
1

The ioco Theory

for Model-Based Testing

with Labelled Transition Systems

Jan Tretmans

jan.tretmans@tno.nl

2

Models LTS

 Comparing LTS

 equivalences

 Correctness

 implementation relations

 ioco

The ioco Theory

for Model-Based Testing

Overview

 Testing LTS

 test generation

 test execution

 Correctness & Testing

 soundness

 exhaustiveness

 SUT: Black-Box & Formal

 test assumption

3

Labelled Transition Systems

© Jan Tretmans 4

Labelled Transition Systems

Labelled Transition System  S, L, T, s0 

Coin

Button

Alarm Button

Coffee

states

actions transitions
T  S  (L{})  S

initial state
s0  S

http://www.cartoline.it/pics/_zoom_flash.htm?immagine=scherzi_150404_01

© Jan Tretmans 5

a a

cb

d

a c

b

d

c a

b

d

c a

b

a

b c

a

a

a

a

b

b

b

b

a

Labelled Transition Systems

© Jan Tretmans 6

Labelled Transition Systems

S0 S1
10c

transition

10c coffee
S0 S3

transition
composition

20c tea
S0 executable

sequence

non-executable
sequence

20c soup
S0

LTS(L) all transition
systems over L

L = { 10c, 20c,
coffee, tea, soup}

10c

coffee

20c

tea

S1 S2

S3

S0
s

S4

S5



© Jan Tretmans 7

Labelled Transition Systems

10c

coffee

10c

tea

S1 S2

S3 S4

S0
traces (s) = {   L* | s  }

s after  = { s’ | s  s’ }

s Sequences of observable actions:

Reachable states:

traces(s) = { , 10c, 10c coffee, 10c tea }

s after 10c = { S1, S2 }

s after 10c tea = { S4 }

© Jan Tretmans 8

Representation of LTS

 Explicit :

 {S0,S1,S2,S3},

{10c,coffee,tea},

{ (S0,10c,S1), (S1,coffee,S2), (S1,tea,S3) },

S0 

 Transition tree / graph

 Language / behaviour expression :

S ::=

10c >-> (coffee >-> STOP ## tea >-> STOP)

coffee

10c

tea

S1

S2 S3

S0

S

© Jan Tretmans 9

a a

cb

a >-> b >-> STOP ||| c >-> d >-> STOP

d

a c

b

d

c a

b

d

c a

b

a >-> b >-> STOP
a >-> c >-> STOP

a

b c

a >->
(b >-> STOP

##
c >-> STOP

)

Representation of LTS

© Jan Tretmans 10

a

a

a

a

b

b

b

b

Q, where

Q ::=

a >-> (b >-> STOP ||| Q)
a

P, where

P ::= a >-> P

Representation of LTS

11

Equivalences on

Labelled Transition Systems

© Jan Tretmans 12

a

b

a



b

aa

b

b

a

Observable Behaviour

?

 ?



?



?



“ Some transition systems are more equal than others “

© Jan Tretmans 13

S1 S2

environment environment

 Suppose an environment interacts with the systems:

 the environment tests the system as black box

by observing and actively controlling it;

 the environment acts as a tester;

 Two systems are equivalent if they pass the same tests.

Comparing Transition Systems

© Jan Tretmans 14

Trace Equivalence

S1 S2

environment environment

s1 tr s2  traces (s1) = traces (s2)

traces (s) = {   L* | s  }Traces:

© Jan Tretmans 15

a

b

a



b

aa

b

b

a

tr

Trace Equivalence

tr

tr

tr

© Jan Tretmans 16

a

b

a



b

aa

b

b

a

Completed Trace Equivalence

ctr

ctr

ctr

ctr

© Jan Tretmans 17

cb

a aa

cb



cb

a

tr

ctr

(Completed) Trace Equivalence

© Jan Tretmans 18

cb

a aa

cb



cb

a

?

(Completed) Trace Equivalence :
Others ?

© Jan Tretmans 19

S1 S2environment

a

b

environment

a

bcb

a aa

cb

teaa b aa b

S1 after a refuses {b} S2 after a refuses {b}

a b 

aa 

a b 

Comparing Systems :
Testing Equivalence

© Jan Tretmans 20

Testing Equivalence

cb

a aa

cb



cb

a

te

te

te

bisim

© Jan Tretmans 21

Testing Equivalence

tea

tea

coincoin

bang

coffee

coffee
bang

p

coffee

tea

coincoin

bang

tea

coffee
bang

q

p te q
But:

if you want coffee you will eventually always succeed in q but not p !?

