
Real-Time Embedded Systems

DT8025, Fall 2016

http://goo.gl/AZfc9l

Lecture 5

Masoumeh Taromirad
m.taromirad@hh.se

Center for Research on Embedded Systems
School of Information Technology

Context Switching

The process of storing and restoring the state (more specifically,
the execution context) of a process or thread so that execution can
be resumed from the same point at a later time.

Stack Pointer
A small register that stores the address of the last program request
in a stack.

Program Counter

A processor register that indicates where a computer is in its
program sequence.

1 / 62

Execution of a C program

x =

PC
SP

Code

 int x;

}

...

a(){

v = 0

u = 0
w = 0 v = 0

Globals

Locals of a()

Stack

2 / 62

Execution of a C program

Stack
Locals of a()

Globals

u = 0

v = 0

a(){

}

 int x;

Code

SP

x = 9;

...PC w = 6;

x = 9

w = 6

3 / 62

Execution of a C program

b(55);

Stack
Locals of a()

Globals

u = 0

v = 0

a(){

}

 int x;

Code

SP

x = 9;

PC
w = 6;

x = 9

w = 6

4 / 62

Execution of a C program

y = 55
Locals of b()

w = 6

x = 9

w = 6; PC
x = 9;

SP

Code

 int x;

}

a(){

v = 0

u = 0

Globals

Locals of a()

Stack

b(55);

b(int y){

 ...

}

5 / 62

Execution of a C program

}

y = c();
y = 55

Locals of b()

w = 6

x = 9

w = 6; PC
x = 9;

SP

Code

 int x;

}

a(){

v = 0

u = 0

Globals

Locals of a()

Stack

b(55);

b(int y){

 ...

6 / 62

Execution of a C program

Locals of c() }

 ...

 int z = 23;
c(){

}

y = c();
y = 55

Locals of b()

w = 6

x = 9

w = 6;

PC

x = 9;

SP

Code

 int x;

}

a(){

v = 0

u = 0

Globals

Locals of a()

Stack

b(55);

b(int y){

 ...

z = 23

7 / 62

Execution of a C program

...
w = 77;

z = 23
Locals of c() }

 int z = 23;
c(){

}

y = c();
y = 55

Locals of b()

x = 9

w = 6;

PC

x = 9;

SP

Code

 int x;

}

a(){

v = 0

u = 0

Globals

Locals of a()

Stack

b(55);

b(int y){

 ...

w = 77

8 / 62

Execution of a C program

}

w = 77

w = 77;

z = 23
Locals of c()

 int z = 23;
c(){

}

y = c();
y = 55

Locals of b()

x = 9

w = 6;

PC

x = 9;

SP

Code

 int x;

}

a(){

v = 0

u = 0

Globals

Locals of a()

Stack

b(55);

b(int y){

 ...

return z;

9 / 62

Execution of a C program

y = 23

return z;
}

w = 77

w = 77;

 int z = 23;
c(){

}

y = c();

Locals of b()

x = 9

w = 6;

PC

x = 9;

SP

Code

 int x;

}

a(){

v = 0

u = 0

Globals

Locals of a()

Stack

b(55);

b(int y){

 ...

10 / 62

Execution of a C program

... return z;
}

w = 77

w = 77;

 int z = 23;
c(){

}

y = c();

x = 9

w = 6;
PC

x = 9;

SP

Code

 int x;

}

a(){

v = 0

u = 0

Globals

Locals of a()

Stack

b(55);

b(int y){

 ...

11 / 62

Concurrent Programs?

Imagine we had 2 CPUs, then we could run two programs at the
same time!

One way of programming this in only 1 CPU is to keep track of 2
stack pointers and 2 program counters!

BUT ...
We want to provide means for two programs to execute
concurrently! As if we had 2 CPUs!

12 / 62

What might a program look like?

main(){

create_thread(decoder_main);

controller_main();

}

Notice that the function create thread takes a function as an
argument!

The role of create thread is to provide one extra Program
Counter and Stack Pointer.

13 / 62

What we need ...

Thread Data Structure
A data structure describing a thread allowing us to keep track of
the threads.

struct thread_block{

...

void (*fun)(void *) // function to run

void (*arg); // argument to the above

Context context; // pc and sp

...

