
NP-Complete Problems
With a short and informal introduction to Computability Complexity

Álvaro Moreira
alvaro.moreira@inf.ufrgs.br

Instituto de Informática
Universidade Federal do Rio Grande do Sul
Porto Alegre, Brasil
http://www.inf.ufrgs.br

http://www.inf.ufrgs.br

Contents

More bad news....
Lower x Upper Bounds
Complexity Theory
NP - short certificates and magic coins

NP Completeness
Polynomial time reduction
Some NP-Complete Problems
Is P = NP?

2/68

Contents

More bad news....

Lower x Upper Bounds

Complexity Theory

NP - short certificates and magic coins

NP Completeness

Polynomial time reduction

Some NP-Complete Problems

Is P = NP?

3/68

Tractability x Untractability

4/68

Hanoi Towers I

• Suppose we are given three towers, or three pegs, A, B, and C.

• On the first peg, A, there are three rings in descending size order,
while the others are empty

• We have to move the rings from A to B, using C in the process
when necessary.

• Rings have to be moved one at a time, and a larger ring can never
be placed on top of a smaller one.

5/68

Hanoi Towers II
• This puzzle with 3 rings can be solved as follows (with 7 moves):

move A to B;
move A to C;
move B to C;
move A to B;
move C to A;
move C to B;
move A to B.

6/68

Hanoi Towers III
• With 4 rings on peg A the problem can be solved with 15 move
actions

• We are interested in an algorithm to solve the general algorithmic
problem associated with the Towers of Hanoi

• The input for the algorithm is a positive integer N (the number of
rings), and the desired output is a list of “move X to Y” actions,
that solve the puzzle for N rings.

• There is an algorithm where the number of move actions
produced, for an N ring case, is precisely 2N − 1

7/68

Hanoi Towers IV
• Also, it has been proved that 2N − 1 is a lower bound on the
required number of moves for solving the problem, so we cannot do
any better than this

• If we were able to move a million rings every second, with 64
rings it would take more than half a million years to complete the
process!!

• If we were able to move only one ring every 10 seconds, it would
takes us more than five trillion years to finish.

8/68

Decision Problems I

• One may think the difficulty is because the output is a sequence of
moves. Since many moves are required, it takes too long to find and
exhibit all of them.

• To convince that this is not the case lets examine decision
problems (problems requiring only a ”yes“/”no“ solution)

• Most of the problems of interest in practice however, are not decision
problems...

• Problems which are not decision problems will be recast as decision
problems.

9/68

Decision Problems II
Example: Consider the problem that, given data about direct buses
between cities (a graph), and given the name of two cities, finds a the
most direct path (shortest in terms of bus changes) between them.

A decision problem related to problem above is :

Given info about direct bus connections between cities (a graph),
two cities u and v (vertices), and a non-negative integer k, does
a path exist between u and v whose length is at most k?

The number k is a bound on the value to be optimized.

If an optimization problem is easy then its related decision problem is
easy as well. If a decision problem is hard, its related optimization
problem is also hard.

10/68

Monkeys Puzzle I

• Given (descriptions of) N cards, where N is some square number,
say, N is M2, the (original) problem calls for exhibiting, if possible,
an M by M square arrangement of the N cards, so that colors and
halves match.

The cards have a fixed direction and they cannot be rotated.

11/68

Monkeys Puzzle II

• We concentrate on the decision version of the problem, without
asking for one arrangement to be exhibited.

• A naive algorithm proceeds trying all possible arrangements

◦ it stops with “yes" as soon as it gets a legal arrangement, and

◦ it stops with “no" if all arrangements have been tried, and they are all
illegal

• OBS.: It is possible to be less brute-force, by not checking extensions
of a partial arrangement that has already been shown to be illegal.

12/68

Monkeys Puzzle III

• If we are dealing, for instance, with a 5x5 grid, there are 25
possibilities for choosing a card to be placed in the first location.

• Having placed some card in that location, there are 24 cards to
choose from for the second location, 23 for the third, and so on.

• The total number of arrangements can, therefore, reach:
25× 24× 23× . . .× 3× 2× 1 = 25! which is a 26 digits number.

• How long will the algorithm take in the worst case, i.e., when there
is no legal arrangement, so that all possible arrangements have to be
checked?

13/68

Monkeys Puzzle IV

• A computer that can try a billion arrangements every second will
take well over 490 million years to try all 25! arrangements!!!.

• In a 6x6, the time to try all 36! arrangements would be FAR longer
than the time that has elapsed since the Big Bang!!

• And note that, in this context, the worst-case is the most
probable to happen if the game is well-designed.

• These impressive numbers consider the brute force solution. Is there
some better solution to the Monkey Puzzle problem practical for a
reasonable number of cards?

Probably not, but no one knows for sure.

14/68

Function values

This table shows some numbers for some functions. As a reference:
- the number of (known) protons in the universe has 79 digits.
- the number of microseconds since the Big Bang has 24 digits.

