
Making Nondeterminism Explicit in Z

S.H. Mirian-HosseinAbadi1 and M.R. Mousavi2

1 Department of Computer Engineering
Sharif University of Technology

Tehran, Iran
Email: mirian@sharif.ac.ir

2 Department of Computer Science
Eindhoven University of Technology,

Eindhoven, The Netherlands
Email: m.r.mousavi@tue.nl

Abstract. Specification of system requirements is often involved with
ambiguity and nondeterminism. Formal methods tend to mitigate ambi-
guity but nondeterminism remains as an inherent part of specification.
This is due to the abstraction from real world details that causes a formal
specification to define several results as a correct solution to a problem.
Hence, a support for nondeterminism should be foreseen in formal meth-
ods.
In this paper, after studying different types of nondeterminism, some
basic notations, namely multi- and power-schema, are added to Z for-
mal language, to help explicit specification of nondeterminate constructs.
Afterwards, a transformation is defined to generate nondeterministic se-
mantics from specification in the same language. The results of adding
the proposed notations is discussed from program development point of
view.

Keywords: Nondeterminism, Z notation, Formal Specification, Program
development.

1 Introduction

Using formal methods brings about precision in software develop-
ment process but at the same time, the abstraction imposed in spec-
ification phase, introduces nondeterminism in formal specification.
From program development point of view, having implicit nondeter-
minism is a disadvantage. Hence, to facilitate modelling nondeter-
minism in specifications special notations and semantics should be
foreseen in formal specification languages.

In this paper we aim to present main ideas behind nondetermi-
nacy and nondeterminism in set theoretic formal specifications, and

add some notions of nondeterminacy to the Z specification language.
To do this, in section 2, basic definitions and previous works on non-
determinism are reviewed. In section 3 nondeterministic constructs
added to this language are introduced. Our approach is introduced,
subsequently. The results achieved in our approach, is studied in sec-
tion 4 from a program development point of view and an example is
specified using the extended notation. Section 5 will summarize the
results and show motivations for future work.

2 Nondeterminism in formal specification

2.1 Basic Concepts

The goal of formal specification is to define software requirements
rigorously. This causes an abstraction from some unneeded details
and allows different results in implementation. The high level ab-
straction introduces nondeterminism to the specification and causes
the resulting artifact not be executable[4]1.

If we define software(software component) as a relation that com-
putes output from an input set, nondeterministic software could pro-
duce different outputs from a single input[14, 10]. On the contrary,
deterministic software computes the same result for each set of in-
put. The syntactic notation for modelling nondeterministic seman-
tics is called nondeterminacy2. Because of insufficient information
from the system, some aspects of the system may remain unde-
fined. These kinds of specification are called under-specified. There
were some attempts to formalize the difference between the two con-
cepts(nondeterminism and under-specification)[12].

Different types of nondeterministic constructs and their seman-
tics were defined in the literature[10, 13]. Here, we restrict our atten-
tion to three major classifications:

1. Singular and plural nondeterminism: Singular and plural nonde-
terminism coincide with call-by-value and call-by-name semantics

1 Although, some arguments were made in favor of (directly)executable specifica-
tions[3], this idea imposes extra restrictions on specifier(e.g. bounding variables’
range) and the resulting program seems to be very inefficient.

2 The problem wether a program(specification) using nondeterminate constructs acts
nondeterministically, is shown to be undecidable[1].

in programming languages. In plural nondeterministic semantics,
decisions regarding nondeterminism on a same structure are made
independently. However, in singular semantics, always same deci-
sion is made in different places using same nondeterminate struc-
ture.

2. Bounded and unbounded choice: If the set of possible choices,
could be an infinite set then the resulting nondeterminism is un-
bounded else it is called bounded nondeterminism. Fairness issues
could be also discussed in unbounded nondeterministic semantics.

3. Nondeterminism and nontermination: Termination of an execu-
tion may depend on the choices made in nondeterministic con-
struct. If a nondeterministic choice is made regardless of its im-
pact on termination, it is called erratic. In contrast, if the choice
is to be made in favor of termination(if at all possible) or non-
termination, we should have angelic or demonic choice semantics,
respectively.

