
Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Debugging and Slicing

Mohammad Mousavi

Halmstad University, Sweden

http://bit.ly/TAV16

Testing and Verification,
March 4, 2016

Mousavi: Debugging and Slicing

http://bit.ly/TAV16

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slices

An executable subset of the program

I capturing possible (indirect) dependencies

I among all definitions and uses

I influencing the value of a set of variables.

Also called: cone of influence reduction

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Annotated Flow Graphs

Defining nodes

DEF (n, v) holds (for a var. v and a node n), when n defines v .
Examples:

I input(v), or

I v := exp

DEF (n) = {v | DEF (n, v)}

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Annotated Flow Graphs

Using nodes

USE (n, v) holds (for a var. v and a node n), when n uses the
values of v . Examples:

I output(v),

I x := exp(v),

I if cond(v) then, or

I while cond(v) do, . . .

USE (n) = {v | USE (n, v)}

Also REF (n, v) in the literature

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Definitions and Uses: An Example

1: Input(x) {DEF(1) = {x}}
2: Input(y) {DEF(2) = {y}}
3: if x < 10 then
4: y := y + 2 {DEF(4) = USE(4) = {y}}
5: else
6: x:= x+1
7: end if
8: if y > 20 then
9: y := y +1;

10: end if
11: Write(x,y) {USE(11) = {x,y}}
12: end

Input(x)

Input(y)

if x < 10 then / else

y := y + 2 x := x + 1

end if

Write(x,y)

if y < 10 then

y := y + 1

end if

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing: An Example

1: Input(x)
2: Input(y)
3: total := 0
4: sum := 0
5: if x ≤ 1 then
6: sum := y
7: else
8: Input(z)
9: total := x * y

10: end if
11: Write(total, sum)

Slice on {total} at 11?

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing: An Example

1: Input(x)
2: Input(y)
3: total := 0
4: sum := 0
5: if x ≤ 1 then
6: sum := y
7: else
8: Input(z)
9: total := x * y

10: endif
11: Write(total, sum)

Slice on {total} at 11?

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing: An Example

Slice on {total} at 11:

1: Input(x)
2: Input(y)
3: total := 0
4: if x ≤ 1 then
5:

6: else
7: total = x * y
8: end if

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing: An Example

1: Input(b)
2: c := 1
3: d := 3
4: a := d
5: d := b + d
6: b := b + 1
7: a := b + c
8: Write(a)

Slice on {d , c} at 6?

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing: An Example

Slice on {d , c} at 6:

1: Input(b)
2: c := 1
3: d := 3
4: d := b + d

(6, {d , c}) (in general (n,V)): the slicing criterion

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Outline of the algorithm

Slice criterion (n,V)

I Statements in the slice: those define the relevant variables.

I At n, v ∈ V : relevant.

I A relevant v ∈ DEF (m): v is no more relevant above m,

I but then all variables in USE (m) become relevant above m.

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Relevant Variables

Given a slicing criterion (n,V), Relevant0(m) =
1) V if m = n + 1

2a){v | ∃m→m′(v ∈ relevant(m′) \ DEF (m)∨ otherwise
2b) (DEF (m) ∩ relevant(m′) 6= ∅ ∧ v ∈ USE (m)))}

1) base case: all variables in V are initially relevant

2a) v remains relevant: has been relevant below and not defined
at m

2b) v becomes relevant: defines relevant variables

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing: An Example

Slicing criterion: (6, {d , c}) ?
Relevant0(m) =

1) V if m = n + 1

2a){v | ∃m→m′(v ∈ relevant(m′) \ DEF (m)∨ otherwise
2b) (DEF (m) ∩ relevant(m′) 6= ∅ ∧ v ∈ USE (m)))}
m Relevant0(m)
1 Input(b) ∅
2 c := 1 {b}
3 d := 3 {c , b}
4 a := d {c , b, d}
5 d := b + d {c , b, d}
6 b := b + 1 {d , c}

{d , c}

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing Sequential Programs

m ∈ Slice0(n,V) when

1. n = m and DEF (m) ∩ V 6= ∅, or

2. m→ . . .→ n and
there exists an m′ such that m→ m′ and
DEF (m) ∩ Relevant0(m′) 6= ∅

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing Sequential Programs

m ∈ Slice0(n,V) when

1. n = m and DEF (m) ∩ V 6= ∅, or

2. m→ . . .→ n and
there exists an m′ such that m→ m′ and
DEF (m) ∩ Relevant0(m′) 6= ∅

m Relevant0(m) DEF(m) ∈ Slice0(6, {d, c})
1 Input(b) ∅ {b}

√

2 c := 1 {b} {c}
√

3 d := 3 {c , b} {d}
√

4 a := d {c , b, d} {a} ×
5 d := b + d {c , b, d} {d}

√

6 b := b + 1 {d , c} {b} ×
{d , c}

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing Programs with Conditions

1: Input(x)
2: Input(z)
3: if x < 10 then
4: z := z + 2;
5: else
6: z := z - 1;
7: end if
8: Write(z)

Slice wrt. the criterion (3, {x})?