};

typedef struct thread_block *thread

14 / 62

What we need ...

Variables for tracking threads

1. a queue of threads,

2. and the current thread.

Thread creation
A way of creating a thread: creating, initialising, and updating
associated data structures.

A mean for interleaving

A way of interleaving fragments of the threads; yielding execution
so that another thread can take over.

15 / 62

The kernel as a C library

ithreads.h

struct thread;

typedef struct thread thread;

int create_thread(void (*func)(void *), void *arg);

int yield(void); // Your task in lab2!

struct lock{

int locked;

thread waitQ;

};

typedef struct lock lock;

void lock(lock *m); // Your task in lab2!

void unlock(lock *m); // Your task in lab2!

16 / 62

Thread Data Structure

struct thread{

...

void (*fun)(void *) // function to run

void (*arg); // argument to the above

Context context; // pc and sp

... // ...

};

Context
It is very much platform dependent!
It is related to the function-call stack frame.
The size is some number of times the size of a function-call stack
frame.

17 / 62

Global Variables

Current Thread
Keep track of the current (running) thread.

thread *runningthread;

Threads Queue
A queue of all the created threads (ready to run; runnable).

thread_queue *threadrunqueue;

18 / 62

Creating Threads

int create_thread(void (*func)(void *), void *arg);

1. create a thread and initialise it, particularly the context.

thread *t;

memset(t, 0, sizeof *t);

t->startfn = func;

t->startarg = arg;

memset(&t->context.uc, 0, sizeof t->context.uc);

2. enqueue the newly created thread t into the threads ready
queue (threadrunqueue).

//this will enqueue t in the ready queue!

threadready(t);

19 / 62

The ready queue, the current thread and yield

Yielding control

By keeping the runnable threads
in a queue, we can define a
function yield() to switch
execution to another thread.

yield() must

I enqueue the current thread in the ready queue

I pick a new thread from the ready queue and make it the
current thread

I perform the context switch (also called dispatch)

20 / 62

Context Switch

21 / 62

Context Switch

static void contextswitch(Context *from, Context *to)

{

//check if it is a valid context!

if(getcontext(&from->uc) == 0)

//set the current context!

setcontext(&to->uc);

return 0;

}

22 / 62

Who is the first current thread?

main
For main there is a PC and a SP and execution is set off when
turning power on!

But yield should be able to deal with it as any other thread!

We introduce a thread block without initialization to be the first
current thread. The first dispatch will set the context before
enqueuing it in the ready queue!

23 / 62

Scheduling

When there are fewer processors than tasks (the usual case), or
when tasks must be performed at a particular time, a scheduler
must intervene.

The core of an implementation of threads is a scheduler. that
decides which thread to execute next when a processor is available
to execute a thread.

Scheduler
Makes the decision about what to do next at certain points in
time, such as the time when a processor becomes available.

24 / 62

Real-time Systems

When in addition to any ordering constraints between the tasks,
there are also timing constraints which relate the execution of a
task to real-time.

Real-time
The physical time in the environment of the computer executing
the task.

Real-time programs can have all manner of timing constraints

I deadline

I executed no earlier than a particular time

I executed periodically with some specified period

I . . .

25 / 62

Basics of Scheduling

Scheduler
Decides what task to execute next when faced with a choice in the
execution of a concurrent program or set of programs.

Multiprocessor Scheduler

Decides not only which task to execute next, but also on which
processor to execute it. The choice of processor is called processor
assignment.

26 / 62

Basics of Scheduling

Scheduling Decision

I assignment: which processor should execute the task.

I ordering: in what order each processor should execute its
tasks.

I timing: the time at which each task executes.

Each of these three decisions may be made at

I design time, before the program begins executing, or at

I run time, during the execution of the program.

27 / 62

Basics of Scheduling
Different types of schedulers

Fully-static Scheduler

I Makes all three decisions at design time.

I The result is a precise specification for each processor of what
to do when.

Static Order Scheduler

I performs the task assignment and ordering at design time.

I defers timing until run time: the decision of when in physical
time to execute a task.