2.2 Previous Works

Studying nondeterminism has a rich background in theoretical com-
puter science. On the other hand before 80’s there was not a concept
of nondeterminism in mathematics. Hence, computer scientists used
classic mathematical constructs to model nondeterminism. Recently,
some works were done to develop nondeterministic mathematical
framework on which formal models could be built[1].

A major branch of works on nondeterminism is done in the al-
gebraic programs and specifications. A survey of works done in this
field could be found in [13]. The basic methods introducing nonde-
terminism in algebraic specifications could be categorized as follows:

1. Functional models(operation level nondeterminism): In functional
models, a nondeterministic operation is modelled by a set of
deterministic functions. Hence, nondeterministic operations will
consist of selecting an integer number between 1 and n(the num-
ber of deterministic functions) and applying the appropriate func-
tion. The main drawback of using this model is its intentional
view over operations. In other words, two operations that have
the same result may be distinguished in this model due to differ-
ent function sets.

2. Multi-Algebra(result level nondeterminism): In this approach, a
set-valued function will represent nondeterministic function that
maps an input tuple to a set of outputs. In contrary with the
former model, Multi-Algebra is focused on the behavior of the
operations.

3. Power-Algebra(sort level nondeterminism): If the input sets are
also promoted to a set of inputs(i.e. each argument is promoted
to its power set) then a power-algebra is formed. This could be
interpreted as if every possible outcome of applying the operation
is associated with a member of the input set.

4. Relational models: In the relational models the restriction of us-
ing a defined function to model the operation is liberated and
hence, the operation is modelled arbitrary subset of a defined
relation.

In [5], Hussman proposed a nondeterministic term rewrite system.
He first dealt with plural semantics and declared a soundness criteria
in which plural semantics failed to be sound. The term rewrite rules
are then restricted to expand nondeterministic terms with singular
semantics.

Some works also concentrated on defining a logical framework for
nondeterminism. Nondeterministic logical frameworks are defined as
many valued(particularly three-valued) first order logics that admit
variables to range over a set of value. Examples of nondeterminis-
tic three-valued logics are discussed in [9]. In [1], Blass and Gure-
vich defined a nondeterministic logic, called Logic of Choice. They
introduced fixed and dependent choice operators(corresponding to
singular and plural nondeterminism) to first order logic. The new
choice operators consequently add nondeterministic terms(variable)
to logic language. The idea of nondeterministic terms are applied
here to model nondeterminism.

Also, Ward in his Ph.D. thesis[14] defined a nondeterministic
refinement calculus. In his approach, he added specification con-
structs(set theoretic) to a functional language. Also, nondetermin-
istic choice operators were added to specification language. Then, a
set of refinement rules were proposed to support refining the spec-
ification to a nondeterministic functional language program. The
resulting program uses guess construct to select a value nondeter-

ministically from possible set of results. This kind of programming
language construct was originally suggested by Floyd in [2], as a
replacement for backtracking algorithms.

3 Our Approach

Nondeterministic expressions are defined in [14] as follows:

An expression is nondeterministic if separate evaluations in
the same state can give different results.

In this section, this definition will be formalized according to Z for-
mal specification structure and then some tools are defined to sup-
port it in the same formal specification language.

3.1 Nondeterminism in Z

Z formal notation[11], is a formal specification language based on
typed set theory and (classic) first order logic. In Z formal notation,
specification constructs(e.g. axiomatic definitions and schemas) are
used to modularize system’s state and behavior. Among these con-
structs, schema is the most important tool to encapsulate specifica-
tion chunks. Schema construct is used to model both system state(as
state schema) and behavior(as operation schema).

A state schema encapsulate (a part of) system state variables
with their invariants. An operation schema specifies a possible func-
tionality or behavior on the system state by defining predicates that
relate before-state variables(variables before application of the oper-
ation) and after-state ones. A valuation of variables in each schema
is called its binding set. Most often an Init operation schema is de-
fined on a state schema to define a special binding set as the schema
initial state3. Then, each operation schema may map a pre-state to
an after-state.

