
1

Model-Based Testing

with Labelled Transition Systems

There is Nothing More Practical
than a Good Theory

Jan Tretmans

jan.tretmans@tno.nl

TNO – ESI
Eindhoven, NL

Radboud University
Nijmegen, NL

2

�Models LTS

� Comparing LTS

♦ equivalences

� Correctness

♦ implementation relation

♦ ioco

� Testing LTS

♦ test generation

♦ test execution

Model-Based Testing

with Labelled Transition Systems (LTS)

Overview of a Theory

� Correctness & Testing

♦ soundness

♦ exhaustiveness

� SUT: Black-Box & Formal

♦ test assumption

� Consequences

♦ (non) compositionality

♦ variations of ioco

3

Labelled Transition Systems

© Jan Tretmans 4

Labelled Transition Systems

Labelled Transition System 〈〈〈〈 S, L, T, s0 〉〉〉〉

Coin

Button

Alarm Button

Coffee

states

actions transitions
T ⊆ S × (L∪{τ}) × S

initial state
s0 ∈ S

© Jan Tretmans 5

a a

cb

d

a c

b

d

c a

b

d

c a

b

a

b c

a

a

a

a

b

b

b

b

a

Labelled Transition Systems

© Jan Tretmans 6

Labelled Transition Systems

S0 S1
10c

transition

10c coffee
S0 S3

transition
composition

20c tea
S0 executable

sequence

non-executable
sequence

20c soup
S0

LTS(L) all transition
systems over L

L = { 10c, 20c,
coffee, tea, soup}

10c

coffee

20c

tea

S1 S2

S3

S0
s

S4

S5

ττττ

© Jan Tretmans 7

Labelled Transition Systems

10c

coffee

10c

tea

S1 S2

S3 S4

S0
traces (s) = { σ ∈ L* | s σ }

s after σ = { s’ | s σ s’ }

s Sequences of observable actions:

Reachable states:

traces(s) = { ε, 10c, 10c coffee, 10c tea }

s after 10c = { S1, S2 }

s after 10c tea = { S4 }

© Jan Tretmans 8

Representation of LTS

� Explicit :

〈〈〈〈 {S0,S1,S2,S3},

{10c,coffee,tea},

{ (S0,10c,S1), (S1,coffee,S2), (S1,tea,S3) },

S0 〉〉〉〉

� Transition tree / graph

� Language / behaviour expression :

S := 10c ; (coffee ; stop [] tea ; stop)

coffee

10c

tea

S1

S2 S3

S0

S

© Jan Tretmans 9

a a

cb

a ; b ; stop ||| c ; d ; stop

d

a c

b

d

c a

b

d

c a

b

a ; b ; stop [] a ; c ; stop

a

b c

a ; (b ; stop [] c ; stop)

Representation of LTS

© Jan Tretmans 10

a

a

a

a

b

b

b

b

Q, where

Q := a ; (b ; stop ||| Q)
a

P, where

P := a ; P

Representation of LTS

11

Equivalences on

Labelled Transition Systems

© Jan Tretmans 12

a

b

a

τ

b

aa

b

bτ

a

Observable Behaviour

?

≈≈≈≈ ?

≈≈≈≈

?

≈≈≈≈

?

≈≈≈≈

“ Some transition systems are more equal than others “

© Jan Tretmans 13

S1 S2

environment environment

� Suppose an environment interacts with the systems:

♦ the environment tests the system as black box

by observing and actively controlling it;

♦ the environment acts as a tester;

� Two systems are equivalent if they pass the same tests.

Comparing Transition Systems

© Jan Tretmans 14

Trace Equivalence

S1 S2

environment environment

s1 ≈≈≈≈tr s2 ⇔⇔⇔⇔ traces (s1) = traces (s2)

traces (s) = { σσσσ ∈ L* | s σ }Traces:

© Jan Tretmans 15

a

b

a

τ

b

aa

b

bτ

a

≈≈≈≈tr

Trace Equivalence

≈≈≈≈tr

≈≈≈≈tr

≈≈≈≈tr

© Jan Tretmans 16

a

b

a

τ

b

aa

b

bτ

a

Completed Trace Equivalence

≈≈≈≈ctr

≈≈≈≈ctr

≈≈≈≈ctr

≈≈≈≈ctr

© Jan Tretmans 17

cb

a aa

cb

ττ

cb

a

≈≈≈≈tr

≈≈≈≈ctr

Completed Trace Equivalence

© Jan Tretmans 18

cb

a aa

cb

ττ

cb

a

≈≈≈≈?

