The ioco Theory
for Model-Based Testing
with Labelled Transition Systems

Jan Tretmans

jan.tretmans@tno.nl

\2d-Ay
CrTew

:"qﬁme-?g

for Model-Based

Overview

“ Models LTS
“ Comparing LTS

¢ equivalences
=" Correctness

¢ implementation relations

¢ ioco

The ioco Theory

Testing

“ Testing LTS
¢ test generation
¢ test execution

% Correctness & Testing
¢ soundness

¢ exhaustiveness

& SUT: Black-Box & Formal

¢ test assumption

Labelled Transition Systems

Labelled Transition Systems

Labelled Transition System (S, L, T, sp)

/ \
states initial state

SO € S
actions transitions
TcSx(Luft) xS

4 Coffee

Coin Alarm Button

,
> B \
Tk T SOV, LR TR TR R T v

Button

© Jan Tretmans 4

http://www.cartoline.it/pics/_zoom_flash.htm?immagine=scherzi_150404_01

Labelled Transition Systems

wa a a a
A’ bT c e
O O O

© Jan Tretmans

Labelled Transition Systems

20c

S2

T

S3 ¥s4

tea

L = { 10c, 20c,
coffee, tea, soup}

© Jan Tretmans

S0 10c . 51

10c coffee -

SO >
<0 20c tea -
20c soup
SO S~

s~
LTS(L)

transition

transition
composition

executable
sequence

non-executable
sequence

all transition
systems over L

6

Labelled Transition Systems

S2

tea

S3@ @54

© Jan Tretmans

Sequences of observable actions:

traces(s) = { ocel* | s == }
traces(s) = { ¢, 10c, 10c coffee, 10c tea}
Reachable states:

safterc = { s | s =25}
safter10c = {si1,s2}

s after 10c tea = {54}

Representation of LTS

S
N o
10c
S1
coffee tea
S2@ S3

© Jan Tretmans

= Explicit :
({s50,51,52,53},
{10c,coffee,tea},
{ (50,10¢,S1), (S1,coffee,52), (S1,tea,S3) },

s0)
“ Transition tree / graph

“ Language / behaviour expression :
SRt
10c >-> (coffee >-> STOP ## tea >-> STOP)

a

V\
O O
a>->
(b>->STOP
Ht
c>-> STOP

)

© Jan Tretmans

Representation of LTS

T

a>>b>>STOP
HH# a>->c>->STOP

a>>b>>STOP ||| c»>->d>>STOP

N\

Representation of LTS

O Q, where
Q =

© Jan Tretmans

PI
P

’ a>>(b>>STOP ||| Q)

where

nz a>->P

10

Equivalences on
Labelled Transition Systems

11

Observable Behaviour

Q

a a a
?
a ~ ?
b ~] b
T a
b 5 T b

" Some fransition systems are more equal than others ™

© Jan Tretmans 12

Comparing Transition Systems

environment environment

" Suppose an environment interacts with the systems:

¢ the environment tests the system as black box
by observing and actively controlling it;

¢ the environment acts as a tester;

% Two systems are equivalent if they pass the same tesfts.

© Jan Tretmans 13

© Jan Tretmans

Trace Equivalence

environment

Traces:

environment

<& traces (S1) = traces (S2)

traces (8) = { oel* | s=— }

14

© Jan Tretmans

Trace Equivalence

Q

tr b

15

© Jan Tretmans

Completed Trace Equivalence

*ctr

Q

ctr

Q

ctr

ﬂTLctr

16

© Jan Tretmans

(Completed) Trace Equivalence

I~
tr

Q

ctr

17

(Completed) Trace Equivalence :

Others ?

18

Comparing Systems :
Testing Equivalence

environment environment

a a a a a
b b c b C b

ab Fte aby
a

Si afTe/r'M‘ef/uses {b} S2 after a refuses {b}

© Jan Tretmans 19

© Jan Tretmans

Testing Equivalence

aé’re

20

Testing Equivalence

But:
if you want coffee you will eventually always succeed in g but not p 1?