Hence, possibility of several after-state valuations for a single
pre-state binding is a clear notion of nondeterminism in Z:

3 General binding concept is shown in Z notation by 〈| variable − name ; variable −
value |〉.

An operation schema is nondeterministic if and only if there
exists a single set of pre-state variable values that with two or
more different sets of after-state variable values could satisfy
schema predicates.

To formalize this concept, if an operation schema has the form
Operation =̂ [d | v] and, v1 and v2 are two valuations of Operation
variables, then Operation is nondeterministic if and only if:

∃ v1, v2 : Operationv •
d b

1 = d b
2∧

Operation[v1/θOperation] ∧Operation[v2/θOperation]∧
v1 6= v2

This definition asserts that the above two valuations agree on their
pre-state and satisfy schema conditions but they are different only
in their after-state. In the above predicate, d b is used to denote
before-state variables of schema and Operation[v1/θOperation] de-
fines substitution of predicate variables in Operation with values in
v1 binding.

3.2 Multi-Schema

Multi-Schema is defined as a tool for specifier to specify nondeter-
minism explicitly. The concept is defined as follows:

A Multi-Schema is a version of an operation schema with non-
deterministic after-state variables.

By nondeterministic variable, we mean a variable that could contain
more than a value in each state. This definition will help making
nondeterminism in operation schemas explicit by providing set of
possible after-states in their declaration part. But to define Multi-
Schema formally there is a problem associated with schemas con-
taining more than one after-state variable; The problem is that if
we promote each after-state variable to its power type and place
a universal quantifiers in front of the schema predicates to contain
all possible values, the relationship between valuations that make
the schema predicates true will disappear. In other words, resulting
schema would loose its completeness and contain only a subset of

after-state bindings for each variable that makes the predicates true
with all bindings of all other variables. To overcome this problem,
two solutions could be proposed:

– To force specifier combines all previous after-state variables in
a new variable using cartesian product of their types and then
apply the nondeterminism operator for Multi-Schema. This ap-
proach will solve the problem but will also impose restrictions on
specifier, introduce major changes in schema predicate part, and
make the resulting schema less legible.

– To encapsulate after-state variables in a schema and use a vari-
able of its power type instead of all after-state declarations. This
approach does not have the shortcomings of the first one.

Hence, we encapsulate after-sate variable of Operation =̂ [declarations |
predicated] in a new schema named OperationI (for Operation Inter-
face):

OparationI =̂ [declarationsa]

and replace a fresh variable(named interface) of its power-type with
previous after-state declarations in our nondeterministic transforma-
tion ([[Operation]]µ):

MultiSchema = [[Schema]]µ =̂
[interface : POperationI ; declarationb |

∀ bind : OperationI • bind ∈ interface ⇔
predicates [forall v ∈ declarationa : bind .(vn)/(vn))]

In the above definition declarationn function extracts variable name
from their declaration((variable : type)).

Soundness and Completeness The definition of Multi-Schema is
presented to be sound and complete in the following sense:

1. Soundness: A set of after-state bindings(for a particular pre-
state) is present in Multi-Schema interface if it could satisfy orig-
inal schema predicates.

2. Completeness: All set of after-state bindings(for a particular
pre-state) that satisfy schema predicates are included in Multi-
Schema interface.

The proof of both propositions is obvious. The right implication in
Multi-Schema predicate(∀ bind : OperationI • bind ∈ interface ⇒
predicates) provides soundness and left implication guaranties com-
pleteness.

An Example As a typical example of nondeterminism, the eight(N)
queens problem is specified in this section. The problem is to place
a number of queens(MaxQueens) on a chess board such that none of
them is able to capture another. The chess board is a square with
MaxDim number of ? in each row and column:

MaxDim : N
MaxQeens : N

NQueens
setting : seq(N× N)

∀ x , y : N | x 6= y ∧ x ∈ dom setting ∧ y ∈ dom setting •
setting x 6= setting y

∀ x : N | x ∈ dom setting •
first setting x ≤ MaxDim ∧ second setting x ≤ MaxDim

The NQueens schema defines the chess board in which no two queens
can be in one place and they are all in the board limits. Then Init
and Arrange schemas will be defined to specify initial and solution
states:

NQueensInit
∆NQueens

setting ′ = ∅

Arrange
∆NQueens

#setting ′ = MaxQueens
∀ x , y : N | x ∈ dom setting ′ ∧ y ∈ dom setting ′ •

first setting ′ x 6= first setting ′ y∧
second setting ′ x 6= second setting ′ y∧
second setting ′ x + first setting ′ x 6= second setting ′ y + first setting ′ y
second setting ′ x − first setting ′ x 6= second setting ′ y − first setting ′ y

But if one generates a program that simulates the above schema(particularly
through proof methods) there is no guarantee that he could be able
to get all the solutions of the problem, nor he will be sure that he
could see a particular solution at all. Hence, we apply nondetermin-
istic transformation on Arrange schema:

MultiArrange =̂ [[Arrange]]µ

Using this transformation, the generated program from MultiArrange
schema will assure generation of all possible outcomes:

ArrangeI

setting ′ : seq(N× N)

MultiArrange
setting : seq(N× N)
interface : PArrangeI

∀ bind : ArrangeI • bind ∈ interface ⇔
#bind .setting ′ = MaxQueens
∀ x , y : N | x ∈ dom bind .setting ′ ∧ y ∈ dom bind .setting ′ •

first bind .setting ′ x 6= first bind .setting ′ y∧
second bind .setting ′ x 6= second bind .setting ′ y∧
second bind .setting ′ x + first bind .setting ′ x 6=

second bind .setting ′ y + first bind .setting ′ y
second bind .setting ′ x − first bind .setting ′ x 6=

second bind .setting ′ y − first bind .setting ′ y
∀ x , y : N | x 6= y ∧ x ∈ dom setting ∧ y ∈ dom setting •

setting x 6= setting y
∀ x : N | x ∈ dom setting •

first setting x ≤ MaxDim ∧ second setting x ≤ MaxDim
∀ x , y : N | x 6= y ∧ x ∈ dom bind .setting ′ ∧ y ∈ dom bind .setting ′ •

bind .setting ′ x 6= bind .setting ′ y
∀ x : N | x ∈ dom bind .setting ′ •

first bind .setting ′ x ≤ MaxDim∧
second bind .setting ′ x ≤ MaxDim

3.3 Schema calculus operators

As the Multi-Schema transformation changes schema declarations,
schema calculus operators will no longer work properly on Multi-
Schemas. Hence, simple logical operators of schema calculus are re-
defined to apply semantics of conjunction, disjunction, implication
and negation operators and then apply nondeterministic transfor-
mation:

[[Schema1]]
µ 2© [[Schema2]]

µ =
[[[declaration1 | predicates1]]]

µ 2©
[[[declaration2 | predicates2]]]

µ ==

[[[declaration1 ∪ declaration2 | predicates2predicates2]]]
µ

where 2 ∈ {∨,∧,⇒}

¬[[Schema1]]
µ =

¬[[[declaration1 | predicates1]]]
µ ==

[[[declaration1 | ¬predicates1]]]
µ

Also, to define new semantics for sequential composition operator on
Multi-Schema. We have to change the second schema declarations
so that it explicitly admits multiple bindings of pre-state variable.
This idea leads to a new kind of nondeterministic schemas named
here Power-Schema and defined with:

OperationP =̂ [declarationb]

PowerSchema = [[Schemaρ]] =̂
[preState : POperationp ; interface : POperationI |

∀ bindi : OperationI • ∃ bindp : Operationp •
bindi ∈ interface ⇔

declarations(forall v in va bindi .v/v ; forall v in v b • bindp .v/v)

Now, new sequential composition operator(o
9©) is defined with:

[[Schema1]]
µ o

9© [[Schema2]]
µ =

[[[declaration1 | predicates1]]]
µ o

9© [[[declaration2 | predicates2]]]
µ =̂

[[[declaration1 | predicates1]]]
µ ∧ [[[declaration2 | predicates2]]]

