition operator e| is defined over
a test suite and an IOFTS (the intended implementation)
as follows. Note that the calligraphic letters X ,Y in the
following rules range over the states of a test suite.

X a−→ Y ∆ϕ(s)
a−→ ∆ϕ(s′) a ∈ A

Xe|∆ϕ(s)
a−→> Ye|∆ϕ(s′)

(9)

∆ϕ(s)
τ−→ ∆ϕ(s′)

Xe|∆ϕ(s)
τ−→> Xe|∆ϕ(s′)

(10)

X θ−→ Y ∆ϕ(s)
δ−→ ∆ϕ(s′)

Xe|∆ϕ(s)
θ−→> Ye|∆ϕ(s′)

(11)

By having a notion of running a test suite on a feature spec-
ification (modeling the intended implementation), we can
now define what it means for a feature specification to pass
the test suite. Informally, a test suite is passed by a feature
specification if and only if every synchronous interaction be-
tween the test suite and the feature specification does not
leads to the fail verdict state.

Definition 7. A feature specification ∆ϕ′(s
′) passes the

test suite (X̂ϕ
s , ε) iff

∀σ∈Aθ
∗,s′′@X (X̂ϕ

s , ε)e|∆ϕ′(s
′)

σ→→ Xe|∆ϕ′(s
′′) ∧ X = fail

Next we prove that the intensional and the internal char-
acterization of the vioco relation coincide, i.e., vioco can
always be checked by means of the generated test suite.

Theorem 1. ∆ϕ(s) vioco ∆ϕ′(s
′) iff ∆ϕ′(s

′) passes the

test suite (X̂ϕ
s , ε).

Proof Sketch. (⇐) Suppose the feature specification

∆ϕ′(s
′) passes the test suite (X̂ϕ

s , ε). Then, we show by con-
tradiction that ∆ϕ(s) vioco ∆ϕ′(s

′) holds. So suppose a ∈
out(Reach(∆ϕ′(s

′), σ)) and let a 6∈ out(Reach(∆ϕ(s), σ)),

for some σ ∈ Straces(∆ϕ(s)), a ∈ AO. Then, ∃X (X̂ϕ
s , ε)

σa→→
X ∧X = fail. But, ∆ϕ′(s

′) passes the test suite (X̂ϕ
s , ε), i.e.,

@X (X̂ϕ
s , ε)

σa→→ X ∧X = fail, which leads to a contradiction.
(⇒) Suppose ∆ϕ(s) vioco ∆ϕ′(s

′). Then we prove by con-
tradiction that the feature specification ∆ϕ′(s

′) passes the

test suite (X̂ϕ
s , ε). Wlog, suppose that ∃X (X̂ϕ

s , ε)e|∆ϕ′(s
′)

σ→→
(X,σ)e|∆ϕ′(s

′
1)

a−→ faile|∆ϕ′(s
′
2), for some σ, s′1, s

′
2, and a ∈

AO. Clearly, σ ∈ Straces(∆ϕ(s)), a 6∈ out(Reach(∆ϕ(s), σ)),
and a ∈ out(Reach(∆ϕ′(s

′), σ)). But ∆ϕ(s) vioco ∆ϕ′(s
′)

implies that out(Reach(∆ϕ′(s
′), σ)) ⊆ out(Reach(∆ϕ(s), σ))

which again leads to a contradiction.

5. REFINEMENT OF TEST SUITES
In this section, we define the notion of refinement on test

suites, to project them into more specific product sub-lines
and eventually into products. As the main result of this
section, we show that the two notion of refinements (the
one on IOFTS as models defined in Section 2 and the other
defined in this section) are consistent. More precisely, we
show that restricting a test suite of the feature specification
∆ϕ(s) by a feature constraint ϕ′ is isomorphic to the test
suite of the feature specification ∆ϕ∧ϕ′(s).

Definition 8. Two states X ,Y are isomorphic, denoted
X ∼= Y, if there exists a bijection f : Reach(X)→ Reach(Y)
such that f preserves the transition structure, i.e.,

∀X1,X2∈Reach(X),a X1
a−→ X2 ⇔ f(X1)

a−→ f(X2).