© Jan Tretmans 22

Refusal Equivalence

tea

tea

coincoin

bang
coffee

coffee
bang

p

coffee

tea

coincoin

bang
tea

coffee
bang

q

coffee

coffee

coin

bang



Test t :  only possible

if nothing else is possible

coin  bang coffee   obs (q || t)

coin  bang coffee   obs (p || t)

p rf q

© Jan Tretmans 23

Equivalences on Transition Systems

isomorphism

bisimulation
(weak)

failure trace
= refusal

failures
= testing

completed
trace

trace

weak

strong

observing sequences of actions and
their end

observing sequences of actions

test an LTS with another LTS

test an LTS with another LTS, and
try again (continue) after failure

test an LTS with another LTS, and
undo, copy, repeat as often as you like

now you need to observe 's ……

© Jan Tretmans 24

a

p

Equivalences : Examples

q

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

aa

a

aa
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

aa

a

aa

a

 ?

25

Non-Equivalence Relations

on Labelled Transition Systems

Implementation Relations

Conformance Relations

Refinement Relations

Pre-Orders

© Jan Tretmans 26

Preorders on Transition Systems

implementation
i

specification
s

environment
e

environment
e



 Suppose an environment interacts with the black box

implementation i and with the specification s :

 i correctly implements s

if all observation of i can be related to observations of s

i  LTS s  LTS

© Jan Tretmans 27

Trace Preorder

implementation
i

specification
s

environment
e

environment
e

tr

i tr s  traces (i)  traces (s)

traces (s) = {   L* | s  }Traces:

© Jan Tretmans 28

Trace Preorder

10c

coffee

10c

tea

coffee

10c

tea
coffee

10c
tr

tr

tr

tr tr

tr

i tr s =

traces(i)  traces(s)

© Jan Tretmans 29

Trace Preorder

10c

coffee

10c

tea

coffee

10c

tea
coffee

10c
tr tr

tr

i tr s =

traces(i)  traces(s)

30

Implementation Relation ioco

for Labelled Transition Systems

with Inputs and Outputs

© Jan Tretmans 31

Input-Output Transition Systems

10c

coffee

20c

tea

S1 S2

S3 S4

S0

LI = { ?10c, ?20c }

LU = { !coffee, !tea }

10c, 20c coffee, tea

from user to machine from machine to user
initiative with user initiative with machine
machine cannot refuse user cannot refuse

input output

LI LU

LI  LU =  LI  LU = L

!

??

!

© Jan Tretmans 32

LI = { ?10c, ?20c }

LU = { !coffee, !tea }

Input-Output Transition Systems

IOTS (LI ,,LU)  LTS (LI , LU)

IOTS is LTS with Input-Output

and always enabled inputs:

for all states s,

for all inputs ?a  LI :

?10c
?20c

?10c
?20c

?10c
?20c

?10c
?20c

?10c

!coffee

?20c

!tea

S
?a

Input-Output Transition Systems

© Jan Tretmans 33

implementation
i

specification
s

Input-Output Transition Systems
with ioco

environment
e

environment
e

ioco

i  IOTS(LI,LU) s  LTS(LI,LU)

ioco  IOTS (LI,LU) x LTS (LI,LU)

Observing IOTS where system inputs
interact with environment outputs, and v.v.

© Jan Tretmans 34

i ioco s =def   Straces (s) : out (i after )  out (s after )

Correctness
Implementation Relation ioco

p  p =  !x  LU {} . p !x

out (P) = { !x  LU | p !x , pP }  {  | p  p, pP }

Straces (s) = {   (L{})* | s  }

p after  = { p’ | p  p’ }

© Jan Tretmans 35

i ioco s =def   Straces (s) : out (i after )  out (s after )

Intuition:

i ioco-conforms to s, iff

• if i produces output x after trace ,
then s can produce x after 

• if i cannot produce any output after trace ,

then s cannot produce any output after  (quiescence )

Correctness
Implementation Relation ioco

© Jan Tretmans 37

?10c

!choc

?20c

!tea

!coffee

?10c
?20c

?10c
?20c

?10c
?20c

!choc

?10c

!tea

!coffee

?10c

!tea

s


?10c

!coffee

?10c

Implementation Relation ioco

© Jan Tretmans 38

out (i after ?10c.?10c) = out (s after ?10c.?10c) = { !tea, !coffee }

i ioco s

Implementation Relation ioco

i ioco s =def   Straces (s) : out (i after )  out (s after )

i

?10c

?10c

?10c ?10c

!tea

?10c

?10c

!coffee

?10c

s

!coffee

?10c

?10c

?10c ?10c

!tea

?10c

?10c

?10c

?10c

!tea

s ioco i

out (i after ?10c..?10c) = { !coffee }  out (s after ?10c..?10c) = { !tea, !coffee }

© Jan Tretmans 39

? x (x >= 0)

! y

(|y2 – x| < 0.001)

specification

! x

? x (x < 0)

? x (x >= 0)

implementation
models

? z

LTS and ioco allow:

• non-determinism

• under-specification

• the specification of properties

rather than construction

! -x

? x (x < 0)

? x (x >= 0)

