
Midlet Navigation Graphs in JML

Wojciech Mostowski and Erik Poll

Radboud University Nijmegen
Digital Security Group

woj@cs.ru.nl, erikpoll@cs.ru.nl

Abstract. In the context of the EU project Mobius on Proof Carry-
ing Code for Java programs (midlets) on mobile devices, we present a
way to express midlet navigation graphs in JML. Such navigation graphs
express certain security policies for a midlet. The resulting JML specifica-
tions can be automatically checked with the static checker ESC/Java2.
Our work was guided by a realistically sized case study developed as
demonstrator in the project. We discuss practical difficulties with creat-
ing efficient and meaningful JML specifications for automatic verification
with a lightweight verification tool such as ESC/Java2, and the potential
use of these specifications for PCC.

1 Introduction

Midlet navigation graph provide a way to specify security properties for Java
MIDP (Mobile Information Device Profile) applications, so-called midlets. Based
on a simpler notion of a flow graph, prescribed by the Unified Testing Criteria
(UTC) [20] to test midlets in Java Verified scheme1, Crégut proposed the notion
of navigation graphs [5] as a high-level specification formalism to describe the
behaviour of Java mobile phone applications (in most cases MIDP devices are
in fact mobile phones).

Essentially, a navigation graph is a graph, or finite automaton, which de-
scribes the ways in which an application may navigate through various screens
of the user interface, in interaction with the user and the network. Each node in
the graph represents a different screen that is displayed, e.g. a warning message
for which the user has to press ‘OK’ or ‘Cancel’, or a menu with options for
the user to choose from. The arrows between nodes represent transitions the
application can make, often in response to some user action. The graph can be
augmented with information about sensitive midlet actions, e.g. sending an SMS
or engaging in other GSM network activity. The navigation graph then gives a
high-level specification of which potentially dangerous things a given midlet does,
and under which circumstances.

In [5] Crégut gives a formal description of navigation graphs and their seman-
tics in terms of an operational semantics of Java bytecode, more specifically the
Bicolano semantics [18]. He also presents an algorithm to extract a navigation

1 http://www.javaverified.com

c© Springer-Verlag

2 W. Mostowski and E. Poll

graph from bytecode. In this paper we present a way to express the semantics
of navigation graphs in terms of a specification at source code level. The formal
specification language we use for this is Java Modelling Language (JML) [14].

Our work was guided by one of the Mobius case studies, a quiz game mi-
dlet developed by industrial partner TLS2 [15]. This is the biggest case study of
the project and it exhibited some problems during the JML annotation pro-
cess and also during verification with the extended static checker for Java,
ESC/Java2 [11]. We will discuss the problems we encountered with developing
the JML specification and verifying it in detail.

The rest of this paper is organised as follows. Sect. 2 gives an introduction
to the MIDP application structure. Sect. 3 describes midlet navigation graphs
in more detail. Sect. 4 discusses the translation of the midlet navigation graphs
in JML based on the Mobius case study. Finally, Sect. 6 summarises our results
and discusses the potential for PCC.

2 MIDP Infrastructure

The notion of midlet navigation graphs relies on the infrastructure of the Java2
Micro Edition platform (J2ME)3 for small devices, such as mobile phones or
PDAs. The main building blocks of the J2ME platform of interest are the Mo-
bile Information Device Profile (MIDP) Java API and the Connected Limited
Device Configuration (CLDC) Java API. The former API deals with output to
the display and input from the user via the keypad of the device. The latter
API is mostly responsible for device’s communication with the outside world.
J2ME is often referred to as MIDP, and CLDC is usually assumed to be part
of J2ME/MIDP when mobile phones or PDAs are considered. The applications
that run on these devices are called midlets.

GUI A navigation graph is related to the phone’s display and sensitive opera-
tions that a midlet can possibly perform. In the following we discuss the relevant
parts of the MIDP API. As a presentation aid we use UML.