(Completed) Trace Equivalence :
Others ?

© Jan Tretmans 19

S1 S2environment

a

b

environment

a

bcb

a aa

cb

≈≈≈≈teaa b aa b

S1 after a refuses {b} S2 after a refuses {b}

a b √√√√
aa √√√√
a b √√√√

Comparing Systems :
Testing Equivalence

© Jan Tretmans 20

Testing Equivalence

cb

a aa

cb

ττ

cb

a

≈≈≈≈te

≈≈≈≈te

≈≈≈≈te

≈≈≈≈bisim

© Jan Tretmans 21

Testing Equivalence

tea

tea

coincoin

bang
coffee

coffee
bang

p

coffee

tea

coincoin

bang

tea

coffee
bang

q

p ≈≈≈≈te q
But:

if you want coffee you will eventually always succeed in q but not p !?

© Jan Tretmans 22

Refusal Equivalence

tea

tea

coincoin

bang
coffee

coffee
bang

p

coffee

tea

coincoin

bang
tea

coffee
bang

q

coffee

coffee

coin

bang

θ

Test t : θ only possible

if nothing else is possible

coin θ bang coffee √√√√ ∈∈∈∈ obs (q || t)

coin θ bang coffee √√√√ ∉∉∉∉ obs (p || t)

p ≈≈≈≈rf q

© Jan Tretmans 23

Equivalences on Transition Systems

isomorphism

bisimulation
(weak)

failure trace
= refusal

failures
= testing

completed
trace

trace

weak

strong

observing sequences of actions and
their end

observing sequences of actions

test an LTS with another LTS

test an LTS with another LTS, and
try again (continue) after failure

test an LTS with another LTS, and
undo, copy, repeat as often as you like

now you need to observe ττττ's ……

© Jan Tretmans 24

a

p

Equivalences : Examples

q

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

aa

a

aa
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

aa

a

aa

a

≈≈≈≈ ?

25

Non-Equivalence Relations

on Labelled Transition Systems

Implementation Relations

Conformance Relations

Refinement Relations

Pre-Orders

© Jan Tretmans 26

Preorders on Transition Systems

implementation
i

specification
s

environment
e

environment
e

≤≤≤≤

� Suppose an environment interacts with the black box

implementation i and with the specification s :

♦ i correctly implements s

if all observation of i can be related to observations of s

i ∈∈∈∈ LTS s ∈∈∈∈ LTS

© Jan Tretmans 27

Trace Preorder

implementation
i

specification
s

environment
e

environment
e

≤≤≤≤tr

i ≤≤≤≤tr s ⇔⇔⇔⇔ traces (i) ⊆⊆⊆⊆ traces (s)

traces (s) = { σσσσ ∈ L* | s σσσσ }Traces:

© Jan Tretmans 28

Trace Preorder

10c

coffee

10c

tea

coffee

10c

tea
coffee

10c
≤≤≤≤tr

≤≤≤≤tr

≤≤≤≤tr

≤≤≤≤tr ≤≤≤≤tr

≤≤≤≤tr

i ≤≤≤≤tr s =

traces(i) ⊆⊆⊆⊆ traces(s)

© Jan Tretmans 29

Trace Preorder

10c

coffee

10c

tea

coffee

10c

tea
coffee

10c
≤≤≤≤tr ≤≤≤≤tr

≤≤≤≤tr

i ≤≤≤≤tr s =

traces(i) ⊆⊆⊆⊆ traces(s)

30

Implementation Relation ioco
for Labelled Transition Systems

with Inputs and Outputs

© Jan Tretmans 31

Input-Output Transition Systems

10c

coffee

20c

tea

S1 S2

S3 S4

S0

LI = { ?10c, ?20c }

LU = { !coffee, !tea }

10c, 20c coffee, tea

from user to machine from machine to user
initiative with user initiative with machine
machine cannot refuse user cannot refuse

input output
LI LU

LI ∩ LU = ∅ LI ∪ LU = L

!

