
Property-Based Testing
with QuickCheck

John Hughes

Why is testing hard?

n
features O(n) test cases

3—4 tests per
featurepairs of features

O(n2) test cases

triples of features

O(n3) test cases

race conditions

Don’t write tests!

Generate them

QuickCheck

1999—invented by Koen Claessen and myself, for
Haskell

2006—Quviq founded marketing Erlang version

Many extensions

Finding deep bugs for Ericsson, Volvo Cars, Basho,
etc…

Example: deletion from a list

prop_delete() ->
?FORALL({X,L},{int(),list(int())},
not lists:member(X,lists:delete(X,L))).

lists:delete(2,[1,2,3]) ->
[1,3]

lists:member(2,[1,3]) ->
false

X, L Test data generators

Let’s run some tests…

Property Based Testing

Properties
Test caseTest caseTest caseTest caseTest case

Minimal
Test case

How should we test lists:delete?

Example: GSM Text Message
Encoding

a b c d e f g
a b c d e f g
a b c d e f g 0 00

a b c d e f gg
a b c d e ff g

a b c d e

pack

unpack

26 April 2007 Thomas Arts 9

Test suite
test(S) ->

T=unpack(pack(S)),
io:format("unpack(pack(~p)) = ~p~n",[S,T]),
S=T.

test() ->
test(""),
test("1"),
test("12"),
test("123"),
test("1234"),
test("12345"),
test("123456"),
test("1234567"),
test("12345678"),
test("123456789"),
test("1234567890").

Round trip property

prop_sms() ->
?FORALL(L,list(choose(0,127)),

unpack(pack(L)) == L).

For all messages with 7-bit
characters…

Exercise

• Test the sms encode/decoder, and diagnose any
problems

Example with state: a circular
buffer

1
2

putsize

2

getput

3

4

new
3

State Machine Models

API
Calls

API
Calls

API
Calls

API
Calls

Model
state

Model
state

Model
state

Model
state

postconditions

State Machine Models

API
Calls

API
Calls

Model
state

Model
state

API
Calls

API
Calls

Model
state

Model
state

postconditions

Example

put
2 get put

3 getput
1

[1] [1,2] [2] [2,3][]

1 2

The model state

-record(state,
{ptr,
size,
elements}).

An Erlang record
declaration

A pointer to the queue
(test data)

The maximum size of
the queue

The elements currently
in the queue

Specification of get, part I

get_pre(S) ->
S#state.ptr /= undefined.

get_args(S) ->
[S#state.ptr].

get(Q) ->
q:get(Q).

get_pre(S,[Q]) ->
S#state.elements /= [].

Precondition
parameterized on
the model state

How to generate the
argument list for get

How to call get

Precondition
parameterised on the
state and arguments

Specification of get, part II

get_next(S,Result,[Q]) ->
S#state{elements=tl(S#state.elements)}.

get_post(S,[Q],Result) ->
eq(Result,hd(S#state.elements)).

Model state transition
function

Erlang record selection
and update

Postcondition, gets
state beforehand,

args and result

The property—almost boilerplate

prop_q() ->
?FORALL(Cmds,commands(?MODULE),
begin
{H,S,Res} = run_commands(?MODULE,Cmds),
check_commands(?MODULE,Cmds,{H,S,Res})

end).

Generate a list of
commands from callbacks

in this module

Let’s run some tests…

Exercise—modelling the process
registry
• spawn()—create a new process, return its

process identifier (Pid)
• register(Name,Pid)—register the pid with

this name
• whereis(Name)—return the pid registered with

a name
• unregister(Name)—remove a pid from the

registry
Reverse engineer the right preconditions to prevent
exceptions being raised
See registry_eqc.erl (includes instructions)

Reflections

• Reverse engineering specifications—how realistic is
that?

• Does any of this scale?

Doing it
for real…

Theory

Car manufacturers should be
able to buy code from different
providers and have them work

seamlessly together

Practice

VOLVO's experience has been
that this is often not the case

A Bug in a vendor’s CAN stack

© 27

send priority 1

send priority 2

send priority 3

tx_confirm

sending 1

sending 31 sent

queued

The Problem
CAN bus identifiers determine bus priority

A Bug in a vendor’s CAN stack

© 29

send priority 1

send priority 2

send priority 3

tx_confirm

sending 1

sending 31 sent

queued

Failed to mask off the top bit before
comparing priorities

3,000 pages of specifications

20,000 lines of QuickCheck

1,000,000 LOC, 6 suppliers

200 problems

100 problems in the standard

10x shorter test code

"We know there is a lurking bug somewhere
in the dets code. We have got 'bad object'
and 'premature eof' every other month the
last year. We have not been able to track the
bug down since the dets files is repaired
automatically next time it is opened.“

Tobbe Törnqvist, Klarna, 2007

What is it?

Application

Mnesia

Dets

File system

Invoicing services for web shops

Distributed database:
transactions, distribution,
replication

Tuple storage

Race
conditions?

Imagine Testing This…

dispenser:take_ticket()

dispenser:reset()

ok =
1 =
2 =
3 =
ok =
1 =

A Unit Test in Erlang

test_dispenser() ->

Expected
results

reset(),
take_ticket(),
take_ticket(),
take_ticket(),
reset(),
take_ticket().