15/68

Function growth I

16/68

Function growth II

• If N is 300 the number 2N is billions of times larger than the
number of protons in the entire known universe!!.

• NN grows faster that N! which grows faster than 2N

• 2N grows MUCH faster than any other functions of the form NK,
for any fixed K.

• OK that for all N up to 1165, N1000 is larger than N!, but after that
number, N! grows much faster

• 2N, N!, and NN are all example of “bad” functions because they all
grow MUCH faster than (“good") NK functions.

17/68

Polynomial x Exponential (good x bad) I

• These facts lead to a fundamental classification of functions into
“good” and “bad” ones.

◦ The good ones are polynomial functions

◦ The bad ones are super-polynomial functions

• A polynomial function of N is any function which is no greater in
value than NK for all values of N from some point on.

• A super-polynomial function of N is any function which is
greater in value than NK for all values of N from some point on.

18/68

Polynomial x Exponential (good x bad) II

• Logarithmic (log2N), linear (N), and quadratic (N2) functions, for
example, are polynomial

• 1.001N, 5N, NN, and N!, for instance, are super-polynomial

• It is common to abuse terminology and use exponential as a
synonym for super-polynomial

OBS.: To call super-polynomial functions as exponential is an abuse because:
• super-polynomials functions, like Nlog2 N for example, are not quite

exponential,

• and functions like NN, for instance, are super-exponential

19/68

Tractable x Intractable problems I

• An algorithm whose (order-of-magnitude) time performance is
bounded from above by a polynomial function of N, where N is the
size of its inputs, is called a polynomial-time algorithm

• Similarly, an algorithm that, in the worst case, requires
super-polynomial, or exponential time, will be called a exponential
algorithm

• An algorithmic problem is tractable if it admits a polynomial-time
solution. It is intractable if it only admits an exponential-time
solution

20/68

Tractable x Intractable problems II

• Of course that an N1000 polynomial algorithm is worse than a N!
exponential algorithm for inputs under size 1165

• But the majority of exponential algorithms are really useless, and
most polynomial algorithms are really useful in practice

• These facts give credibility to this distinction between good
(polynomial) and bad (exponential)

• In fact, the vast majority of polynomial-time algorithms for practical
problems feature an exponent of N that is no more than 5 or 6.

21/68

Contents

More bad news....

Lower x Upper Bounds

Complexity Theory

NP - short certificates and magic coins

NP Completeness

Polynomial time reduction

Some NP-Complete Problems

Is P = NP?

22/68

Lower x Upper Bounds I

• Any algorithmic problem has an inherent optimal solution.

• Suppose someone gives an O(N3) algorithm for problem P

◦ We then know that the optimal solution of P cannot be worse than
O(N3)

• Later on, someone discovers a better algorithm, say one that is
O(N2)

◦ We then know that the problem cannot be inherently worse than O(N2)
and the previous O(N3) algorithm becomes obsolete.

23/68

Lower x Upper Bounds II

• With better algorithms we get closer the inherent complexity of the
problem.

• But is it possible to know, beforehand, how far can improvements
go?

• Yes, that requires a proof of a lower bound.

• If, for instance, we prove that the problem P cannot be solved in less
than O(N2), then people can stop looking for better algorithms for it

24/68

Lower x Upper Bounds III

25/68

Closed x Open Problems

• With a better algorithm we show that the problem’s inherent time
performance is no worse than some upper bound

• With a lower bound proof we show that the problem’s inherent
time performance is no better than some lower bound

• When the upper and lower bounds meet (except for the possibly
different constant factors) the algorithmic problem is closed.
Otherwise we say that there is an algorithmic gap

• If a problem is closed as tractable that is good news. If it is closed as
intractable, that’s bad news, but at least we know something for sure

26/68

Examples I

Towers of Hanoi
• the best algorithm proposed is exponential - upper bound is O(2N)
• we cannot do any better - lower bound is also O(2N)
• the algorithmic problem is closed
• and the problem is classified as intractable

Monkey Puzzle
• current best algorithm is exponential - upper bound is O(N!)
• current best-known (proved) lower bound is O(N)
• there is an algorithm gap
• even though the best known algorithm is exponential the problem
cannot be classified as intractable

27/68

Examples II

Linear programming

• Input: a list of m linear inequalities with rational coefficients over n
variables x1, . . . xn (a linear inequality has the form
a1x1+ a2x2 + . . .+ anxn 6 b for some coefficients a1, . . .an,b),

• Output: is there an assignment of rational numbers to the variables
x1, . . . xn that satisfies all the inequalities?

• This problem is closed with a polynomial time and it is classified as a
tractable problem

28/68

Examples III

OBS.: Linear Programming is a very important problem with many
applications in real-life problems. It also has a very interesting history.

For many years the best algorithm for it was an exponential-time
procedure known as the simplex method

However when the method was used for real problems, even of
nontrivial size, it usually performed very well.

In 1979, a polynomial-time algorithm was found, but the simplex
method had a better performance in many of the practical cases

In 1984 the Indian mathematician Karmarkar discovered a very
efficient polynomial-time algorithm outperforming the simplex method

29/68

Contents

More bad news....

