
Embedded Systems Programming - PA8001
http://goo.gl/cu8OOH

Lecture 6

Mohammad Mousavi
m.r.mousavi@hh.se

Center for Research on Embedded Systems
School of Information Science, Computer and Electrical Engineering



Real Time?

In what ways can a program be related to time in the environment
(the real time)?

Salvador Dali, The Persistence of Memory.



Real Time

An external process to . . .

I Sample: reading a clock,

I React: a handler for an interrupt clock, and

I Constraint: a deadline to respect.



Sampling the time

Requires a hardware clock (read as an external device)

Multitude of alternatives

I Units? Seconds? Milliseconds? CPU cycles?

I Since when? Program start? System boot? Jan 1, 1970?

I Real time? Time stops when: other threads are running?
when CPU sleeps? Time that cannot be set and always
increases?



Timestamps

Relative timing: prevalent in reactive systems, reactions are
relative to events

Example

Teacher left 15 min. after the start of the lecture.

In embedded programming,
time-stamping an event: reading
performed around the event
detection.



Time spans

The difference between two time-stamps: a time span independent
of the nominal clock values (modulo clock resolution).

The meaning of time-stamp

I The time of some arbitrary program instruction?

I The beginning or end of a function call?

I The time of sending or receiving an asynchronous message?

Too much program dependent!



In a scheduled system

What looks like . . .

Event detected

Subsequent statements

Clock read

might very well be . . .

Event detected

Other threads running

Clock read

Close proximity is not the same as subsequent statements!



Time-stamping events

Goal: to time-stamp events that drive a system

Idea!
Read the clock in the interrupt handler detecting the event

I Disable other interrupts, hence no threads might interfere

I Tight predictable upper bound on the time-stamp error



Real-time events to react to

So far: how to sample the real-time clock to know about time

Now: how to take action after a certain amount of time

Example

The wheel is an engine crankshaft
and we have to emit ignition
signals to each cylinder

How to postpone program execution until certain time



Reacting to real time events

Very poor man’s solution

Consume a fixed amount of CPU cycles in a (silly) loop

int i;

for(i=0;i<N;i++); // wait

do_future_action();

Problems

1. Determine N by testing!

2. N will be highly platform dependent!

3. A lot of CPU cycles will simply be wasted!



Reacting to real time events

The nearly as poor man’s solution

Configure a timer/counter with a known clock speed, and
busy-wait for a suitable time increment

unsigned int i = TCNT1+N;

while(TCNT1<i); // wait

do_future_action();

Problems

1. Determine N by calculation

2. Still a lot of wasted CPU!



Reacting to real time events

The standard solution
Use the OS to fake busy-waiting

delay(N); // wait (blocking OS call)

do_future_action();

I No platform dependency!

I No wasted CPU cycles (at the expense of a complex OS)

Still a problem . . .

. . . common to all solutions . . .



In a scheduled system

What looks like . . .

subsequent statements

call do_future_action()Event detected

delay(N)

might very well be . . .

Other threads get to run!

call do_future_action()Event detected

delay(N)

Had we known the scheduler’s choice, a smaller N had been used!



Relative delays

The problem: relative time without fixed references:

I The constructed real-time event will occur at after N units
from now.

I What is now?!

Other common OS services share this problem: sleep, usleep
and nanosleep.

We are not going to use OS services in the course.



Yet another problem

Threads and interleaving make it worse

Example

Consider a task running a CPU-heavy function do work() every
100 millisecods. The naive implementation sing delay():

while(1){

do_work();

delay(100);

}



Accumulating drift

100

XXXX
100100100

100100100100100

X is the time take to do work

Each turn takes at least 100+X milliseconds.

A drift of X milliseconds will accumulate every turn!



Accumulating drift

100

XXX
100100100

100100100100100

With threads and interleaving, the bad scenario gets worse!

Even with a known X, delay time is not predictable.



A stable reference

What we need is a stable time reference to use as a basis whenever
we specify a relative time (instead of now).

Baselines
We introduce the baseline of a message to mean the earliest time a
message is allowed to start.

Time stamps of interrupts!

The baseline of an event is its time-stamp:

Interrupt signal

Baseline: start after Actual method execution



Bonus Questions

What are the issues with time in a distributed system? Find out
what Lamport Clocks are and explain them (in your own words) in
a few lines.
(Please send your answers by email before 17:00 tomorrow.)



Real Time

Real Time and a program

I An external process to sample (did that!)

I An external process to react to (postponed...)

I An external process to be constrained by.

Constrained by time

Do something before a certain point in time.

Difficult
There is a limit to how fast a processor can work . . .



Execution speed

Fast enough in sequential programs

I use a sufficiently efficient algorithm

I running it on a sufficiently fast computer

Execution time . . .
the time from program start to program stop

. . . depends on input data

So . . . the real issue is whether the Worst Case Execution Time
(WCET) for a program on a platform is small enough!



Obtaining WCET

By meassurement

Deal with data dependencies by
testing the program on every
possible combination of input
data.

