NP-Complete Problems
With a short and informal introduction to Computability Complexity

Alvaro Moreira
alvaro.moreira@inf.ufrgs.br

Instituto de Informatica

F Universidade Federal do Rio Grande do Sul
ol res Porto Alegre, Brasil

http://www.inf.ufrgs.br

http://www.inf.ufrgs.br

Contents

More bad news.... NP Completeness

Lower x Upper Bounds Polynomial time reduction
Complexity Theory Some NP-Complete Problems
NP - short certificates and magic coins Is P = NP?

2/68

Contents

More bad news....

3/68

Tractability x Untractability

4/68

Hanoi Towers |

Suppose we are given three towers, or three pegs, A, B, and C.

On the first peg, A, there are three rings in descending size order,
while the others are empty

We have to move the rings from A to B, using C in the process
when necessary.

Rings have to be moved one at a time, and a larger ring can never
be placed on top of a smaller one.

5/68

Hanoi Towers Il

e This puzzle with 3 rings can be solved as follows (with 7 moves):

move A to B;
move A to C;
move B to C;
move A to B;
move C to A;
move C to B;
move A to B.

6/68

Hanoi Towers Il

e With 4 rings on peg A the problem can be solved with 15 move
actions

e We are interested in an algorithm to solve the general algorithmic
problem associated with the Towers of Hanoi

e The input for the algorithm is a positive integer N (the number of
rings), and the desired output is a list of “move X to Y” actions,
that solve the puzzle for N rings.

e There is an algorithm where the number of move actions
produced, for an N ring case, is precisely 2N — 1

7/68

Hanoi Towers IV

e Also, it has been proved that 2N — 1 is a lower bound on the
required number of moves for solving the problem, so we cannot do
any better than this

¢ |f we were able to move a million rings every second, with 64
rings it would take more than half a million years to complete the
process!!

e If we were able to move only one ring every 10 seconds, it would
takes us more than five trillion years to finish.

8/68

Decision Problems |

e One may think the difficulty is because the output is a sequence of
moves. Since many moves are required, it takes too long to find and
exhibit all of them.

e To convince that this is not the case lets examine decision
problems (problems requiring only a "yes"/"no" solution)

e Most of the problems of interest in practice however, are not decision
problems...

e Problems which are not decision problems will be recast as decision
problems.

9/68

Decision Problems Il

Example: Consider the problem that, given data about direct buses
between cities (a graph), and given the name of two cities, finds a the
most direct path (shortest in terms of bus changes) between them.

A decision problem related to problem above is :

Given info about direct bus connections between cities (a graph),
two cities u and v (vertices), and a non-negative integer k, does
a path exist between u and v whose length is at most k?

The number k is a bound on the value to be optimized.

If an optimization problem is easy then its related decision problem is

easy as well. If a decision problem is hard, its related optimization
problem is also hard.

10/68

Monkeys Puzzle |

* Given (descriptions of) N cards, where N is some square number,
say, N is M2, the (original) problem calls for exhibiting, if possible,
an M by M square arrangement of the N cards, so that colors and
halves match.

The cards have a fixed direction and they cannot be rotated.

11/68

Monkeys Puzzle Il

e We concentrate on the decision version of the problem, without
asking for one arrangement to be exhibited.

e A naive algorithm proceeds trying all possible arrangements

o it stops with “yes" as soon as it gets a legal arrangement, and

o it stops with “no" if all arrangements have been tried, and they are all
illegal

e OBS.: It is possible to be less brute-force, by not checking extensions
of a partial arrangement that has already been shown to be illegal.

12/68

Monkeys Puzzle Il

e |f we are dealing, for instance, with a 5x5 grid, there are 25
possibilities for choosing a card to be placed in the first location.

e Having placed some card in that location, there are 24 cards to
choose from for the second location, 23 for the third, and so on.

e The total number of arrangements can, therefore, reach:
25 X 24 x 23 X ... x 3 x 2 x 1= 25! which is a 26 digits number.

e How long will the algorithm take in the worst case, i.e., when there
is no legal arrangement, so that all possible arrangements have to be
checked?

13/68

Monkeys Puzzle IV

e A computer that can try a billion arrangements every second will
take well over 490 million years to try all 25! arrangements!!!.

e In a 6x6, the time to try all 36! arrangements would be FAR longer
than the time that has elapsed since the Big Bang!!

e And note that, in this context, the worst-case is the most
probable to happen if the game is well-designed.

e These impressive numbers consider the brute force solution. Is there
some better solution to the Monkey Puzzle problem practical for a
reasonable number of cards?

Probably not, but no one knows for sure.

14/68

Function values

This table shows some numbers for some functions. As a reference:
- the number of (known) protons in the universe has 79 digits.

