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Labelled Transition Systems

Labelled Transition System (S, L, T, sp)
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Labelled Transition Systems
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Labelled Transition Systems

20c

S2

T

S3 ¥s4

tea

L = { 10c, 20c,
coffee, tea, soup}
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Labelled Transition Systems

S2

tea

S3@ @54
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Sequences of observable actions:

traces(s) = { ocel* | s == }
traces(s) = { ¢, 10c, 10c coffee, 10c tea}
Reachable states:

safterc = { s | s =25}
safter10c = {si1,s2}

s after 10c tea = {54}



Representation of LTS

S
N o
10c
S1
coffee tea
S2@ S3
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= Explicit :
( {s50,51,52,53},
{10c,coffee,tea},
{ (50,10¢,S1), (S1,coffee,52), (S1,tea,S3) },

s0)
“ Transition tree / graph

“ Language / behaviour expression :
SRt
10c >-> ( coffee >-> STOP ## tea >-> STOP)
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Representation of LTS

T

a>>b>>STOP
HH# a>->c>->STOP

a>>b>>STOP ||| c»>->d>>STOP




N\

Representation of LTS

O Q, where
Q =
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PI
P

’ a>>(b>>STOP ||| Q)

where

nz a>->P
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Equivalences on
Labelled Transition Systems
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Observable Behaviour

Q

a a a
?
a ~ ?
b ~] b
T a
b 5 T b

" Some fransition systems are more equal than others ™
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Comparing Transition Systems

environment environment

" Suppose an environment interacts with the systems:

¢ the environment tests the system as black box
by observing and actively controlling it;

¢ the environment acts as a tester;

% Two systems are equivalent if they pass the same tesfts.
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Trace Equivalence

environment

Traces:

environment

<& traces (S1) = traces (S2)

traces (8) = { oel* | s=— }
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Trace Equivalence

Q

tr b
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Completed Trace Equivalence

*ctr

Q

ctr

Q

ctr

ﬂTLctr
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(Completed) Trace Equivalence

I~
tr

Q

ctr
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(Completed) Trace Equivalence :

Others ?
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Comparing Systems :
Testing Equivalence

environment environment

a a a a a
b b c b C b

ab Fte aby
a

Si afTe/r'M‘ef/uses {b} S2 after a refuses {b}
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Testing Equivalence

aé’re
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Testing Equivalence

But:
if you want coffee you will eventually always succeed in g but not p 1?
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coffee

coffee

Test t:
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Refusal Equivalence

bang

coffee

O only possible
if nothing else is possible

coin © bang coffee N & obs (p || T)
coin O bang coffeeV € obs (q || 1)

p #rf q
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Equivalences on Transition Systems

isomorphism

bisimulation
strong ( weak
A

failure trace
= refusal

failures
l = tfesting
weak |
completed
trace

trace
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now you need to observe T's ......

test an LTS with another LTS, and
undo, copy, repeat as often as you like

test an LTS with another LTS, and
try again (continue) after failure

test an LTS with another LTS

observing sequences of actions and
their end

observing sequences of actions

23



Examples

Equivalences

24
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Non-Equivalence Relations
on Labelled Transition Systems

Implementation Relations
Conformance Relations
Refinement Relations
Pre-Orders

25



Preorders on Transition Systems

, implementation specification
I € LTS i : i s s € LTS

environment environment
e e

== Suppose an environment interacts with the black box
implementation i and with the specification s :

¢ i correctly implements s
if all observation of i can be related to observations of s

© Jan Tretmans 26
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Trace Preorder

implementation specification

environment
e

< S

Traces:

S

environment
e

&  traces (1) C traces (S)

traces(s) = { oel* | s=25 }
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traces(i) < traces(s)

© Jan Tretmans

Trace Preorder

<tr
10c > 10c
$Tr
) coffee
coffee fea
w S/v
10c 10c
<tr <tr
tea coffee
o o



10c

coffee

i <trs =
traces(i) < traces(s)
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Trace Preorder

<tr <tr
) ® g 10c
<'|'I" tea coffee
10c 10c
tea coffee
o o
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I ‘Ell

Implementation Relation 10CO

for Labelled Transition Systems
with Inputs and Outputs
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Input-Output Transition Systems

10c, 20c¢ coffee, tea

from user to machine from machine to user
initiative with user initiative with machine
machine cannot refuse  user cannot refuse

3@ ®s input output
L Ly
L; = {?10c, ?20c } L AL, = @ Lrul, =L

L, = {|coffee, Itea}
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Input-Output Transition Systems

?10c
?220c

O O?mc
210c¢ ?220c

L; = {?10c, 220c }
L, = {|coffee, Itea}
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Input-Output Transition Systems
IOTS (Lr Ly) < LTS (Lruly)

IOTS is LTS with Input-Output
and always enabled inputs:

for all states s,

. >
forallinputs 2ael;: s ===
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Input-Output Transition Systems
with ioco

implementation ioco specification
i S

environment
e

environment
e

i € TOTS(L1.Ly) s € LTS(Lr.Ly)
ioco < IOTS(Lyly) x LTS (L1.Ly)

Observing IOTS where system inputs
interact with environment outputs, and v.v.

© Jan Tretmans
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Correctness
Implementation Relation 10CO

liocos =4, Vo € Straces (s): out (i after c) < out (s after o)

p_j_>p = V!xeLUu{t}.pl;L.