Input(x)

Input(z)

if x < 10 then / else

z := z + 2 z := z - 1

end if

Write(z)

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing Programs with Conditions

Slice wrt. the criterion (3, {x})?

m Relevant0(m) DEF(m) ∈ Slice0(3, {x})
1 Input(x) ∅ {x}

√

2 Input(z) {x} {z} ×
3,5 if x < 10 then / else {x} ∅ ×

{x}

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing Programs with Conditions

1: Input(x)
2: Input(z)
3: if x < 10 then
4: z := z + 2;
5: else
6: z := z - 1;
7: end if
8: Write(z)

Slice wrt. the criterion (8, {z})?

Input(x)

Input(z)

if x < 10 then / else

z := z + 2 z := z - 1

end if

Write(z)

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing Programs with Conditions

m Relevant0(m) DEF(m) ∈ Slice0(8, {z})
1 Input(x) ∅ {x} ×
2 Input(z) ∅ {z}

√

3,5 if x < 10 then / else {z} ∅ ×
4 z := z + 2 {z} {z}

√

6 z := z - 1 {z} {z}
√

7 end if {z} ∅ ×
8 Write(z) {z} ∅ ×

{z}

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing Structured Programs: Informal Idea

1. Start with sequential slicing algorithm: Slice0(n, v)

2. Find all conditionals Condk+1(n,V) influencing
m ∈ Slicek(n, v)

3. Add the following node to Slicek(n,V), the result:
Slicek+1(n,V)

3.1 the conditional in c ∈ Condkn,V and
3.2 those statement influencing the conditions of c

4. repeat 2 until a fixed-point

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

(Inverse) Denominators

m ∈ IDen(n) (m inversely denominates n)
when m appears in all paths n→ . . .→ nt .

m = NIDen(n)(the nearest inverse denominator of n) when
m ∈ IDen(n) and
for all m′ ∈ IDen(n) either m = m′ or there is a simple path
m→ . . .→ m′.

m ∈ Infl(n)(m is influenced by n) when
m appears in a path from n to NIDen(n)
(m 6= n, m 6= NIDen(n), NIDen(n) may not appear in the path).

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing Programs with Conditions

1: Input(x)
2: Input(z)
3: if x < 10 then
4: z = z + 2;
5: else
6: z = z - 1;
7: end if
8: Write(z)

NIDen(1)? 2. Infl(1)? ∅.

NIDen(2)? 3. Infl(2)? ∅.
Observation, for sequential nodes Infl(n) = ∅.

NIDen(3)? 7. Infl(3)? {4, 6}.

Input(x)

Input(z)

if x < 10 then / else

z := z + 2 z := z - 1

end if

Write(z)

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing Structured Programs

Given a slicing criterion (n,V):
m ∈ Condk+1(n,V) (conditions influencing Slicek(n,V)) when

there exists m′ ∈ Slicek(n,V) and m′ ∈ Infl(m).

v ∈ Relevantk+1(m) when
v ∈ Relevantk(m) or
there exists an m′ ∈ Condk+1(n,V) and

v ∈ Relevant0(m) w.r.t. the slicing criterion (m′,USE (m′)).

m ∈ Slicek+1(n,V) when
m ∈ Condk+1(n,V) or
there exists an m′ such that m→ m′ and

DEF (m) ∩ Relevantk+1(m′) 6= ∅.

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing Programs with Conditions

Slice wrt. (8, {z})
1: Input(x)
2: Input(z)
3: if x < 10 then
4: z = z + 2;
5: else
6: z = z - 1;
7: end if
8: Write(z)

Slice0(8, {z}) = {2, 4, 6}.

m ∈ Condk+1(n,V) (conditions influencing Slicek(n,V)) when
there exists m′ ∈ Slicek(n,V) and m′ ∈ Infl(m).