Nest, we introduce the projection operator ∆t
ϕ that re-

stricts the behavior of the test suite of the feature specifica-
tion ∆ϕ(s) by ϕ′.

Definition 9. Let (Xϕ
s ∪ {pass, fail}, X̂ϕ

s , Aθ, F, T
′,Λ) be

the test suite for a feature specification ∆ϕ(s). For a feature
constraint ϕ′, the test-projection operator ∆t

ϕ′() induces

an IOFTS (∆t
ϕ′(X

ϕ
s)∪ {pass, fail},∆t

ϕ′(X̂
ϕ
s), Aθ, F, T

′,Λ′),

where the transition relation T ′ is defined as the smallest
relation satisfying the following rules.

(X,σ)
a−→ϕ (Y, σ′) λ |= ϕ′

∆t
ϕ′(X,σ)

a−→ϕ ∆t
ϕ′(Y, σ

′)
(12)

a ∈ AO ∪ θ
∆t
ϕ′(X,σ)

a−→ϕ ∆t
ϕ′(Y, σ

′)

∆t
ϕ′(X,σ)

a−→ϕ pass
(13)

∆t
ϕ′(X,σ) 6 a−→ϕ pass

∆t
ϕ′(X,σ)

a−→ϕ fail
(14)

(X,σ)
θ−→ϕ fail

∃s′∈X ∆ϕ∧ϕ′(s)
σ→→ ∆ϕ∧ϕ′(s

′)
δ−→ ∆ϕ∧ϕ′(s

′)

∆t
ϕ′(X,σ)

θ−→ϕ ∆t
ϕ′(X,σδ)

(15)

The component Λ′ is defined as Λ′ = {λ ∈ Λ | λ |= ϕ}.

Intuitively, rule (12) states that if an a-transition can be
executed in the test suite for the specification ∆ϕ(s) (i.e.,

(X,σ)
a−→ (Y, σa)) and there exists a product configuration

in the test suite that satisfies ϕ ∧ ϕ′ then the a-transition
can be executed in the restricted test suite. Rules (13) and
(14) model the successful and the unsuccessful observations
of outputs and quiescence.

Rule (15) handles the situation when new quiescence is
detected due to the feature constraint ϕ′. Namely, a dis-
abled action at a state of ∆ϕ(s) will remain disabled at the
corresponding state in ∆ϕ∧ϕ′(s); however, a non-quiescent
state of ∆ϕ(s) can become a quiescent state of ∆ϕ∧ϕ′(s)
after the restriction under ϕ′. Consequently, such states
in ∆ϕ∧ϕ′(s) will have new suspension traces that are not
present in ∆ϕ(s).

Example 7. Consider an IOFTS ({s, s′}, {a}, {f}, {s a−→f

s′}, {λ | λ |= f}) with a ∈ AO. Clearly, when we restrict the
state s with a feature constraint ¬f , the a-transition will

become disabled. As a result, the transition ∆f∧¬f (s)
δ−→

∆f∧¬f (s) will cause new suspension traces δ∗ that were
never possible from the state ∆f (s).

We now prove some properties on the restricted test suite
of the specification ∆ϕ(s) under ϕ′. Lemma 5 is similar to
Lemma 4, which states that a unique state is always reach-
able for every trace in the restricted test suite.

Lemma 5. If ∆t
ϕ′(X̂

ϕ
s , ε)

σ→→ ∆t
ϕ′(X,σ), ∆t

ϕ′(X̂
ϕ
s , ε)

σ→→
∆t
ϕ′(Y, σ) then X = Y .