Straces (s ) { 6 e(LAOY)* | s== }

p after ¢ {p| p==p}

out (P) {Ixel,|p=X~, peP} U{8|p-2_p, peP}
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Correctness
Implementation Relation 10CO

iliocos =4 Vo € Straces (s): out (i after ) < out (s after o)

Intuition:
| ioco-conforms to s, iff

- if i produces output x after trace o,
then s can produce x after o

- if i cannot produce any output after trace o,
then s cannot produce any output after o ( quiescence O )

© Jan Tretmans Ks}



Implementation Relation 10CO

?220c

?10c

. AcO

© Jan Tretmans 37



Implementation Relation i10CO

liocos =4 Vo € Straces (s): out (i after ) < out (s after o)

. S
/| 10CO S
s i7!o I »10¢
?10c
210c¢
?10c 210c
lcoffee ' lcoffee

?10c

out (i after 210c.?10c) = out (s after ?10¢c.?10c) = { !teaq, Icoffee }
out (i after 210c.0.210¢) = { Icoffee } # out (s after 210¢c.0.?10¢) = { Itea, Icoffee }
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Implementation Relation 10CO

? X (x<0)

specification implementation
models

? X (x>=0)

ly
(ly? - x| <0.001)

LTS and ioco allow:

* non-determinism

» under-specification

* the specification of properties
rather than construction
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Model Based Testing
with Transition Systems

i ioco s

exhaustiveﬂ U sound

T(s) Il i > pass

© Jan Tretmans

t 1]

pass fail

| i0CO S

SUT
I behaving as

| e IOTS LTS
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I ‘Ell

Test Cases, Test Generation,
and Test Execution
for Labelled Transition Systems
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Test Generation

iiocos =4 Vo e Straces (s): out (i after o) < out (s after o)

S ] test

/
/\ /\ PO

pass pass fail

out (s after o) out (i after o) out (test after o) = L,
={Ix,ly} ={Ix,1z}
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Test Generation

iiocos =4 Vo e Straces (s): out (i after o) < out (s after o)

S ] test

AR AR AR

bnss _ pass
pass ail
out (s after o) out (i after o) out (test after o)
={Ix,ly,0} ={Ix,1z,0 } =Ly,vu {0}
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Test Cases

Model of a test case
= fransition system :

¢ labelsin Lu {0}
e 'quiescence’ label 6
tree-structured
‘finite’, deterministic
sink states pass and fail
from each state:
e either one input la and all outputs ?x

e or all outputs ?x and 0

pass O fail O

L, v {6} L, v {6}

© Jan Tretmans

pass

offee

Stda 110¢
fail fail
ffee WA 120c

pass fail
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Test Generation Algorithm

Algorithm

To generate a test case t(S) from a transition system
specification S, with S = &: set of states (initially S = s, after €)

Apply the following steps recursively, non-deterministically:

1 end test case 3 observe all outputs

® pass

forbidden outputs allowed outputs

2 supply input la

forbidden outputs allowed outputs

.............. | ‘ t ( S afTer‘ | X)

®
fail fail ‘
allowed outputs (or d): Ix e out(S)

t(Safferx)  forpidden outputs (or 8): ly ¢ out(S)
t(S after ?2a= @)

© Jan Tretmans 46
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Test Generation Example

l?lOc
ltea Y‘fze

test
?coffee ?2choc
110¢ ?ted
fail fail  “fail
?coffee ?2choc
?tea 9
Scotfee pass fail  fail
0 ?choc
?tea

fail  fail pass fail
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Test Generation Example

To cope with non-deferministic behaviour,
tests are not linear traces, but trees

© Jan Tretmans
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Test Execution Example

Two test runs :

ti =0cted o pags Tl

/

. -|| i 10c choc

> fail 1]i"

© Jan Tretmans

test
?coffee ?2choc
110¢ ?ted
fail fail fail
?coffee 2choc
?tea 9
scoffee pass fail  fail
0 ?choc
?tea
fail  fail pass fail
i fails t

5]0)



Model Based Testing
with Transition Systems

i ioco s

exhaustiveﬂ U sound

T(s) Il i > pass

© Jan Tretmans

t 1]

pass fail

| i0CO S

SUT
I behaving as

| e IOTS LTS
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Testability Assumption

(Test Hypothesis)



Comparing Transition Systems:
An Implementation and a Model

environment environment
e e

IUT ® Iyt & Ve e E. obs(e, IUT) = obs(e, iryr)
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Formal Testing : Test Assumption

Test assumption :
V IUT. J iy T € MOD.

V t € TEST. IUT passes t <> iy passes t

© Jan Tretmans
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Soundness and Exhaustiveness

515)



Validity of Test Generation

For every test t generated with algorithm we have:

& Soundness :
T will never fail with correct implementation

i ioco s implies | passes 1

" Exhaustiveness :
each incorrect implementation can be detected
with a generated test t

i ic%: S implies  3t: ifailst

© Jan Tretmans
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Model Based Testing
with Transition Systems

i ioco s

exhaustiveﬂ U sound

T(s) Il i > pass
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t 1]

pass fail

| i0CO S

SUT
I behaving as

| e IOTS LTS
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The ioco Theory for Model-Based Testing

Test assumption :
VIUTEIMP . Ji; - eIOTS.

V1teTEST. IUT passes t
< ipyT passes t

Proof soundness and exhaustiveness:

VieIOTS.
(Vte T(s).ipasses 1)
] behaving as & iioco s
e IOTS
SUT ioco s
pass exhaustive ﬂ U sound

fail
SUT 1| T(s) > pass
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