??

!

© Jan Tretmans 32

LI = { ?10c, ?20c }

LU = { !coffee, !tea }

Input-Output Transition Systems

IOTS (LI ,,LU) ⊆ LTS (LI ,∪ LU)

IOTS is LTS with Input-Output

and always enabled inputs:

for all states s,

for all inputs ?a ∈ LI :

?10c
?20c

?10c
?20c

?10c
?20c

?10c
?20c

?10c

!coffee

?20c

!tea

S
?a

Input-Output Transition Systems

© Jan Tretmans 33

implementation
i

specification
s

Input-Output Transition Systems
with ioco

environment
e

environment
e

ioco

i ∈∈∈∈ IOTS(LI,LU) s ∈∈∈∈ LTS(LI,LU)

ioco ⊆⊆⊆⊆ IOTS (LI,LU) x LTS (LI,LU)

Observing IOTS where system inputs
interact with environment outputs, and v.v.

© Jan Tretmans 34

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

Correctness
Implementation Relation ioco

p δδδδ p = ∀∀∀∀ !x ∈∈∈∈ LU ∪∪∪∪ {ττττ} . p !x

out (P) = { !x ∈ LU | p !x , p∈P } ∪∪∪∪ { δδδδ | p δδδδ p, p∈P }

Straces (s) = { σ ∈ (L∪∪∪∪{δδδδ})* | s σ }

p after σ = { p’ | p σ p’ }

© Jan Tretmans 35

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

Intuition:

i ioco-conforms to s, iff

• if i produces output x after trace σσσσ,
then s can produce x after σσσσ

• if i cannot produce any output after trace σσσσ,

then s cannot produce any output after σσσσ (quiescence δδδδ)

Correctness
Implementation Relation ioco

© Jan Tretmans 36

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

Correctness
Implementation Relation ioco

p δδδδ p = ∀∀∀∀ !x ∈∈∈∈ LU ∪∪∪∪ {ττττ} . p !x

out (P) = { !x ∈ LU | p !x , p∈P } ∪∪∪∪ { δδδδ | p δδδδ p, p∈P }

Straces (s) = { σ ∈ (L∪∪∪∪{δδδδ})* | s σ }

p after σ = { p’ | p σ p’ }

© Jan Tretmans 37

?10c

!choc

?20c

!tea

!coffee

?10c
?20c

?10c
?20c

?10c
?20c

!choc

?10c

!tea

!coffee

?10c

!tea

sδδδδ
?10c

!coffee

?10c

Implementation Relation ioco

© Jan Tretmans 38

out (i after ?10c.?10c) = out (s after ?10c.?10c) = { !tea, !coffee }

i ioco s

Implementation Relation ioco

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

i

?10c

?10c

?10c ?10c

!tea

?10c

?10c

!coffee

?10c

s

!coffee

?10c

?10c

?10c ?10c

!tea

?10c

?10c

?10c

?10c

!tea

s ioco i

out (i after ?10c.δδδδ.?10c) = { !coffee } ≠≠≠≠ out (s after ?10c.δδδδ.?10c) = { !tea, !coffee }

© Jan Tretmans 39

? x (x >= 0)

! y

(|y2 – x| < 0.001)

specification

! √x

? x (x < 0)

? x (x >= 0)

implementation
models

? z

LTS and ioco allow:

• non-determinism

• under-specification

• the specification of properties

rather than construction

! -√x
? x (x < 0)

? x (x >= 0)

? z

! error

Implementation Relation ioco

© Jan Tretmans 40

Genealogy of ioco

Labelled Transition SystemsLabelled Transition Systems

IOTS
(IOA, IOSM, IOLTS)

IOTS
(IOA, IOSM, IOLTS)

Testing Equivalences
(Preorders)

Testing Equivalences
(Preorders)

Refusal Equivalence
(Preorder)

Refusal Equivalence
(Preorder)

Canonical Tester
conf

Canonical Tester
conf Quiescent Trace PreorderQuiescent Trace Preorder

Repetitive Quiescent
Trace Preorder

(Suspension Preorder)