Every midlet, represented by the MIDlet class, has a unique associated Disp-
lay object, which manages the display and the input devices. The static method
Display.getDisplay(MIDlet m) returns the display associated with a midlet.
The various kinds of things that can be displayed on the Display object are
instances of the subclasses of Displayable, shown in Fig. 1. Invoking the meth-
od void setCurrent(Displayable nextDisplayable) on a Display changes
what it displays, possibly after a short delay. A List presents a list of choices, i.e.
a menu, that the user can scroll through and select. A TextBox allows the user
to enter and edit text. A Form presents an arbitrary mixture of items, which can
for instance be images or (read-only or editable) text fields. Finally, an Alert

2 http://www.tls.pl
3 http://java.sun.com/javame/index.jsp

Midlet Navigation Graphs in JML 3

Displayable

Canvas

GameCanvas

Screen

Alert Form List TextBox

Fig. 1. Class diagram: basic MIDP GUI elements

MIDlet Display
1 1

Displayable
1 1

CommandListener
1 0..1

Command
0..*1

Fig. 2. Class diagram: relation between midlets, displays, and screens.

is a screen that is shown for a short period of time, either until some time-
out or a key press. Alerts can also be displayed by invoking the method void
setCurrent(Alert alert, Displayable nextDisplayable), which will dis-
play the alert, and then show the nextDisplayable.

In its turn, a Displayable object may have a CommandListener associ-
ated with it, which implements a method void commandAction(Command c,
Displayable d) to handle incoming command events occurring on some Disp-
layable d. Commands are user actions, such as buttons that the user can se-
lect on the screen. Fig. 2 shows the relevant class structure. Note that control
passes back and forth between the midlet and the platform. When a midlet
calls setCurrent(...) to change the display, it hands over control to the plat-
form; when after that a user action occurs, the platform hands back control to
the midlet by a call back to commandAction(...). The behaviour of the mi-
dlet is determined by: (i) the current MIDlet and its Display, (ii) the current
Displayable shown on that Display, (iii) the Commands that the midlet pro-
vides (if any), (iv) the associated CommandListener (if any). The display and the
midlet should never change. The MIDP platform controls which Displayable is
shown, and offers a midlet API calls to change it; the midlet is in charge of the
Commands and CommandListeners and their associations to Displayables.

Sensitive Operations The second relevant part of the MIDP infrastructure
are the APIs responsible for network communication and personal information
management. These operations are possibly security-sensitive. An unwanted or
uncontrolled network communication may result in (a) sensitive data being sent
out from the phone, or (b) unwanted network usage charges. Access to personal
information (e.g. the phone book) may result in unwanted information leakage.

4 W. Mostowski and E. Poll

ConnectionConnector

open() : Connection

MessageConnection

HttpConnection

Fig. 3. Class diagram: network connection related API

PIM

getInstance() : PIM
openPIMList() : PIMList

PIMList

items() : Enumeration<PIMItem>

PIMItem

ContactList Contact

1 0..*

Fig. 4. Class diagram: personal information related API

The high level API structure for network communication is very simple. In
principle it only involves the Connector class that provides static methods for
establishing different kinds of network connections (SMS, Internet), and a few
classes that encapsulate these different connections, like MessageConnection or
HttpConnection. Fig. 3 gives a simplified view.

For personal information management (PIM) there is one utility class PIM
that provides methods for accessing the phone book (contact list), and a few
classes that represent a single contact or the whole contact list (Fig. 4).

3 Navigation Graphs

In [5] two formalisations are given to deal with midlet navigation graphs. The first
formalisation deals with the MIDP GUI structure. We described it intuitively
using UML. In [5] a more detailed semantics is given in terms of the Bicolano
semantics [18] of Java bytecode; there the formalisation of the GUI is needed to
develop the algorithm to generate navigation graphs out of bytecode. For our
purposes the lightweight UML representation of the GUI is sufficient to represent
the GUI behaviour in JML by annotating the parts of the MIDP API dealing
with the GUI. Although we do not use the detailed formalisation of the GUI
from [5], there is a close correspondence between that formalisation and our JML
representation of the graphs. E.g., our 1 − 0..1 relation between Displayables
and CommandListeners is the relation g.list in [5], where g denotes the state
of the GUI and the whole relation maps CommandListeners to Displayables.
Similarly, the relation g.coms in [5] corresponds to our 1−0..∗ mapping between
Displayables and Commands.