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing Programs with Conditions

Slice wrt. (8, {z})
1: Input(x)
2: Input(z)
3: if x < 10 then
4: z = z + 2;
5: else
6: z = z - 1;
7: end if
8: Write(z)

Slice0(8, {z}) = {2, 4, 6}.

Cond1(8, {z}) = {3}

Slice1(8, {z})?

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing Programs with Conditions

m Relevant1(m) DEF(m) ∈ Slice1(8, {z})
1 Input(x) ∅ {x}

√

2 Input(z) {x} {z}
√

3,5 if x < 10 then / else {z , x} ∅ ×
4 z := z + 2 {z} {z}

√

6 z := z - 1 {z} {z}
√

7 end if {z} ∅ ×
8 Write(z) {z} ∅ ×

{z}

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Another Example

Slice wrt. (11, {sum})?

1: Input(x)
2: Input(y)
3: sum := 0
4: if x < 1 then
5: y : = 1
6: end if
7: while y ≥ 1 do
8: sum := sum + x
9: y := y - 1

10: end while
11: Write(sum)

1 Input(x)

2 Input(y)

4 if x < 1 then / else

5 y := 1

6 end if
11 Write(sum)

3 sum := 0

10 end while

7 while y > 5 do

8 sum := sum + x

9 y := y - 1

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

m DEF(m) Relevant0(m) Slice0 Cond1 Rel1 Slice1
1 {x} ∅

√
, × ∅

√

2 {y} {x} × × {x}
√

3 {sum} {x}
√

× {x , y}
√

4 ∅ {sum, x} × × {sum, x , y} ×
5 {y} {sum, x} × × {sum, x}

√

6 ∅ {sum, x} × × {sum, x , y} ×
7 ∅ {sum, x} ×

√
{sum, x , y}

√

8 {sum} {sum, x}
√

× {sum, x , y}
√

9 {y} {sum, x} × × {sum, x , y}
√

10 ∅ {sum} × × {sum} ×
11 ∅ {sum} × × {sum} ×

{sum} {sum}

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

m DEF(m) Cond2 Rel2 Slice2 Slice(∗)

1 {x} × ∅
√ √

2 {y} × {x}
√ √

3 {sum} × {x , y}
√ √

4 ∅
√

{sum, x , y}
√ √

5 {y} × {sum, x}
√ √

6 ∅ × {sum, x , y} ×
√

7 ∅
√

{sum, x , y}
√ √

8 {sum} × {sum, x , y}
√ √

9 {y} × {sum, x , y}
√ √

10 ∅ × {sum} ×
√

11 ∅ × {sum} × ×
(*) Syntactic check after generating the slice:
if then (/else) ∈ Slice ⇒ (the corresponding) end if ∈ Slice
while . . . do ∈ Slice ⇒ (the corresponding) end while ∈ Slice
. . .

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

The Ideal Slicing Algorithm?
Slice wrt. (2, {x})?

1: Input(x)
2: x := x

Slice wrt. (5, {x})?

1: if true then
2: x := 1
3: else
4: x := 2
5: end if

No algorithm for the smallest slice exists!
Reason: Undecidability of halting/termination.

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Slicing: Applications

1. Test adequacy: for each output variable, all du-paths in its
slice must be covered

2. Robustness testing: Add pseudo-variables that check
dangerous situations,
generate the slice and test

3. Regression testing: testing if a change influences a particular
component
(i.e., if the slice of the component interface contains the
change)

4. Debugging:
code review
comparing a correct running program with a new faulty version

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

(Automated) Debugging: A Sorting Program

1: int main(int argc, char * argv[])
2: {
3: int *a;
4: int i;
5: a = (int *) malloc((argc - 1) * sizeof(int));
6: for (i = 0; i < argc - 1; i ++)
7: a[i] = atoi(argv[i + 1]);
8: shell sort(a, argc);
9: printf(”Output: ”);

10: for (i = 0; i < argc - 1; i++)
11: printf(”%d ”, a[i]);
12: free(a);
13: return 0;
14: }

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

1: void shell sort(int a[], int size)
2: { int i, j; int h = 1;
3: do {
4: h = h * 3 + 1;
5: } while (h <= size);
6: do {
7: h /= 3;
8: for (i = h; i < size; i++)
9: {

10: int v = a[i];
11: for (j = i; j >= h && a[j - h] > v; j -= h)
12: a[j] = a[j - h];
13: if (i != j) a[j] = v;
14: }
15: } while (h != 1);
16: }

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

(Automated) Debugging: A Sorting Program

Once upon a time, a tester found the following bug:

$./simple 5 4 3 2 1 666666

Output: 0 1 2 3 4 5

How do we find the fault?