Repetitive Quiescent
Trace Preorder

(Suspension Preorder)

iocoioco

ioconfioconf

© Jan Tretmans 41

Model Based Testing

s ∈∈∈∈ LTS

SUT
behaving as
i ∈ IOTS ⊆ LTS

i ioco s

pass fail

test

tool

T : LTS
→→→→ ℘℘℘℘(TTS)

t i

T(s) i →→→→ pass

i ioco s

⇑⇑⇑⇑ ⇓⇓⇓⇓ soundexhaustive

with Transition Systems

42

Test Cases, Test Generation,

and Test Execution

for Labelled Transition Systems

© Jan Tretmans 43

Test Generation

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

out (s after σ)

= { !x, !y }

s

!x

σσσσ

!y

i

!x

σσσσ

!z

out (i after σ)

= { !x, !z }

out (test after σ) = LU

pass fail

test

?x

σσσσ

?y
?z

pass

© Jan Tretmans 44

Test Generation

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

δδδδ

out (s after σ)

= { !x, !y, δδδδ }

σσσσ

s

!x !y

δδδδ

i

!x

σσσσ

!z

out (i after σ)

= { !x, !z, δδδδ }

out (test after σ)

= LU ∪∪∪∪ { θθθθ }

θθθθ
pass

pass fail

test

?x

σσσσ

?y ?z

pass

© Jan Tretmans 45

Test Cases

♦ labels in L ∪∪∪∪ { θθθθ }

• ‘quiescence’ label θθθθ
♦ tree-structured

♦ ‘finite’, deterministic

♦ sink states pass and fail

♦ from each state:

• either one input !a and all outputs ?x

• or all outputs ?x and θθθθ

Model of a test case
= transition system :

!10c

!20c

?tea

?coffee?tea

θθθθ

!10c

θθθθ

pass

failfail

failpass

failfail

?coffee
?tea

failpass

?coffee
?tea

failfail

?coffee
?tea

?coffee

LU ∪∪∪∪ {θ}

pass

LU ∪∪∪∪ {θ}

fail

© Jan Tretmans 46

Algorithm

To generate a test case t (S) from a transition system
specification S, with S ≠ ∅∅∅∅: set of states (initially S = s0 after εεεε)

1 end test case

pass

Apply the following steps recursively, non-deterministically:

Test Generation Algorithm

allowed outputs (or δδδδ): !x ∈out (S)

forbidden outputs (or δδδδ): !y ∉out (S)

3 observe all outputs

fail

t (S after !x)

fail

allowed outputsforbidden outputs
?y

θθθθ ?x
2 supply input !a

!a

t (S after ?a ≠ ∅∅∅∅)

fail

t (S after !x)

fail

allowed outputsforbidden outputs
?y ?x

© Jan Tretmans 47

?coffee

failpass

θθθθ?tea
?choc

failfail

Test Generation Example

test

?coffee

failfail

θθθθ?tea

?choc

pass

s

!tea

?10c

!coffee

fail

!10c

?coffee

fail

?tea

?choc

fail

© Jan Tretmans 48

?coffee θθθθ
?tea

passfail fail

?coffee

passfail

θθθθ
?tea

δδδδ

δδδδ

δδδδ

Test Generation Example

s

?10c

!coffee

?10c

test

fail

?tea !10c

?coffee

fail

To cope with non-deterministic behaviour,
tests are not linear traces, but trees
To cope with non-deterministic behaviour,
tests are not linear traces, but trees

© Jan Tretmans 49

Test Execution Example

Two test runs :

t i
10c tea pass i'

fail i''t i
10c choc

i fails t

!choc

?10c

!tea

i

i' i''

?coffee

failpass

θθθθ?tea
?choc

failfail

test

?coffee

failfail

θθθθ?tea

?choc

pass

fail

!10c

?coffee

fail

?tea

?choc

fail

© Jan Tretmans 50

Test Execution

Test execution = all possible parallel executions (test runs) of
test t with implementation i going to state pass or fail