- the number of microseconds since the Big Bang has 24 digits.

15/68

Function growth |

16/68

Function growth Il

e If N is 300 the number 2N is billions of times larger than the
number of protons in the entire known universe!!.

e NN grows faster that N! which grows faster than 2N

e 2N grows MUCH faster than any other functions of the form N¥,
for any fixed K.

e OK that for all N up to 1165, N0 js |arger than N!, but after that
number, N! grows much faster

e 2N NI and NN are all example of “bad” functions because they all
grow MUCH faster than (“good") NX functions.

17/68

Polynomial x Exponential (good x bad) |

e These facts lead to a fundamental classification of functions into
“good” and “bad” ones.

o The good ones are polynomial functions

o The bad ones are super-polynomial functions

e A polynomial function of N is any function which is no greater in
value than NX for all values of N from some point on.

e A super-polynomial function of N is any function which is
greater in value than NX for all values of N from some point on.

18/68

Polynomial x Exponential (good x bad) I

e Logarithmic (logoN), linear (N), and quadratic (N?) functions, for
example, are polynomial

e 1.001N, 5N NN and NI, for instance, are super-polynomial

e |t is common to abuse terminology and use exponential as a
synonym for super-polynomial

OBS.: To call super-polynomial functions as exponential is an abuse because:

e super-polynomials functions, like N'°92 N for example, are not quite
exponential,

e and functions like N™ | for instance, are super-exponential

19/68

Tractable x Intractable problems |

e An algorithm whose (order-of-magnitude) time performance is
bounded from above by a polynomial function of N, where N is the
size of its inputs, is called a polynomial-time algorithm

e Similarly, an algorithm that, in the worst case, requires
super-polynomial, or exponential time, will be called a exponential
algorithm

e An algorithmic problem is tractable if it admits a polynomial-time
solution. It is intractable if it only admits an exponential-time
solution

20/68

Tractable x Intractable problems [l

e Of course that an N199° polynomial algorithm is worse than a N!

exponential algorithm for inputs under size 1165

e But the majority of exponential algorithms are really useless, and
most polynomial algorithms are really useful in practice

e These facts give credibility to this distinction between good
(polynomial) and bad (exponential)

e In fact, the vast majority of polynomial-time algorithms for practical
problems feature an exponent of N that is no more than 5 or 6.

21/68

Contents

Lower x Upper Bounds

22/68

Lower x Upper Bounds |

e Any algorithmic problem has an inherent optimal solution.

e Suppose someone gives an O(N?) algorithm for problem P

o We then know that the optimal solution of P cannot be worse than
O(N?3)

e Later on, someone discovers a better algorithm, say one that is
O(N?)

o We then know that the problem cannot be inherently worse than O(N,)
and the previous O(N3) algorithm becomes obsolete.

23/68

Lower x Upper Bounds Il

e With better algorithms we get closer the inherent complexity of the
problem.

e But is it possible to know, beforehand, how far can improvements
go?

e Yes, that requires a proof of a lower bound.

e |f, for instance, we prove that the problem P cannot be solved in less
than O(N?), then people can stop looking for better algorithms for it

24/68

Lower x Upper Bounds IlI

25/68

Closed x Open Problems

e With a better algorithm we show that the problem’s inherent time
performance is no worse than some upper bound

e With a lower bound proof we show that the problem’s inherent
time performance is no better than some lower bound

e When the upper and lower bounds meet (except for the possibly
different constant factors) the algorithmic problem is closed.
Otherwise we say that there is an algorithmic gap

e |f a problem is closed as tractable that is good news. If it is closed as
intractable, that's bad news, but at least we know something for sure

26/68

Examples |

TOWERS OF HANOI

e the best algorithm proposed is exponential - upper bound is O(2"V)

e we cannot do any better - lower bound is also O(2")
e the algorithmic problem is closed

e and the problem is classified as intractable

MONKEY PuzzLE
e current best algorithm is exponential - upper bound is O(N!)

e current best-known (proved) lower bound is O(N)
e there is an algorithm gap

e even though the best known algorithm is exponential the problem
cannot be classified as intractable

27/68

Examples Il

LINEAR PROGRAMMING

e Input: a list of m linear inequalities with rational coefficients over n
variables x1,...xn (a linear inequality has the form
aixl + azxa + ... + anxn < b for some coefficients al,...an,b),

e Output: is there an assignment of rational numbers to the variables
x1,...xn that satisfies all the inequalities?

e This problem is closed with a polynomial time and it is classified as a
tractable problem

28/68

Examples Il
OBS.: Linear Programming is a very important problem with many
applications in real-life problems. It also has a very interesting history.

For many years the best algorithm for it was an exponential-time
procedure known as the simplex method

However when the method was used for real problems, even of
nontrivial size, it usually performed very well.

