
Algorithms, Data Structures, and Problem Solving
(DA4002)

Group Activity
Complexity of Algorithms

October 3, 2016

1. Insertion Sort

Insertion sort is a simple sorting algorithm that builds a sorted list of n ele-
ments given in a random order. The algorithm somehow works similarly to the
way people manually sort items. Basically, in each iteration, an item is inserted
in the proper place into an (initially empty) list by comparing it with each item
in the list until it finds the new element’s successor or the end of the list. Here
is the pseudo code of the insertion sort.

function INSERTION-SORT(A)
for j ← 2 to length[A] do

key ← A[j]
Insert A[j] into the sorted sequence A[1, j − 1].
i← j − 1
while i > 0 and A[i] > key do

A[i + 1]← A[i]
i← i− 1

end while
A[i + 1]← key

end for
end function

Considering the given pseudo code of the algorithm, discuss and try to find

1. the best, worst, and average cases of the algorithm, and

2. the average runtime of the algorithm (Big-O notation).

1



2. Merge Sort

Merge sort is a Divide and Conquer algorithm. It sorts a list of n elements,
given in a random order, by dividing the input array in two halves, calling it-
self for the two halves, and then merging the two sorted halves. The merge()
function, used for merging two halves, is the key process. It assumes that the
inputs (say A1 and A2) are sorted arrays and merges them into one sorted array.

function MERGE-SORT(A)
n← lenght[A]
if then(n == 1)

return A
end if
A1 = A[0]...A[n/2]
A2 = A[n/2 + 1]...A[n]
A1 = MERGE − SORT (A1)
A2 = MERGE − SORT (A2)
return merge(A1, A2)

end function

Considering the given pseudo code of the algorithm, discuss and try to find

1. the best, worst, and average cases of the algorithm, and

2. the complexity of the merge sort (Big-O notation).

2