Test run : t i σσσσ pass i' or t i σσσσ fail i'

t t’, i i’a a

t i t’ i’a

i i’τ

t i t i’τ

t t’ ,θ

t i t’ i’θ

i i’δ

© Jan Tretmans 51

Model Based Testing

s ∈∈∈∈ LTS

SUT
behaving as
i ∈ IOTS ⊆ LTS

i ioco s

pass fail

test

tool

T : LTS
→→→→ ℘℘℘℘(TTS)

t i

T(s) i →→→→ pass

i ioco s

⇑⇑⇑⇑ ⇓⇓⇓⇓ soundexhaustive

with Transition Systems

52

Soundness and Exhaustiveness

© Jan Tretmans 53

Validity of Test Generation

For every test t generated with algorithm we have:

� Soundness :
t will never fail with correct implementation

i ioco s implies i passes t

� Exhaustiveness :
each incorrect implementation can be detected
with a generated test t

i ioco s implies ∃∃∃∃ t : i fails t

© Jan Tretmans 54

Model Based Testing

s ∈∈∈∈ LTS

SUT
behaving as
i ∈ IOTS ⊆ LTS

i ioco s

pass fail

test

tool

T : LTS
→→→→ ℘℘℘℘(TTS)

t i

T(s) i →→→→ pass

i ioco s

⇑⇑⇑⇑ ⇓⇓⇓⇓ soundexhaustive

with Transition Systems

55

Test Assumption

(Test Hypothesis)

© Jan Tretmans 56

IUT iIUT

Comparing Transition Systems:
An Implementation and a Model

environment
e

environment
e

IUT ≈≈≈≈ iIUT ⇔⇔⇔⇔ ∀∀∀∀ e ∈∈∈∈ E . obs (e, IUT) = obs (e, iIUT)

© Jan Tretmans 57

IUT iIUT

Formal Testing : Test Assumption

Test assumption :

∀∀∀∀ IUT . ∃∃∃∃ iIUT ∈∈∈∈ MOD.

∀∀∀∀ t ∈∈∈∈ TEST . IUT passes t ⇔⇔⇔⇔ iIUT passes t

test t test t

© Jan Tretmans 58

Completeness of Formal Testing

IUT passes Ts ⇔⇔⇔⇔def ∀∀∀∀ t ∈∈∈∈ Ts . IUT passes t

Test assumption : ∀∀∀∀ t ∈∈∈∈ TEST . IUT passes t ⇔⇔⇔⇔ iIUT passes t

Proof obligation: ∀∀∀∀ i ∈∈∈∈ MOD (∀∀∀∀ t ∈∈∈∈ Ts . i passes t) ⇔⇔⇔⇔ i imp s

IUT passes Ts ⇔⇔⇔⇔ IUT confto s
?

Definition : IUT confto s

⇔⇔⇔⇔ IUT confto s

⇔⇔⇔⇔ iIUT imp s

⇔⇔⇔⇔ ∀∀∀∀ t ∈∈∈∈ Ts . iIUT passes t

⇔⇔⇔⇔ ∀∀∀∀ t ∈∈∈∈ Ts . IUT passes t

IUT passes Ts

© Jan Tretmans 59

s ∈ LTS

SUT
behaving as

i ∈ IOTS

i ioco s

pass

fail

test

tool

T : LTS
→→→→ ℘(TTS)

t i

SUT T(s) →→→→ pass

SUT ioco s

⇑⇑⇑⇑ ⇓⇓⇓⇓ soundexhaustive

Proof soundness and exhaustiveness:

∀∀∀∀i∈∈∈∈IOTS .

(∀∀∀∀t∈∈∈∈ T(s) . i passes t)

⇔⇔⇔⇔ i ioco s

Test assumption :

∀∀∀∀IUT∈∈∈∈IMP . ∃∃∃∃iIUT ∈∈∈∈IOTS .