In 1979, a polynomial-time algorithm was found, but the simplex
method had a better performance in many of the practical cases

In 1984 the Indian mathematician Karmarkar discovered a very
efficient polynomial-time algorithm outperforming the simplex method

29/68

Contents

Complexity Theory

30/68

Organizing the World of Computational Problems |

e The Monkey Puzzle is just one of close to 1000 algorithmic
problems, all of which exhibit the same phenomena

e The best algorithms that solve them are exponential-time

e But no one has been able to prove that any of these problems
really require exponential time, i.e. no one has been able to prove
that their lower-bounds are also exponential

e The best-known lower bounds of most of the problems in this
class are O(N). Hence it is conceivable (though unlikely) that they
admit very efficient linear-time algorithms.

31/68

Organizing the World of Computational Problems Il

e This class of (decision) problems is called NPC. Its elements are
called NP-Complete problems (for Nondeterministic Polynomial
Time Complete problems)

e The class NPC contains an ever-growing diversity of algorithmic
problems, arising in such areas as operations research, economics,
graph theory, game theory, and logic

e They share a remarkable property: either they are all tractable or
none of them is!!

e Before defining NP-Complete Problems let's take a step back and
start first with the class NP of NP problems.

32/68

Contents

NP - short certificates and magic coins

33/68

NP Problems - Short Certificates |

e The set of NP problems is the set of all decision problems that are
verifiable in polynomial time

e |f we have a possible solution for it, we can verify, in polynomial
time, that it is indeed a correct solution

e We can, for instance verify that a monkey puzzle solution is correct in
polynomial time (linear time, even!), when presented with a solution.

e When given the pieces arranged in a square, a supposed solution, we
simply go through all the pieces once, and verify that the monkeys
match up correctly or not - this can be done in polynomial time.

34/68

NP Problems - Short Certificates Il

e So, our verification algorithm always has a yes/no (true/false)
answer in polynomial time

e We call this answer, along with it's explanation, a certificate.

35/68

More Examples of NP Problems |

Independent set:
e Input: a graph G and a number k
e Output: is there a k-size independent subset of G's vertices?

e Certificate: a list of k vertices forming an independent set

Traveling salesperson:

e Input: a set of n nodes, the distances between each two of these n
nodes, and a number Kk,

e Output: is there a closed circuit, i.e. a tour that visits every node
exactly once and has total length at most k?

e Certificate: the sequence of nodes in the tour.

36/68

More Examples of NP Problems Il

Subset sum:
e Input: a list of n numbers Ay,... Ay, and a number T
e Output: is there a subset of the numbers that sums up to T?

e Certificate: the list of members in this subset that sums up to T.

Linear programming;:

e Input: a list of m linear inequalities with rational coefficients over n
variables x1, ... xy (a linear inequality has the form
a;xl+ asxa + ... 4+ anxn < b for some coefficients al, ... an, b),

e Output: is there an assignment of rational numbers to the variables
x1,...Xn that satisfies all the inequalities?

e Certificate: is the assignment.

37/68

NP Problems - Magic Coins |

e There is another way of describing NP problems

e Assume we have a very special “magic coin™....

e Whenever it is possible to extend a partial solution in two ways (for
example, two monkey cards can be legally placed at a currently
empty location, the coin is flipped and the choice is made according
to the outcome.

e However, the coin does not fall at random; it possesses magical
insight, always indicating the best possibility.

38/68

NP Problems - Magic Coins I

e The coin will always select a possibility that leads to a complete
solution, if there is a complete solution.

e Technically, we say that algorithms that use such magic coins are
nondeterministic,

e They always “guess” which of the available options is better, rather
than having to employ some deterministic procedure to go through
them all.

e Thus, NP problems are apparently intractable, but become
“tractable” by using magical nondeterminism.

39/68

Contents

NP Completeness

40/68

NP Completeness |

e NP-complete problems are NP problems which are open w.r.t
tractability status (such as the Monkey's Puzzle) that have a
additional and remarkable property:

e Either they are all are tractable, or none of them is!
e The term "complete” is used to signify this additional property

If someone finds a polynomial-time algorithm for any single
NP-complete problem,

e there would immediately be polynomial time algorithms for all
NP-complete problems.

41/68

NP Completeness Il

Also, if someone were to prove an exponential-time lower bound for
any NP-complete problem,

e it would follow immediately that no NP-complete problem can be
solved in polynomial time

This is not a conjecture, it has been proved!

42/68

	More bad news....
	Lower x Upper Bounds
	Complexity Theory
	NP - short certificates and magic coins
	NP Completeness
	Polynomial time reduction
	Some NP-Complete Problems
	Is P = NP?