Usually not feasible! Must find
instead a representative subset of
all cases!

By analysis

Deal with data dependencies
using semantic information and
conservative approximations.

Exact analysis is usually no more
feasible than exhaustive testing!



WCET by meassurements

Generate test cases automaticaly?

int g(int in1, int in2){

if((in1*in2)%in2==3831)

// do something that takes 300ms

else

// do something that takes 5ms

}

How likely is it that it generates data that finds the worst case?



WCET by meassurements

Test all cases?
For one 16-bit integer as input there are 65536 cases.

Test all cases?
For two 16-bit integer as input there are 4 294 967 296 cases.



WCET through analysis

Example

for(i=1;i<=10;i++){

if(E)

// do something

// that takes 300ms

else

// do something

// that takes 5ms

}

A conservative approximation

Each turn takes 300 ms and so
WCET = 10*300 ms!

Assume the worst, err on the safe
side!

Using semantic information

Suppose E is i<3. The test is true
at most 2 turns, WCET is
2*300+8*5 = 640ms!



Obtaining WCET

Testing

is likely to find the typical
execution times, but finding the
worst case is much harder.

Analysis

can always find a safe WCET
approximation but comming close
to the real WCET is much harder

There is a lot of research about how to obtain WCET, it is beyond
the scope of this course dealing with programming techniques.

In this course
We will assume that for any sequential program fragment a safe
WCET can be obtained either by meassurement or by analysis or
both!



Scheduling

If 2 tasks share a
single processor,
there are 2 ways of
running one before
the other

If 3 tasks share a
single processor,
there are 3*2 ways of
running them in
series

If n tasks share a
single processor,
there are n! ways of
running them.

Interleaving

Moreover, if tasks can be split into arbitrarily small fragments,
there are infinitely many ways of running the fragments of even
just 2 tasks!



Scheduling

The schedule
is a major factor
in real-time
behaviour of
concurrent tasks!



Three issues

Deadlines
How do we express the real-time constraints a program must meet?

How do we construct a scheduler that ensures that those
constraints are met if at all possible?

Priority scheduling!

Schedulability analysis

How do we tell whether scheduling is impossible? Ahead of time or
only when it is too late? (next lecture)



Deadlines

A point in time when some work must be finished is called a
deadline.

A deadline is often meassured relative to the occurrence of some
event:

I When the bill arrives, pay it whithin 10 days

I At 9am, complete the exam in 5 hours

I When a MIDI note-on message arrives, start emitting a tone
within 15 milliseconds



Deadlines

Meeting a deadline

Generate some specific response
before the specified time

I Signal level must reach
10mV before . . .

I Letter must be post-stamped
no later than . . .



Timely reaction

Original event

"finish before"
Deadline

"start after"
Baseline



Priorities

Task or Thread or Message priorities are integer values that denote
the relative importance of each task.

Quite often the priority scale is reversed!

Low priority values = high priority!

Priority scheduler

Always run the task with the highest priority! (tasks with the same
prio are sorted according to some secondary scheme, e.g. FIFO)

A task can only run after all tasks considered more important have
terminated or are blocked.



Terminology

Static vs. dynamic priorities

I A system where the programmer assigns the priorities of each
task is said to use static (or fixed) priorities.

I A system where priorities are automaticaly derived from some
other run-time value is using dynamic priorities.



Terminology

Preemptivness

I A system where the scheduler is run only when a task calls the
kernel (or terminate) is non-preemptive.

I A system where it also runs as the result of interrupts is called
preemptive.



The common case

Preemptive scheduling based on static prios

totally dominates the field of real-time programming.

in OS
Supported by real-time operating systems like QNX, VxWorks,
RTLinux, Lynx and standards like POSIX (pthreads)

in Languages

The basis of real-time languages like Ada and Real-time Java

This course

I Preemptive scheduling (dispatch might be called within
interrupt handlers).

I Static as well as dynamic priorities.



Implementing priority scheduling

static void enqueueByPriority (Msg p, Msg *queue){

Msg prev = NULL;

Msg q = *queue;

while(q && (q->priority <= p->priority) ){

prev=q;

q=q->next;

}

p->next=q;

if(prev==NULL)

*queue=p;

else

prev->next=p;

}

Replace calls to enqueue by calls to enqueueByPriority. Msg

has an extra field! See the reversed scale?



Using priorities

Static priorities offer a way of assigning a relative importance to
each task/thread/message.

The highest priority task is offered the whole processor.

Any cycles not used by this task are offered to the second but
highest priority task.

A task that consumes whatever cycles it is given will effectively
disable all lower priority tasks.



Using priorities

With static priorities, the relative importance of each task must be
such that its active execution time is less than the deadline of
every task of less importance!

Then all possibilities of interference by several high priority tasks
must be taken into account!

Depends on detailed knowledge (or assumptions) about external
event patterns!

Requires means to connect the priority settings to deadline
constraints, as well as sophisticated analysis techniques.


	 
	Time
	Sampling time
	Real-time events
	Constrained by time
	Deadlines
	Priorities