∀∀∀∀t∈∈∈∈TEST. IUT passes t
⇔⇔⇔⇔ iIUT passes t

Formal Testing with Transition Systems

© Jan Tretmans 60

Model-Based Testing :
There is Nothing More Practical

than a Good Theory

A well-defined and sound testing theory brings:

� Arguing about validity of test cases

and correctness of test generation algorithms

� Explicit insight in what has been tested, and what not

� Use of complementary validation techniques: model checking, theorem

proving, static analysis, runtime verification,

� Implementation relations for nondeterministic, concurrent,

partially specified, loose specifications

� Comparison of MBT approaches and error detection capabilities

61

A Consequence of ioco:
(Non) Compositionality

© Jan Tretmans 62

!x

?ok

!err

?but

?but

?but

!err

?but

!ok

?ok

?ok
?err

!x

?err

!y

?ok
?err

?ok
?err

?ok
?err

?but

ττττ

!x

i1 ioco s1

ioco s1||s2
i1||i2

ok
err

but

X
y

ok
err

but

X
y

Compositional Testing

ττττ?but

?but

?but

!y

?but

i2 ioco s2

© Jan Tretmans 63

Compositional Testing

i1

i2 s2

s1

ioco

i1 ioco s1

i2 ioco s2

s1 || s2i1 || i2

If s1, s2 input enabled - s1, s2 ∈ IOTS - then ioco is preserved !

64

Variations of ioco

© Jan Tretmans 65

? money

? button1 ? button2

! coffee! tea

test case

fail

! money

! button2

? tea

fail

? coffee ϑ

pass

〈 n: int 〉

[n ≥ 35] -> [n ≥ 50] ->

with data

model

and time

and hybrid

c := 0

c < 10 c < 15

[c ≥ 5] ->

c := 0

d Vt /dt = 3 dVc/dt = 2

Vc := 0

[Vc = 10] ->

Vt := 0

[Vt = 15] ->

?coin1

?coin3

?coin2

and action
refinement

?

Testing Transition Systems: BasicVariations

© Jan Tretmans 66

Variations on a Theme

i ioco s ⇔⇔⇔⇔ ∀∀∀∀σσσσ ∈∈∈∈ Straces(s) : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σσσσ)

i ≤≤≤≤ior s ⇔⇔⇔⇔ ∀∀∀∀σσσσ ∈∈∈∈ (L ∪∪∪∪{δδδδ})* : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σσσσ)

i ioconf s ⇔⇔⇔⇔ ∀∀∀∀σσσσ ∈∈∈∈ traces(s) : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σσσσ)

i iocoF s ⇔⇔⇔⇔ ∀∀∀∀σσσσ ∈∈∈∈ F : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σσσσ)

i uioco s ⇔⇔⇔⇔ ∀∀∀∀σσσσ ∈∈∈∈ Utraces(s) : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σσσσ)

i mioco s multi-channel ioco

i wioco s non-input-enabled ioco

i eco e environmental conformance

i sioco s symbolic ioco

i (r)tioco s (real) timed tioco (Aalborg, Twente, Grenoble, Bordeaux,. . . .)

i iocor s refinement ioco

i hioco s hybrid ioco

i qioco s quantified ioco
.

67

Symbolic ioco

© Jan Tretmans 68

Transition System with Data

in ? n : int

out ! m : int
[0 < m < n]

out ! m : int
[0 < m < -n]

unfolding

Disadvantages:
�infinity
�loss of information

(e.g. for test selection)

out1

out2
out1

out1
out2
out3

out1

out2
out1

out1
out2

out3

in0in-2
in-1 in3in2

in1
in-3

out2
out1

out1
out2

out3
out2

out1

out1
out2

out3

69

Symbolic Transition System

in ? n : int

lo

l3

l1

l2

out ! m : int

[0 < m < v]

out ! m : int

[0 < m < -v]

location

v := n
switch

gate

interaction
variable

location
variable

switch
restriction

update
mapping

STS:

�LTS with explicit
data, variables and
constraints

�Data:
first order logic

�Finite, symbolic
representation

70

Symbolic Transition System

in ? n : int

lo

l3

l1

l2

out ! m : int

[0 < m < v]

out ! m : int

[0 < m < -v]

v := n

out1

out2
out1

out1
out2
out3

out1

out2
out1

out1
out2

out3

in0in-2
in-1 in3in2

in1
in-3

semantics

71

Symbolic Transitions

in ? n : int

lo

l3

l1

l2

out ! m : int

[0 < m < v]

out ! m : int

[0 < m < -v]

v := n

Symbolic states

lo l1
in? true v:=n1

l1 l3
out! 0 < m2 < v v:=v

lo l3in? out! 0 < m2 < n1 v:=n1

Generalised switch relation

(l3, [0 < m2 < n1], v:=n1)

(l1, [true], v:=n1)

(l2, [0 < m2 < -n1], v:=n1)

72

Symbolic Trace, After, . . .