Modelling the dispenser

reset take take take

0 0 1 2

ok 1 2 3

A Parallel Unit Test

• Three possible correct outcomes!

reset

take_ticket

take_ticket

take_ticket

1

2

3

1

3

2

1

2

1

ok

Another Parallel Test

• 30 possible correct outcomes!

reset

take_ticket

take_ticket

take_ticket

take_ticket

reset

Deciding a Parallel Test

reset
ok

take
1

take
3

take
2

0 0 1 2

Let’s run some tests

Prefix:

Parallel:
1. dispenser:take_ticket() --> 1

2. dispenser:take_ticket() --> 1

Result: no_possible_interleaving

take_ticket() ->
N = read(),
write(N+1),
N+1.

dets
• Tuple store:

{Key, Value1, Value2…}

• Operations:
• insert(Table,ListOfTuples)
• delete(Table,Key)
• insert_new(Table,ListOfTuples)
• …

• Model:
• List of tuples (almost)

QuickCheck Specification

... …

... …
<100 LOC

> 6,000
LOC

Bug #1

Prefix:
open_file(dets_table,[{type,bag}]) -->

dets_table

Parallel:
1. insert(dets_table,[]) --> ok

2. insert_new(dets_table,[]) --> ok

Result: no_possible_interleaving

insert_new(Name, Objects) -> Bool

Types:
Name = name()
Objects = object() | [object()]
Bool = bool()

Bug #2
Prefix:

open_file(dets_table,[{type,set}]) --> dets_table

Parallel:
1. insert(dets_table,{0,0}) --> ok

2. insert_new(dets_table,{0,0}) --> …time out…

=ERROR REPORT==== 4-Oct-2010::17:08:21 ===
** dets: Bug was found when accessing table dets_table

Bug #3
Prefix:

open_file(dets_table,[{type,set}]) --> dets_table

Parallel:
1. open_file(dets_table,[{type,set}]) --> dets_table

2. insert(dets_table,{0,0}) --> ok
get_contents(dets_table) --> []

Result: no_possible_interleaving !

Is the file corrupt?

Bug #4
Prefix:

open_file(dets_table,[{type,bag}]) --> dets_table
close(dets_table) --> ok
open_file(dets_table,[{type,bag}]) --> dets_table

Parallel:
1. lookup(dets_table,0) --> []

2. insert(dets_table,{0,0}) --> ok

3. insert(dets_table,{0,0}) --> ok

Result: ok
premature eof

Bug #5

Prefix:
open_file(dets_table,[{type,set}]) --> dets_table
insert(dets_table,[{1,0}]) --> ok

Parallel:
1. lookup(dets_table,0) --> []

delete(dets_table,1) --> ok

2. open_file(dets_table,[{type,set}]) --> dets_table

Result: ok
false

bad object

"We know there is a lurking bug somewhere
in the dets code. We have got 'bad object'
and 'premature eof' every other month the
last year.”

Tobbe Törnqvist, Klarna, 2007

Each bug fixed the day after
reporting the failing case

Before

• Files over 1GB?
• Rehashing?
• > 6 weeks of effort!

After

• Database with one
record!

• 5—6 calls to
reproduce

• < 1 day to fix

Reflections

”Testing can never
demonstrate the
absence of bugs in
software, only their
presence”

• An entire optimising C compiler, verified in Coq
• Enormously impressive tour de force!

8x more costly than conventional compilers

Not bug free

100x fewer bugs than conventional compilers

COMPCERT
COMPILERS YOU

CAN FORMALLY TRUST

Can formal proofs
demonstrate the absence of
bugs in software?

Specifications are almost always wrong

Testing is both cheaper and vastly more
effective than it used to be

A final thought

Unit
tests

Properties

How good were the tests at find
bugs—in other students’ code?

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

Hunit
QuickCheck

Better

0 1 2 3 4 5 6 7 8 9 10 11

Unit tests

	Property-Based Testing with QuickCheck
	Why is testing hard?
	Don’t write tests!
	QuickCheck
	Example: deletion from a list
	Let’s run some tests…
	Property Based Testing
	How should we test lists:delete?
	Example: GSM Text Message Encoding
	Test suite
	Round trip property
	Exercise
	Example with state: a circular buffer
	State Machine Models
	State Machine Models
	Example
	The model state
	Specification of get, part I
	Specification of get, part II
	The property—almost boilerplate
	Let’s run some tests…
	Exercise—modelling the process registry
	Reflections
	Doing it for real…
	Theory
	Practice
	A Bug in a vendor’s CAN stack
	The Problem
	A Bug in a vendor’s CAN stack
	Bildnummer 30
	Bildnummer 31
	What is it?
	Imagine Testing This…
	A Unit Test in Erlang
	Modelling the dispenser
	A Parallel Unit Test
	Another Parallel Test
	Deciding a Parallel Test
	Let’s run some tests
	Bildnummer 40
	dets
	QuickCheck Specification
	Bug #1
	Bug #2
	Bug #3
	Is the file corrupt?
	Bug #4
	Bug #5
	Bildnummer 49
	Before
	Reflections
	Bildnummer 52
	Bildnummer 53
	A final thought
	How good were the tests at find bugs—in other students’ code?