Proof. We prove this lemma by induction on σ. The
base case, when σ = ε, is trivial because there are no τ

(X̂ϕ∧ϕ′
s , ε)∆t

ϕ′(X̂
ϕ
s , ε) (X,σ) ∆t

ϕ′(Y, σ)σ

Figure 5: An illustration of Lemma 6

steps present in a test suite. For the inductive case, assume
the following transitions

∆t
ϕ′(X,σ)

a−→ ∆t
ϕ′(Y, σ

′)

∆t
ϕ′(X,σ)

a−→ ∆t
ϕ′(Z, σ

′),
(1)

for some ∆t
ϕ′(X,σ) ∈ Reach(∆t

ϕ′(X̂
ϕ
s , ε)). We observe that

if a ∈ A then the two transitions in (1) are due to the ap-

plication of rule (12), i.e., (X,σ)
a−→ (Y, σ′) and (X,σ)

a−→
(Z, σ′). Furthermore, from Lemma 4 it follows that Y = Z.
However, when a = θ the two transitions in (1) can be the
result of rule (12) or (15) or mix of both. To this end, we

show that if ∆t
ϕ′(X,σ)

θ−→ ∆t
ϕ′(Y, σ

′) is due to the applica-

tion of rule (12) then the transition ∆t
ϕ′(X,σ)

θ−→ ∆t
ϕ′(Z, σ

′)
is also due to the application of rule (12).

Assume otherwise, the transitions ∆t
ϕ′(X,σ)

θ−→ ∆t
ϕ′(Y, σ

′)

and ∆t
ϕ′(X,σ)

θ−→ ∆t
ϕ′(Z, σ

′) are due to the application of
rules (12) and (15), respectively. From rule (15) we have

(X,σ)
θ−→ fail, which further implies that @Y,σ′ (X,σ)

θ−→
(Y, σ′). But, from rule (12) we have ∃Y,σ′ (X,σ)

θ−→ (Y, σ′),
which is clearly a contradiction. A similar contradiction can
be obtained if the transitions in (1) are due to rules (15) and
(12), respectively. Thus, the application of rules (12) and
(15) is mutually exclusive.

Lastly, if the transitions in (1) is due to rule (12), then
from Lemma 4 we can conclude that Y = Z (just like in the
case of a ∈ A). On the other hand, if the transitions in (1) is
due to rule (15) then the result X = Y = Z follows directly
from the conclusion of rule (15).

Lemma 6 states that any reachable state in the test suite of
the specification ∆ϕ∧ϕ′(s) is a subset of a reachable state
in the restricted test suite (see Figure 5 for an illustration,
where the subset relationship is denoted by the partition).

Lemma 6. If (X̂ϕ∧ϕ′
s , ε)

σ→→ (X,σ) then

∃Y ∆t
ϕ′(X̂

ϕ
s , ε)

σ→→ ∆t
ϕ′(Y, σ) ∧X ⊆ Y.

Proof. We prove this lemma by induction on σ. We
identify the following cases:

1. Let σ = ε. We need to show that X̂ϕ∧ϕ′
s ⊆ X̂ϕ

s .

s′ ∈ X̂ϕ∧ϕ′
s (Assumption)

⇒ ∆ϕ∧ϕ′(s)
ε→→ ∆ϕ∧ϕ′(s

′) (Lemma 2)

⇒ ∆ϕ(s)
ε→→ ∆ϕ(s′) (Proposition 1)

⇒ s′ ∈ X̂ϕ
s (Lemma 2) .

2. Let σ 6= ε. Suppose (X̂ϕ∧ϕ′
s , ε)

σ→→ (X,σ)
a−→ (X ′, σa).

By the induction hypothesis we have

∃Y ∆t
ϕ′(X̂

ϕ
s , ε)

σ→→ ∆t
ϕ′(Y, σ) ∧X ⊆ Y.

We identify the following cases based on the type of a.