Symbolic suspension trace

…… pair of …… (sequence of gates,
formula over indexed interaction
variables and location variables)

Symbolic afters

…… <symbolic state> afters <symbolic suspension trace>

Lemma

[[<symbolic state> afters <symbolic suspension trace>]]

=

[[<symbolic state>]] after [[<symbolic suspension trace>]]

© Jan Tretmans 73

Symbolic ioco

in ? n : int

lo

l3

l1

l2

out ! m : int

[0 < m < v]
out ! m : int

[0 < m < -v]

v := n

sioco
?in ? n : int

lo

l2

l1

out ! m : int

[-v < m < v]

v := n

in ? n : int

in ? n : int

74

Real Time ioco

© Jan Tretmans 75

Real-Time Model-Based Testing

� In many systems real-time properties are crucial

�Approach:

♦ Extension of IOTS/ioco theory

• Timed Input Output Transition Systems (TIOTS)

• Timed Implementation Relations: build on ioco

• Concentrate on implementation relations: no test generation

� Challenges:

♦ Is time input or output ?

♦ Quiescence: How long is there never eventually no output?

76

Timed Input-Output Transition Systems

c>=5

c:=0

c<10

?but

!coffee

TIOTS : 〈〈〈〈 Q, LI, LU, R≥0, T, q0 〉〉〉〉

Observable actions: LI, LU

delay d ∈ R≥0

Unobservable action: τ
Specifications are TIOTS

Implementations are assumed

to behave as input-enabled TIOTS

Constraints:

•time additivity

•null delay

•time determinism

•no divergence

•progress: no forced inputs

© Jan Tretmans 77

i ioco s =def ∀σ ∈ traces (s) : out (i after σ) ⊆ out (s after σ)

The Untimed Implementation Relation ioco

↓↓↓↓
out

↓↓↓↓
after

↓↓↓↓
Straces

δ (p) = ∀∀∀∀ !x ∈∈∈∈ LU ∪∪∪∪ {ττττ} . p !x

out (p) = { !x ∈ LU | p !x } ∪∪∪∪ { δ | δ (p) }

p after σ = { p’ | p σ p’ }

out (P) = ∪∪∪∪ { out (p) | p ∈ P }

Straces (s) = { σ ∈ (L∪∪∪∪ { δ })* | s σ }

© Jan Tretmans 78

i ioco s =def ∀σ ∈ traces (s) : out (i after σ) ⊆ out (s after σ)

A Timed Implementation Relation

↓↓↓↓
?

↓↓↓↓
?

↓↓↓↓
?

↓↓↓↓
tiocoX

© Jan Tretmans 79

i ioco s =def ∀σ ∈ traces (s) : out (i after σ) ⊆ out (s after σ)

A Timed Implementation Relation

↓↓↓↓
outt

↓↓↓↓
tioco

ttraces (s) = { σ ∈ (L ∪∪∪∪ R≥0)* | s σ }

p aftert σ = { p’ | p σ p’, σ ∈ (L ∪∪∪∪ R≥0)* }

δ (p) =

outt (p) = { x ∈ LU ∪∪∪∪ R≥0 | p x }

↓↓↓↓
aftert

↓↓↓↓
ttraces

© Jan Tretmans 80

A Timed Implementation Relation tioco

c>=5

c:=0

c<10

?but

!coffee

c==7

c:=0

c<=7

?but

!coffee

c>=7

c:=0

c<9

?but

!coffee

c>=3

c:=0

c<=9

?but

!coffee

c:=0

true

?but

© Jan Tretmans 81

Not Just Adding Extra Constraints:
Unbounded Delay

(true)

(true)

?but

!coffee

?but

(true)

?but

•And suppose you wish

to reject this IUT:

how long would you wait ?

•Untimed ioco:

quiescence to express

that there eventually is

!coffee

•But when is eventually ?

© Jan Tretmans 82

