EBA: Effect-Based Analysis of C Programs

lago Abal*

IT University of Copenhagen, Denmark
iago@itu.dk

The analysis of 42 Linux bugs from a previous study suggests that conceptually simple re-
source manipulation bugs occur often in practice [1]. While simple, these bugs can be easily
and inadvertently introduced when altering large or complex functions. Static code scanners (or
linters) excel at finding shallow bugs of this class. For instance, Linux commits ca9fe158842
and 65582a7f4ce fix locking bugs found by two of these tools. However, by looking exclusively
at syntax, most linters fail at finding deep bugs that span multiple functions. Semantic static
analyzers do find deep bugs, but are slower and less scalable, and may not fit well into pro-
grammers’ work-flow. In this paper, I shall present EBA', a prototype static analyzer for C,
that finds deep resource manipulation bugs using a minimal amount of semantic information.

EBA employs lightweight program abstrac-
tions based on computational effects, being ca-
pable of reasoning efficiently and interprocedu-
raly on large code bases. These abstractions are
built modularly using a flow-insensitive type-and-
effect analysis based on Talpin-Jouvelot’s previ-
ous work [2]. This analysis infers memory shapes
annotated with memory regions rather than reg-
ular C types. Effects describe computations per-
formed on the data stored at those regions. The
inferred shape and effect information is superim-
posed on the control-flow graph (CFG), that is
model checked using a bounded depth-first search
algorithm. This model checking step is also modu-
lar, since function calls are abstracted by the effect
signature of the called function. However, when a
potential bug is found, certain function calls must
be examined to rule out false positives.

Figure 1 illustrates the overall idea using a sim-
plified version of an actual Linux bug. Function f
exhibits a potential deadlock by double-acquiring
a non-reentrant spin lock: the first lock acquisition
occurs in 1.9, and the second occurs in 1.3 after call-
ing function g. The if conditionals in lines 2 and
10, where we use * to specify non-determinism,
must both have taken the else branch. The shape-
and-effect analysis records a few built-in effects:
reads and writes to variables, and calls to func-
tions. It is also possible to define arbitrary and
project-specific effects that will expose any opera-

Analyzed code

1 void g(struct inode *inode) {
if (x) return;

spin_lock (&inode->i_lock);
//

spin_unlock (&inode->i_lock);

void f(struct inode *inode) {

9 spin_lock (&inode->i_lock);

10 if (x) {

11 spin_unlock (&inode->i_lock);
12 return;

14 g(inode);
15 spin_unlock (&inode->i_lock);

Effect-decorated CFG for f

&)
€O
)
)~

Figure 1: A simplified illustration of the
bug finding technique on a double lock bug
in Linux (fixed by commit d7e9711760a).

*While pursuing a PhD under the advisement of Andrzej Wasowski and Claus Brabrand.

Thttps://github.com/models-team/eba

https://github.com/torvalds/linux/commit/ca9fe158842
https://github.com/torvalds/linux/commit/65582a7f4ce
http://vbdb.itu.dk/#bug/linux/d7e9711
https://github.com/models-team/eba

tion of interest in the program abstraction. In the effect-decorated CFG generated for £ —on
the bottom of the figure, statements are described by their locking effects on &inode->i_lock.

EBA is equipped with a reachability engine that matches CTL formulas of the form P EU Q
against decorated CFGs. (Here, P and Q are predicates over effects.) We specify bug checkers
for concrete bug types by composing reachability queries. For instance, a simple double-lock
checker is specified by TRUE EU (Lock A =UNLOCK EU Lock). When the model checker
finds the call to g in Fig. 1, it uses its effect signature as an approximation of its computational
behavior: here given by the set of effects {lock, unlock}. On this CFG, the above checker reveals
a potential double lock whose execution path is marked by gray colored nodes. Yet, because
the analysis is flow-insensitive, it is unclear whether in g the acquisition of the lock happens
before its release or vice-versa. In this scenario, EBA will examine the call to g and check that
&inode->i_lock will be re-acquired before releasing it, thereby confirming the double lock bug.
For a different example, this step may serve to rule out a potential false positive.

In a preliminary evaluation, I have

run two EBA checkers on four of the K

. . ernel fil average average | prlpy,
major Linux subsystems, from a ran- es .

. . subsystem time [s] | mem. [MB]|

dom configuration of the Linux-next ker-
nel sources (snapshot 8babd99a86£5), in drivers | 8,598 22.93 346 L2
search of potential bugs related to inter- fs 877 9.12 260 00
rupt'man.agement. Table 1 shows. the ex- kernel 291 15.23 335 110
ecution time, memory consumption, and 1215 18.18 372 ol 5
bug alarms reported by the two check- net :
ers. All reported numbers are collected total ‘ 10,911 ‘ 16.37 ‘ 328 ‘ 2 ‘ 7 ‘

on AMD Opteron 6386 CPUs running

Ubuntu Linux. We stop analyzing a file Table 1: Analyzing Linux with checkers: enable
when it exceeds 10 minutes time or 8 GB bottom-halves with z'nterrupts disabled (BI), and re-
of virtual memory. A total of nine alarms ~ disabling bottom-halves within a loop (BL). The last
are reported. We identified two cases in two columns count the alarms raised in each subsys-
which bottom-halves are enabled after tem

disabling interrupts, a violation of lock

ordering. We also find seven cases where bottom-halves are unnecessarily re-disabled at each
loop iteration, a potential performance bug. The nine alarms involved third functions, and in
one case that function is called through a function pointer.

These results suggest that EBA can efficiently find cross-function bugs in large code bases.
The proposed technique seems to offer a good compromise between efficiency and precision.
I expect to reduce execution times and memory usage significantly in the short term, since
there are several pieces of low hanging fruit for optimization. The main issue to address is
the imprecision of the alias analysis. For this, more precise techniques can be used to triage
potential bugs and avoid false positives.

References

[1] Iago Abal, Claus Brabrand, and Andrzej Wasowski. 42 variability bugs in the Linux kernel: A
qualitative analysis. ASE 2014.

[2] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect inference. Journal of
Functional Programming, 1992.