? z

! error

Implementation Relation ioco

© Jan Tretmans 41

Model Based Testing

s  LTS

SUT
behaving as
i  IOTS  LTS

i ioco s

pass fail

test

tool

T : LTS
 (TTS)

t  i

T(s)  i  pass

i ioco s

  soundexhaustive

with Transition Systems

42

Test Cases, Test Generation,

and Test Execution

for Labelled Transition Systems

© Jan Tretmans 43

Test Generation

i ioco s =def   Straces (s) : out (i after )  out (s after )

out (s after )

= { !x, !y }

s

!x



!y

i

!x



!z

out (i after )

= { !x, !z }

out (test after ) = LU

pass fail

test

?x



?y
?z

pass

© Jan Tretmans 44

Test Generation

i ioco s =def   Straces (s) : out (i after )  out (s after )



out (s after )

= { !x, !y,  }



s

!x !y



i

!x



!z

out (i after )

= { !x, !z,  }

out (test after )

= LU  {  }



pass
pass fail

test

?x



?y
?z

pass

© Jan Tretmans 45

Test Cases

 labels in L  {  }

• ‘quiescence’ label 

 tree-structured

 ‘finite’, deterministic

 sink states pass and fail

 from each state:

• either one input !a and all outputs ?x

• or all outputs ?x and 

Model of a test case
= transition system :

!10c

!20c

?tea

?coffee?tea



!10c



pass

failfail

failpass

failfail

?coffee
?tea

failpass

?coffee
?tea

failfail

?coffee
?tea

?coffee

LU  {θ}

pass

LU  {θ}

fail

© Jan Tretmans 46

Algorithm

To generate a test case t (S) from a transition system
specification S, with S  : set of states (initially S = s0 after )

1 end test case

pass

Apply the following steps recursively, non-deterministically:

Test Generation Algorithm

allowed outputs (or ): !x out (S)

forbidden outputs (or ): !y out (S)

3 observe all outputs

fail

t (S after !x)

fail

allowed outputsforbidden outputs
?y


?x

2 supply input !a

!a

t (S after ?a  )

fail

t (S after !x)

fail

allowed outputsforbidden outputs
?y ?x

© Jan Tretmans 47

?coffee

failpass

?tea
?choc

failfail

Test Generation Example

test

?coffee

failfail

?tea

?choc

pass

s

!tea

?10c

!coffee

fail

!10c

?coffee

fail

?tea

?choc

fail

© Jan Tretmans 48

?coffee


?tea

passfail fail

?coffee

passfail


?tea







Test Generation Example

s

?10c

!coffee

?10c

test

fail

?tea !10c

?coffee

fail

To cope with non-deterministic behaviour,
tests are not linear traces, but trees

© Jan Tretmans 50

Test Execution Example

Two test runs :

t  i
10c tea pass  i'

fail  i''t  i
10c choc

i fails t

!choc

?10c

!tea

i

i' i''

?coffee

failpass

?tea
?choc

failfail

test

?coffee

failfail

?tea

?choc

pass

fail

!10c

?coffee

fail

?tea

?choc

fail

© Jan Tretmans 51

Model Based Testing

s  LTS

SUT
behaving as
i  IOTS  LTS

i ioco s

pass fail

test

tool

T : LTS
 (TTS)

t  i

T(s)  i  pass

i ioco s

  soundexhaustive

with Transition Systems

52

Testability Assumption

(Test Hypothesis)

© Jan Tretmans 53

IUT iIUT

Comparing Transition Systems:
An Implementation and a Model

environment
e

environment
e

IUT  iIUT   e  E . obs (e, IUT) = obs (e, iIUT)

© Jan Tretmans 54

IUT iIUT

Formal Testing : Test Assumption

Test assumption :

 IUT .  iIUT  MOD.

 t  TEST . IUT passes t  iIUT passes t

test t test t

55

Soundness and Exhaustiveness

© Jan Tretmans 56

Validity of Test Generation

For every test t generated with algorithm we have:

 Soundness :
t will never fail with correct implementation

i ioco s implies i passes t

 Exhaustiveness :
each incorrect implementation can be detected
with a generated test t

i ioco s implies  t : i fails t

© Jan Tretmans 57

Model Based Testing

s  LTS

SUT
behaving as
i  IOTS  LTS

i ioco s

pass fail

test

tool

T : LTS
 (TTS)

t  i

T(s)  i  pass

i ioco s

  soundexhaustive

with Transition Systems

© Jan Tretmans 59

s  LTS

SUT
behaving as

i IOTS

i ioco s

pass

fail

test

tool

T : LTS
 (TTS)

t  i

SUT  T(s)  pass

SUT ioco s

  soundexhaustive

Proof soundness and exhaustiveness:

iIOTS .

(t T(s) . i passes t)

 i ioco s

Test assumption :

IUTIMP . iIUT IOTS .

tTEST. IUT passes t
 iIUT passes t

The ioco Theory for Model-Based Testing