I The decision may be affected, for example, by whether a
mutual exclusion lock can be acquired.

I also called off-line scheduler.

28 / 62

Basics of Scheduling
Different types of schedulers

Static Assignment Scheduler

I performs the assignment at design time

I and ordering and timing at run time.

I a run-time scheduler decides during execution what task to
execute next.

I also called on-line scheduler

29 / 62

Basics of Scheduling
Different types of schedulers

Fully-dynamic Scheduler

I performs all decisions at run time.

I When a processor becomes available, the scheduler makes a
decision at that point about what task to execute next on
that processor.

I also called on-line scheduler

... more combinations!

I Assignment of a task may be done once for a task, at run
time just prior to the first execution of the task.

30 / 62

Basics of Scheduling
Preemptive vs. non-preemptive

Preemptive Scheduler

Makes scheduling decision during the execution of a task, assigning
a new task to the same processor.
It may decide to stop the execution of a task and begin execution
of another one.
The interruption of the first task is called preemption.

Non-preemptive Scheduler

Always lets tasks run to completion before assigning another task
to execute on the same processor.

In preemptive scheduling, a task may be preempted if it attempts
to acquire a mutual exclusion lock and the lock is not available.

31 / 62

Basics of Scheduling
Basic definitions

release time, ri
the earliest time at which a task is enabled.

32 / 62

Basics of Scheduling
Basic definitions

start time, si
the time at which the execution actually starts. si ≥ ri .

33 / 62

Basics of Scheduling
Basic definitions

finish time, fi
the time at which the task completes execution. fi ≥ si .

34 / 62

Basics of Scheduling
Basic definitions

response time, oi
the time that elapses between when the task is first enabled and
when it completes execution. oi = fi − ri .

35 / 62

Basics of Scheduling
Basic definitions

execution time, ei
the total time that the task is actually executing.

36 / 62

Basics of Scheduling
Basic definitions

deadline, di
the time by which a task must be completed.

37 / 62

Comparing Schedulers

The choice of scheduling strategy is governed by considerations
that depend on the goals of the application.

Feasible Schedule
A schedule that accomplishes the goal that all task executions
meet their deadlines: fi ≤ di .

Comparison Criteria

I utilization: the percentage of time that the processor spends
executing tasks (vs. being idle).

I maximum lateness (L) for a set of tasks T :

L = maxi∈T (fi − di)

I total completion time (M) for a finite set of tasks T :

M = maxi∈T (fi) −mini∈T (ri)

38 / 62

Scheduling Strategies

Rate Monotonic Scheduling

Earliest Deadline First

EDF with Precedences

...

39 / 62

Static priorities – method

Rate monotonic (RM)

Under the given assumptions, there exists a static priority
assignment rule that is really simple

The shorter the period, the higher the priority

d For RM, the actual priority values do not matter, only their
relative order.

Because of our inverse priority scale, we can simply implement RM
by letting Pi = Di (=Ti)

40 / 62

RM example

Given a set of periodic tasks with periods
T1 = 25ms
T2 = 60ms
T3 = 45ms

Valid priority assignments
P1 = 10 P1 = 1 P1 = 25
P2 = 19 P2 = 3 P2 = 60
P3 = 12 P3 = 2 P2 = 45

41 / 62

RM example

(High) T1

(Mid) T3

(Low) T2

Period = Deadline. Arrows mark start of period.
Blue: running. Gray: waiting.

42 / 62

Dynamic priorities – method

Earliest Deadline First – EDF
Dynamic priority assignment rule:

The shorter the time remaining until deadline, the higher
the priority

To use absolute deadlines: priorities = remaining clock cycles
(before missing the deadline)

Under EDF, each activation n of periodic task i will receive a new
priority: Pi(n) = baselinei(n) + Di

43 / 62

EDF example

T1

T3

T2

T1 arrives later, but its deadline is earlier than both T2’s and T3’s
absolute deadlines!

44 / 62

EDF example

T1

T3

T2

Deadline of T1 < Deadline of T2

45 / 62

EDF example

T1

T3

T2

(absolute) Deadline of T1 > (absolute) Deadline of T2

46 / 62

	
	The C execution model
	Context switch
	Scheduling