∆ϕ(s) (X̂s, ε)

∆ϕ∧ϕ′(s) (X̂ϕ∧ϕ′
s , ε) ∼= ∆t

ϕ′(X̂s, ε)

test generation

test generation

∆ϕ′() ∆t
ϕ′()

Figure 6: An illustration of Theorem 2

(a) Let a ∈ A. Then, by rule (1) we have X,X ′ 6= ∅.
Furthermore,

∃s1∈X,s2∈X′∆ϕ∧ϕ′(s1)
a−→ ∆ϕ∧ϕ′(s2)

⇒ s1 ∈ Y ∧∆ϕ(s1)
a−→ ∆ϕ(s2)

(X ⊆ Y and Proposition 1)

⇒ ∃Y ′ (Y, σ′)
a−→ (Y ′, σ′a) ∧ s2 ∈ Y ′(Lemma 3).

Next, we need to show thatX ′ ⊆ Y ′. Let s′2 ∈ X ′,
for some s′2 ∈ S. Then there is a transition
∆ϕ∧ϕ′(s1)

a−→ ∆ϕ∧ϕ′(s
′
2), for some s1 ∈ X. And

from Proposition 1 we get ∆ϕ(s1)
a−→ ∆ϕ(s′2).

But, X ⊆ Y and from Lemma 2 we have s′2 ∈ Y ′;
whence, X ′ ⊆ Y ′.

(b) Let a = θ. Then we have ∆ϕ∧ϕ′(s1)
δ−→ ∆ϕ∧ϕ′(s1),

for some s1 ∈ X, s1 ∈ X ′. Now there are two pos-
sibilities:

i. Either ∃s1∈Y ∆ϕ(s1)
δ−→ ∆ϕ(s1). The remain-

der of the proof is similar to the previous case.

ii. Or, @s1∈Y ∆ϕ(s1)
δ−→ ∆ϕ(s1). Then, (Y, σ′)

θ−→
fail. Then from rule (15) we get ∆t

ϕ′(Y, σ)
θ−→

∆t
ϕ′(Y, σδ). Furthermore, if s2 ∈ X ′ then

s2 ∈ X since ∆ϕ∧ϕ′(s2)
δ−→ ∆ϕ∧ϕ′(s2). Thus,

X ′ ⊆ X and from the induction hypothesis
we have X ⊆ Y ; whence, X ′ ⊆ Y .

Lemma 7. If ∆t
ϕ′(X̂

ϕ
s , ε)

σ→→ ∆t
ϕ′(X,σ) then

∀s′ ∆ϕ∧ϕ′(s)
σ→→ ∆ϕ∧ϕ′(s

′)⇒ s′ ∈ X.

We are now ready to prove the main result (Figure 6) of
this section which states restricting a test suite leads to an
isomorphic test suite by restricting a feature specification.

Theorem 2. ∆t
ϕ′(X̂

ϕ
s , ε) ∼= (X̂ϕ∧ϕ′

s , ε).

Proof. To show this isomorphism, we define the function

g : Reach(∆t
ϕ′(X̂

ϕ
s), ε)→ Reach(X̂ϕ∧ϕ′

s , ε) as follows:

g(∆t
ϕ′(X,σ)) = (Y, σ) if

∆t
ϕ′(X̂

ϕ
s , ε)

σ→→ ∆t
ϕ′(X,σ)⇒ (X̂ϕ∧ϕ′

s , ε)
σ→→ (Y, σ);

g(pass) = pass; and g(fail) = fail. The function g is well-
defined follows from Lemma 4. The injectivity of g follows
from Lemma 5. Furthermore, g is surjective follows from
Lemmas 4 and 6.

Next, we show that g preserves the transition structure.
Let X a−→ Y, for some X ,Y ∈ Reach(∆t

ϕ′(X̂
ϕ
s , ε)). The

case when X is either pass or fail is trivial. However, the
interesting case is when X = ∆t

ϕ′(X,σ). We further identify
the following cases:

1. Let Y = ∆t
ϕ′(Y, σ

′). Then, from Lemma 7 we know

that σ′ ∈ Straces(∆ϕ∧ϕ′(s)); thus, there exists Y ′ such

that (X̂ϕ∧ϕ′
s , ε)

σ′→→ (Y ′, σ′). And by the construction
of g we have g(Y) = (Y ′, σ′). For the converse, suppose

g(X)
a−→ (Y ′, σ′), for some (Y ′, σ′) ∈ Reach(X̂ϕ

s , ε).
From Lemmas 5 and 6 we conclude g(Y) = (Y ′, σ′).