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Find and Focus

I Scientific method:

1. assume,
2. organize an experiment,
3. if refuted, refine your assumption and repeat.

possible formalization: invariants and assertions

I Observing: logging the value of infected
variables
e.g., print command in gdb

I Watching: keeping an eye on infected variables
e.g., break and watch commands in gdb

I Slicing: find the slice responsible for infection
see the lecture on slicing

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Getting Our Hands Dirty...

We use gdb (any other debugger will do)

I Reproduce the test:
run 5 4 3 2 1 666666 Damn, the tester was right!

(Not always that easy, try 55 4.)

I Simplify the test-case
run 5 4 3 2

I Find the possible the origins,
focus on a problem area,
e.g., a[0] and shell sort (See slicing next...)

I Isolate the causes
what makes a[0] wrong?
compare it with the sane situation, what is different?

I Correct the problem

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

TRAFFIC

1. Track the problem

2. Reproduce the failure

3. Automate and simplify the test-case:
minimal test-case ⇐

4. Find possible origins: where it first went
wrong

5. Focus on the most likely origins: what part
of state is infected

6. Isolate the chain: what causes the state to
be infected ⇐

7. Correct the defect

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Automated Debugging is about Perfection

Perfection
Perfection is achieved not when you have nothing more
to add, but when there is nothing more left to take away.

Antoine de Saint-Exupéry

Automated Debugging

Take out all that has nothing to do with the failure...

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Debugging: An Example

I My slides for today (in LATEX) did not compile

I some part of it did work before (older slides)
I divide the new parts into two:

1. remove first half part
2. if the problem is there, repeat until one (new) slide is left
3. if not, put back the second half and and remove the first,

repeat

I apply the same technique to the content of the remaining slide

This is called delta debugging:
our order of business for today.

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

(Ack. figures are due to Andreas Zeller.)

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Minimizing Delta Debugging: Basic Idea

Try to find the minimal environment causing the failure by:

I Divide the circumstances C in n parts Ci ,

I remove a part Ci such that C \ Ci causes failure,
repeat the algorithm with C \ Ci ,

I if no such part exists, choose a bigger n <| C | and repeat.

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Minimizing Delta Debugging: Formalization

I Circumstances: C (input but could be: program, environment,
etc.)

I Test: test : 2C → {×,X, ?}
I Starting state: Cx ⊆ C , such that test(C×) = ×
I Goal: find a minimal subset C ′× ⊆ Cx such that test(C ′×) = ×

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Minimizing Delta Debugging: Algorithm

ddmin(C×, 2), where

ddmin(C ′×, n) =

C ′×, if | C ′× |= 1,
ddmin(C ′× \ Ci ,max(n − 1, 2)) else if ∃i≤ntest(C ′× \ Ci) = ×
ddmin(C ′×,max(2n, | C ′× |)) else if n <| C ′× |
C ′× otherwise

where Ci ’s are partitions of C ′× of (almost) equal size.

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Application in Random Testing

Idea

I feed huge inputs to the system
(guaranteed crash on huge input)

I simplify input

I present the simplified result as a test-case

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Application in Random Testing

Examples

I applied to command UNIX tools

I FLEX (lexical analyzer): crashed on a test-case of 2121
characters

I NROFF (document formatter): crashed on a single control
character

I CRTPLOT (plotter output): crashed on single characters ‘t’
or ‘f’

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Improvements

I caching: save the test outcomes,
use the saved data

I stop early: define a criterion to stop the algorithm, e.g.,

1. no progress
2. reaching a certain granularity
3. upper bound on time

I use structures, e.g., blocks instead of characters

I differences vs. circumstances
(compare sane with insane)

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

What is a Cause?

I Effect: the failure

I Cause: an event preceding effect,
without which effect would not have happened

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Isolating the cause

I Cause: the minimal difference between
the worlds with and without the failure

I Challenge: the world without failure: the goal of debugging
I Two solutions:

1. manipulate the world by a debugger: turn infected to sane
2. use another test-case in which no fault appears

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Isolating: The Sorting Program Case

1. ./sample produces a failure on 5 4 3 666666

2. works fine on 5 4 3

3. find combinations of

3.1 states of 1 with 2 such that the program passes
3.2 states of 2 with 1 such that the program fails

4. the difference between the two leads to a cause

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Delta Debugging: The Algorithm
Start from:

I CX = ∅: passing circumstances and
I C×: failing circumstances

1. compute the difference ∆ between the failing and the passing
circ., divide into n parts: ∆i ,

2. remove ∆i from the failing circ.; it is the new passing circ., if
it passes

3. add ∆i to the passing circ.; it is the new failing circ., if it fails

4. add ∆i to the passing circ.; it is the new passing circ., if it
passes

5. remove ∆i from the failing circ.; it is the new failing circ., if it
fails

6. increase n if none of the above holds

7. repeat until the difference is a singleton

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Delta Debugging: Algorithm

dd(CX,C×, 2),
where ddmin(C ′X,C ′×, n) is defined recursively as:

(C ′X,C ′×) if | ∆ |= 1,
dd(C ′× \∆i ,C ′×, 2) else if ∃i≤ntest(C ′× \∆i) = X
dd(C ′X,C ′X ∪∆i , 2) else if ∃i≤ntest(C ′X ∪∆i) = ×
dd(C ′X ∪∆i ,C ′×,max(n − 1, 2)) else if ∃i≤ntest(C ′X ∪∆i) = X
dd(C ′X,C ′× \∆i ,max(n − 1, 2)) else if ∃i≤ntest(C ′× \∆i) = ×
dd(C ′X,C ′×,min(2n, | ∆ |)) else if n <| ∆ |
(C ′X,C ′×) otherwise

where ∆ = C ′× \ C ′X and ∆i ’s are n partitions of ∆ of (almost)
equal size.

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Delta Debugging: Applied to Test-Case Simplification

Start from:

I CX = ∅: the empty test-case

I C×: the test-case leading to failure

I Much more efficient than minimizing delta debugging

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Delta Debugging: Applied to Regression Testing

Start from:

I Goal: find out what went wrong in the new development
(the old version worked well)

I CX = ∅: basis is the old program, no changes needed

I C×: difference between the old and the new
i.e., changes needed to obtain the new program from the old
one

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Isolating the Cause: Idea

I Capture the state of the program

I Compare the states of a passes and a failed run

I The smallest difference ∆ is the variable causing the problem

I Find out what influences this variable

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Program State: Memory Graphs

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Comparing the Differences

Implementable as debugger commands,
e.g., set variable size = 2.

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Isolating the Cause: Implementation

I Compute the common subgraph of the passing and failing
memory graphs. Let the difference be C×.

I Implement C× as debugger commands.
I Apply delta-debugging to CX = ∅ and C×

1. Apply differences to the memory graphs and test.
2. At each step of dd if the changed state is not a valid state

(program does not run), return ?, if it is a valid state, return
the result of the test,

I The result ∆ leads to a cause.

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Isolating the Cause: Sorting Case

Run the algorithm before calling shell sort

with the state of ./sample 7 8 9 as passing
and ./sample 11 14 as failing.
If 0 at the state: test fails ×, passes X otherwise.

1. C× = { a[], i, size, argc, argv[] }, CX = ∅.
2. new failing state: a[], argv[1] ×
3. new passing state: argv[1] X

4. new passing state: a[0] X

5. new passing state: a[0] and a[1] X

6. ∆ = { a[2] }

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Isolating the Cause: Illustrated Case

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Isolating the Chain of Causes

I Apply delta-debugging at the start, determine the minimal
passing and running state

I Choose a common point (e.g., a function call) in the middle

I Apply delta-debugging on the states of the minimal passing
and failing run

I Repeat the algorithm with the rest of the program and the
new passing and failing states

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Finding the Culprits

I The previous algorithm gives different ∆’s (causes at different
points)

I Track the change of causes

I A smelling point: a ceases to be a cause and b becomes a
cause

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Automated Debugging

I A natural mechanization of simple debugging principles
I Provides (partial) solutions to

1. testing,
2. simplifying the test-cases,
3. isolating the causes and
4. isolating the cause-effect chain.

Mousavi: Debugging and Slicing

Debugging Sequential Slicing Structured Slicing Automated Debugging Simplifying the Test-Case Isolating the Causes

Notes on the Reading Material

I Covered: Chapters 5, 13 (apart from 13.6) and 14

I Chapters 1 and 12 provide background information

I Andreas Zeller’s slides are also a very good source (see web
page)

I Igor command-line tool can be downloaded from
www.askigor.org

(unfortunately, the debugging web-service is closed by now)

Mousavi: Debugging and Slicing

www.askigor.org

	Debugging
	Sequential Slicing
	Structured Slicing
	Automated Debugging
	Simplifying the Test-Case
	Isolating the Causes