© Jan Tretmans 21

coffee

coffee

Test t:

© Jan Tretmans

Refusal Equivalence

bang

coffee

O only possible
if nothing else is possible

coin © bang coffee N & obs (p || T)
coin O bang coffeeV € obs (q || 1)

p #rf q

22

Equivalences on Transition Systems

isomorphism

bisimulation
strong (weak
A

failure trace
= refusal

failures
l = tfesting
weak |
completed
trace

trace

© Jan Tretmans

now you need to observe T's

test an LTS with another LTS, and
undo, copy, repeat as often as you like

test an LTS with another LTS, and
try again (continue) after failure

test an LTS with another LTS

observing sequences of actions and
their end

observing sequences of actions

23

Examples

Equivalences

24

© Jan Tretmans

Non-Equivalence Relations
on Labelled Transition Systems

Implementation Relations
Conformance Relations
Refinement Relations
Pre-Orders

25

Preorders on Transition Systems

, implementation specification
I € LTS i : i s s € LTS

environment environment
e e

== Suppose an environment interacts with the black box
implementation i and with the specification s :

¢ i correctly implements s
if all observation of i can be related to observations of s

© Jan Tretmans 26

© Jan Tretmans

Trace Preorder

implementation specification

environment
e

< S

Traces:

S

environment
e

& traces (1) C traces (S)

traces(s) = { oel* | s=25 }

27

traces(i) < traces(s)

© Jan Tretmans

Trace Preorder

<tr
10c > 10c
$Tr
) coffee
coffee fea
w S/v
10c 10c
<tr <tr
tea coffee
o o

10c

coffee

i <trs =
traces(i) < traces(s)

© Jan Tretmans

Trace Preorder

<tr <tr
) ® g 10c
<'|'I" tea coffee
10c 10c
tea coffee
o o

29

I ‘Ell

Implementation Relation 10CO

for Labelled Transition Systems
with Inputs and Outputs

30

Input-Output Transition Systems

10c, 20c¢ coffee, tea

from user to machine from machine to user
initiative with user initiative with machine
machine cannot refuse user cannot refuse

3@ ®s input output
L Ly
L; = {?10c, ?20c } L AL, = @ Lrul, =L

L, = {|coffee, Itea}

© Jan Tretmans 31

Input-Output Transition Systems

?10c
?220c

O O?mc
210c¢ ?220c

L; = {?10c, 220c }
L, = {|coffee, Itea}

© Jan Tretmans

Input-Output Transition Systems
IOTS (Lr Ly) < LTS (Lruly)

IOTS is LTS with Input-Output
and always enabled inputs:

for all states s,

. >
forallinputs 2ael;: s ===

32

Input-Output Transition Systems
with ioco

implementation ioco specification
i S

environment
e

environment
e

i € TOTS(L1.Ly) s € LTS(Lr.Ly)
ioco < IOTS(Lyly) x LTS (L1.Ly)

Observing IOTS where system inputs
interact with environment outputs, and v.v.

© Jan Tretmans

33

Correctness
Implementation Relation 10CO

liocos =4, Vo € Straces (s): out (i after c) < out (s after o)

p_j_>p = V!xeLUu{t}.pl;L.

Straces (s) { 6 e(LAOY)* | s== }

p after ¢ {p| p==p}

out (P) {Ixel,|p=X~, peP} U{8|p-2_p, peP}

© Jan Tretmans 34

Correctness
Implementation Relation 10CO

iliocos =4 Vo € Straces (s): out (i after) < out (s after o)

Intuition:
| ioco-conforms to s, iff

- if i produces output x after trace o,
then s can produce x after o

- if i cannot produce any output after trace o,
then s cannot produce any output after o (quiescence O)

© Jan Tretmans Ks}

Implementation Relation 10CO

?220c

?10c

. AcO

© Jan Tretmans 37

Implementation Relation i10CO

liocos =4 Vo € Straces (s): out (i after) < out (s after o)

. S
/| 10CO S
s i7!o I »10¢
?10c
210c¢
?10c 210c
lcoffee ' lcoffee

?10c

out (i after 210c.?10c) = out (s after ?10¢c.?10c) = { !teaq, Icoffee }
out (i after 210c.0.210¢) = { Icoffee } # out (s after 210¢c.0.?10¢) = { Itea, Icoffee }

© Jan Tretmans 38

Implementation Relation 10CO

? X (x<0)

specification implementation
models

? X (x>=0)

ly
(ly? - x| <0.001)

LTS and ioco allow:

* non-determinism

» under-specification

* the specification of properties
rather than construction

© Jan Tretmans 39

Model Based Testing
with Transition Systems

i ioco s

exhaustiveﬂ U sound

T(s) Il i > pass

© Jan Tretmans

t 1]

pass fail

| i0CO S

SUT
I behaving as

| e IOTS LTS

41

I ‘Ell

Test Cases, Test Generation,
and Test Execution
for Labelled Transition Systems

42

Test Generation

iiocos =4 Vo e Straces (s): out (i after o) < out (s after o)

S] test

/
/\ /\ PO

pass pass fail

out (s after o) out (i after o) out (test after o) = L,
={Ix,ly} ={Ix,1z}

© Jan Tretmans 43

Test Generation

iiocos =4 Vo e Straces (s): out (i after o) < out (s after o)

S] test

AR AR AR

bnss _ pass
pass ail
out (s after o) out (i after o) out (test after o)
={Ix,ly,0} ={Ix,1z,0 } =Ly,vu {0}

© Jan Tretmans 44

Test Cases

Model of a test case
= fransition system :

¢ labelsin Lu {0}
e 'quiescence’ label 6
tree-structured
‘finite’, deterministic
sink states pass and fail
from each state:
e either one input la and all outputs ?x

e or all outputs ?x and 0

pass O fail O

L, v {6} L, v {6}

© Jan Tretmans

pass

offee

Stda 110¢
fail fail
ffee WA 120c

pass fail

45

Test Generation Algorithm

Algorithm

To generate a test case t(S) from a transition system
specification S, with S = &: set of states (initially S = s, after €)

Apply the following steps recursively, non-deterministically:

1 end test case 3 observe all outputs

® pass

forbidden outputs allowed outputs

2 supply input la

forbidden outputs allowed outputs

.............. | ‘ t (S afTer‘ | X)

®
fail fail ‘
allowed outputs (or d): Ix e out(S)

t(Safferx) forpidden outputs (or 8): ly ¢ out(S)
t(S after ?2a= @)

© Jan Tretmans 46

© Jan Tretmans

Test Generation Example

l?lOc
ltea Y‘fze

test
?coffee ?2choc
110¢ ?ted
fail fail “fail
?coffee ?2choc
?tea 9
Scotfee pass fail fail
0 ?choc
?tea

fail fail pass fail

47

Test Generation Example

To cope with non-deferministic behaviour,
tests are not linear traces, but trees

© Jan Tretmans

48

Test Execution Example

Two test runs :

ti =0cted o pags Tl

/

. -|| i 10c choc

> fail 1]i"

© Jan Tretmans

test
?coffee ?2choc
110¢ ?ted
fail fail fail
?coffee 2choc
?tea 9
scoffee pass fail fail
0 ?choc
?tea
fail fail pass fail
i fails t

5]0)

Model Based Testing
with Transition Systems

i ioco s

exhaustiveﬂ U sound

T(s) Il i > pass

© Jan Tretmans

t 1]

pass fail

| i0CO S

SUT
I behaving as

| e IOTS LTS

51

Testability Assumption

(Test Hypothesis)

Comparing Transition Systems:
An Implementation and a Model

environment environment
e e

IUT ® Iyt & Ve e E. obs(e, IUT) = obs(e, iryr)

© Jan Tretmans 53

Formal Testing : Test Assumption

Test assumption :
V IUT. J iy T € MOD.

V t € TEST. IUT passes t <> iy passes t

© Jan Tretmans

54

Soundness and Exhaustiveness

515)

Validity of Test Generation

For every test t generated with algorithm we have:

& Soundness :
T will never fail with correct implementation

i ioco s implies | passes 1

" Exhaustiveness :
each incorrect implementation can be detected
with a generated test t

i ic%: S implies 3t: ifailst

© Jan Tretmans

b6

Model Based Testing
with Transition Systems

i ioco s

exhaustiveﬂ U sound

T(s) Il i > pass

© Jan Tretmans

t 1]

pass fail

| i0CO S

SUT
I behaving as

| e IOTS LTS

57

The ioco Theory for Model-Based Testing

Test assumption :
VIUTEIMP . Ji; - eIOTS.

V1teTEST. IUT passes t
< ipyT passes t

Proof soundness and exhaustiveness:

VieIOTS.
(Vte T(s).ipasses 1)
] behaving as & iioco s
e IOTS
SUT ioco s
pass exhaustive ﬂ U sound

fail
SUT 1| T(s) > pass

© Jan Tretmans 59