2. Let Y = pass. Then,

X a−→ pass

⇔ ∃Y,σ′X
a−→ ∆t

ϕ′(Y, σ
′) (rule (13))

⇔ g(X)
a−→ g(∆t

ϕ′(Y, σ
′)) (Case 1)

⇔ g(X)
a−→ pass (rule (4)).

3. Let Y = fail. Suppose otherwise g(X)
a−→ pass. Then,

from rule (4) we know that there exists Y ′, σ′ such that

g(X)
a−→ (Y ′, σ′). And by Lemma 6 we have ∃Y X a−→

(Y, σ). But, X a−→ fail; hence, a contradiction.

For the converse, suppose X a−→ pass and g(X)
a−→

fail. Then, from rule (13) we know that there exists

Y, σ′ such that X a−→ ∆t
ϕ′(Y, σ

′). And from Case 1 we

know that g(X)
a−→ g(Y, σ′), which again leads to a

contradiction.

6. CONCLUSIONS
In this paper, we extended the notion of input-output con-

formance testing to the setting of product line, by allowing
for models that are annotated with feature constraints. Such
models are called input-output featured transition systems.
In addition to the theory of conformance testing, we defined
notions of refinement both on models and on test suite that
allow for projecting, respectively, the behavior and the test
suites into a specific set of features and eventually into a
specific product.

We have two main items in our research agenda in this
area: we would like to extend our theoretical framework
to allow for coordinated and incremental testing of various
products such that the effort in testing common features is
factored out as much as possible. Secondly, we would like to
implement our theoretical framework and perform empirical
research on its effectiveness and efficiency.

7. REFERENCES
[1] P. Asirelli, M. H. Beek, A. Fantechi, and S. Gnesi. A

compositional framework to derive product line
behavioural descriptions. In Leveraging Applications of
Formal Methods, Verification and Validation.
Technologies for Mastering Change, volume 7609 of
LNCS, pages 146–161. Springer, 2012.

[2] P. Asirelli, M. H. ter Beek, S. Gnesi, and A. Fantechi.
Formal description of variability in product families.
In Proc. of 15th International Software Product Line
Conference, pages 130–139. IEEE, 2011.

[3] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans,
A. Legay, and J.-F. Raskin. Featured transition
systems: Foundations for verifying variability-intensive
systems and their application to LTL model checking
(to appear). IEEE Trans Software Eng (TSE), 2012.

[4] P. A. da Mota Silveira Neto, I. do Carmo Machado,
J. D. McGregor, E. S. de Almeida, and S. R.
de Lemos Meira. A systematic mapping study of
software product lines testing. Inf. Softw. Technol.,
53(5):407–423, 2011.

[5] E. Engström and P. Runeson. Software product line
testing - a systematic mapping study. Information &
Software Technology, 53(1):2–13, 2011.

[6] K. Kang, S. Cohen, J. Hess, W. Novak, and
S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, 1990.

[7] B. P. Lamancha, M. P. Usaola, and M. P. Velthius.
Systematic review on software product line testing. In
Software and Data Technologies, volume 170 of
Comm. in Computer and Information Science, pages
58–71. Springer, 2013.

[8] S. Oster, A. Wübbeke, G. Engels, and A. Schürr.
Model-based software product lines testing survey. In
Model-based Testing for Embedded Systems, pages
339–381. CRC Press, 2011.

[9] G. D. Plotkin. A Structural Approach to Operational
Semantics. Technical Report DAIMI FN-19,
University of Aarhus, 1981.

[10] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux.
Feature diagrams: A survey and a formal semantics.
In Proc. of the 14th IEEE International Conference on
Requirements Engineering, pages 136–145. IEEE, 2006.

[11] J. Tretmans. Model based testing with labelled
transition systems. In Formal Methods and Testing,
volume 4949 of LNCS, pages 1–38. Springer, 2008.