Lower x Upper Bounds

Complexity Theory

NP - short certificates and magic coins

NP Completeness

Polynomial time reduction

Some NP-Complete Problems

Is P = NP?

30/68

Organizing the World of Computational Problems I

• The Monkey Puzzle is just one of close to 1000 algorithmic
problems, all of which exhibit the same phenomena

• The best algorithms that solve them are exponential-time

• But no one has been able to prove that any of these problems
really require exponential time, i.e. no one has been able to prove
that their lower-bounds are also exponential

• The best-known lower bounds of most of the problems in this
class are O(N). Hence it is conceivable (though unlikely) that they
admit very efficient linear-time algorithms.

31/68

Organizing the World of Computational Problems II

• This class of (decision) problems is called NPC. Its elements are
called NP-Complete problems (for Nondeterministic Polynomial
Time Complete problems)

• The class NPC contains an ever-growing diversity of algorithmic
problems, arising in such areas as operations research, economics,
graph theory, game theory, and logic

• They share a remarkable property: either they are all tractable or
none of them is!!

• Before defining NP-Complete Problems let’s take a step back and
start first with the class NP of NP problems.

32/68

Contents

More bad news....

Lower x Upper Bounds

Complexity Theory

NP - short certificates and magic coins

NP Completeness

Polynomial time reduction

Some NP-Complete Problems

Is P = NP?

33/68

NP Problems - Short Certificates I

• The set of NP problems is the set of all decision problems that are
verifiable in polynomial time

• If we have a possible solution for it, we can verify, in polynomial
time, that it is indeed a correct solution

• We can, for instance verify that a monkey puzzle solution is correct in
polynomial time (linear time, even!), when presented with a solution.

• When given the pieces arranged in a square, a supposed solution, we
simply go through all the pieces once, and verify that the monkeys
match up correctly or not - this can be done in polynomial time.

34/68

NP Problems - Short Certificates II
• So, our verification algorithm always has a yes/no (true/false)
answer in polynomial time

• We call this answer, along with it’s explanation, a certificate.

35/68

More Examples of NP Problems I

Independent set:
• Input: a graph G and a number k
• Output: is there a k-size independent subset of G’s vertices?
• Certificate: a list of k vertices forming an independent set

Traveling salesperson:
• Input: a set of n nodes, the distances between each two of these n

nodes, and a number k,
• Output: is there a closed circuit, i.e. a tour that visits every node
exactly once and has total length at most k?

• Certificate: the sequence of nodes in the tour.

36/68

More Examples of NP Problems II

Subset sum:
• Input: a list of n numbers A1, . . .An and a number T
• Output: is there a subset of the numbers that sums up to T?
• Certificate: the list of members in this subset that sums up to T .

Linear programming:
• Input: a list of m linear inequalities with rational coefficients over n
variables x1, . . . xn (a linear inequality has the form
a1x1+ a2x2 + . . .+ anxn 6 b for some coefficients a1, . . .an,b),

• Output: is there an assignment of rational numbers to the variables
x1, . . . xn that satisfies all the inequalities?

• Certificate: is the assignment.

37/68

NP Problems - Magic Coins I

• There is another way of describing NP problems
• Assume we have a very special “magic coin”....

• Whenever it is possible to extend a partial solution in two ways (for
example, two monkey cards can be legally placed at a currently
empty location, the coin is flipped and the choice is made according
to the outcome.

• However, the coin does not fall at random; it possesses magical
insight, always indicating the best possibility.

38/68

NP Problems - Magic Coins II

• The coin will always select a possibility that leads to a complete
solution, if there is a complete solution.

• Technically, we say that algorithms that use such magic coins are
nondeterministic,

• They always “guess” which of the available options is better, rather
than having to employ some deterministic procedure to go through
them all.

• Thus, NP problems are apparently intractable, but become
“tractable” by using magical nondeterminism.

39/68

Contents

More bad news....

Lower x Upper Bounds

Complexity Theory

NP - short certificates and magic coins

NP Completeness

Polynomial time reduction

Some NP-Complete Problems

Is P = NP?

40/68

NP Completeness I

• NP-complete problems are NP problems which are open w.r.t
tractability status (such as the Monkey’s Puzzle) that have a
additional and remarkable property:

• Either they are all are tractable, or none of them is!

• The term ”complete” is used to signify this additional property

If someone finds a polynomial-time algorithm for any single
NP-complete problem,

• there would immediately be polynomial time algorithms for all
NP-complete problems.

41/68

NP Completeness II

Also, if someone were to prove an exponential-time lower bound for
any NP-complete problem,

• it would follow immediately that no NP-complete problem can be
solved in polynomial time

This is not a conjecture, it has been proved!

42/68

	More bad news....
	Lower x Upper Bounds
	Complexity Theory
	NP - short certificates and magic coins
	NP Completeness
	Polynomial time reduction
	Some NP-Complete Problems
	Is P = NP?