ρ∧
[interface : SchemaI

1 ; preState : SchemaP
2 |

forall v ∈ declarationa
1 ∩ declarationb

2 :
interface.v = preState.v]

4 Nondeterminism and program development

Having specified a problem formally, the question arises as to how
the program can be developed so as to guarantee that it meets the
requirements. If the formal specification languages have a weakness
that prevents their wider industrial use, it could be their inability
to bridge the gap from specification to (verifiably correct) programs.
Several approaches are taken into account for developing programs
from formal specifications. These approaches can be categorized as
refinement, animation and extraction[7]. The refinement approach
makes changes to a specification to produce an executable code in an

stepwise manner[8]. All the activities which concern developing pro-
grams directly from specifications by applying a set of rules of thumb
can be classified as animation. Research in this area has ranged from
the simple animation of specifications to the design of new program-
ming languages[7]. The extraction approach consists of two major
phases, namely, a) functional specification and b) proof of existence.
Programs can be extracted automatically given the output of the
latter stage. The advantage of this approach is this fact that the
only proof which is needed is the proof of correctness, and the rest
is automatic[7].

A formal specification can contain nondeterministic components
which make the process of program development in either of the
above mentioned paradigms an uneasy task. Our approach can be
used to facilitate this process. In other words, because we generate
the nondeterministic semantics of a specification in the same for-
mal language, a normal program extraction process will result in a
program with all possible nondeterministic choices.

5 Conclusion and Future Works

In this paper, we introduced a some notations and their semantics
for defining nondeterminism in Z explicitly. These notation, followed
by transformation rules extends the possible choices of nondetermin-
ism to deterministic operation schemas. Presented nondeterministic
transformation could be considered as an unbounded, plural seman-
tics for nondeterminism in Z. Using these constructs in a program
development process will lead to a program that uncovers different
possible valuation of specification schemas.

The proposed constructs could be trivially used in defining an-
gelic and demonic choice semantics in the same language[6]. Also,
a choice probability could be associated to participating schemas to
develop a probabilistic schema calculus. Another interesting topic
in continuing this research could be studying extension of choice
constructs to resulting program using nondeterministic functional
languages.

References

1. Blass A., and Gurevich Y., The Logic of Choice, Journal of Symbolic Logic,
65(3):1264–1310, 2000.

2. Robert W. Floyd. Nondeterministic algorithms. Journal of the ACM, 14:636–644,
1967.

3. Fuchs N., Specifications are (preferably) executable. IEE Software Engineering
Journal, 7(5):323–334, September 1992.

4. Hayes I. and Jones, C., Specifications are not (necessarily) executable. IEE
Software Engineering Journal, 4(6):330–338, November 1989.

5. Hussman H., Nondeterminism in Algebraic Specifications and Programs,
Birkhauser, 1993.

6. Mousavi M.R., Nondeterminism in Set-Theoretic Formal Specification: A Con-
structive Approach(in Farsi), M.Sc. Thesis, Department of Computer Engineering,
Sharif University of Technology, 2001.

7. Mirian-Hosseinabadi S.-H., Constructive Z, Ph.D. Thesis, Department of Com-
puter Science, University of Essex, 1997.

8. Morgan C., Programming from Specifications, Second Edition, Prentice Hall, 1994.
9. Pappinghaus P., and Wirsing M., Nondeterministic Three-Valued Logic: Isotonic

and Guarded Truth-Functions, Studia Logica, XLII.1 1–22, 1983.
10. Söndergaard H., and Sestoft P., Non-Determinism in Functional Languages, The

Computer Journal, 35(5):514–523, October 1992.
11. Spivey, J.M., The Z notation. Prentice-Hall, 1989.
12. Walicki M., and Broy M., Structured specifications and implementation of non-

deterministic data types. Nordic Journal of Computing, 2(3):358–395, Fall 1995.
13. Walicki M., and Meldal S., Algebraic approches to nondeterminism: An overview.

ACM Computing Surveys, 29(1):30–81, March 1997.
14. Ward N.T.E., A Refinement Calculus for Nondeterministic Expressions. PhD

thesis, University of Queensland, Australia, 1994.