The second part of the formalisation in [5] gives a formal definition of a
midlet navigation graph itself. Putting aside the complex notation, a midlet
navigation graph is essentially an oriented multigraph. The nodes of this graph
are possible midlet states, i.e. different application screens. The arrows of the

Midlet Navigation Graphs in JML 5

graph are transitions between the screens caused by user actions, i.e. Commands.
Finally, in [5] the arrows (transitions) also have interpretations, as they indicate
which sensitive operations that may be performed during a given transition.

Main End

Send [SMS]

start

Fig. 5. Statechart diagram: a simple midlet navigation graph

Such a notion of a graph can also be easily represented by a UML state chart
diagram. The states of the diagram represent application screens, the arrows
represent user commands, and arrow guards can be used to mark sensitive op-
erations. A very simple example is given in Fig. 5. In this example, from the
main screen a user can choose the Send command, in which case at most one
SMS would possibly be sent over the network, or press End, in which case the
application will simply terminate. Furthermore, using the UML state stereotypes
we can indicate additional properties of screens, e.g. whether an alert screen is
displayed only for a given period of time indicated by the timeout parameter
(and hence performing a transition to another screen without user interaction).
This last aspect is not covered in [5].

4 Navigation Graphs in JML

This section gives the semantics of a navigation graph in terms of JML. In other
words, we define a mapping from navigation graphs to JML annotations. Our
effort is divided into two parts. We start with the first part, which is to specify,
in a generic way, the midlet API calls. The API specifications can then be used
when specifying a particular midlet behaviour to reflect a given midlet navigation
graph in the second part that we discuss later.

4.1 Relevant API Methods

We want our JML specifications to be easy to verify for the verification tools.
Hence we only specified those aspects that are needed for navigation graphs, and
we avoided constructs that are challenging for verification, as discussed later. Our
specifications often use so-called ghost variables [4], which are specification-only
variables, to model relevant aspects of the state of the platform (incl. the GUI).

As mentioned before, two aspects of the API need to be specified: the GUI
and security-sensitive operations. For the GUI, we need to specify the Display
class, where a ghost field current tracks what is being displayed:

6 W. Mostowski and E. Poll

public class Display {

// Display represents the manager of the display.

// There is exactly one instance of Display per MIDlet

//@ public non_null ghost MIDlet midlet;

//@ public non_null ghost Displayable current;

//@ public non_null ghost Alert preAlert;

//@ ensures \result != null && \result.midlet == m;

//@ assignable \nothing;

public /*@pure@*/ static Display getDisplay(/*@non_null@*/ MIDlet m);

//@ ensures current == nextDisplayable && preAlert == null;

//@ assignable current, preAlert;

public void setCurrent(/*@non_null@*/ Displayable nextDisplayable);

//@ ensures current == nextDisplayable && preAlert == alert;

//@ assignable current, preAlert;

public void setCurrent(/*@non_null@*/ Alert alert,

/*@non_null@*/ Displayable nextDisplayable);

}

For the second setCurrent method we made a practical simplification. This
method causes an alert screen to be displayed temporarily (either with a
time-out or with a confirmation button) before updating the display to show
nextDisplayable. This could be specified by writing a complex specification
that keeps track of the sequence of displayed screens, including these alerts.
However, verification would be much more difficult and with little added value.
Instead, we introduce a ghost field, preAlert, which records that an alert screen
is temporarily displayed. So currents tracks the displayables being shown over
time, ignoring temporary Alert displayables.

To specify the GUI behaviour, we also have to specify the Displayable class
that represents particular screens on the display and the Command class that
represents input events. To simplify things we assume that each Command object
is bound to only one Displayable. Generally, this does not have to be the case
(commands can be reused through different displayables). However, in practice
most midlets define separate commands for each screen, and requiring it makes
verification simpler, as we do not need to use sets (or some representation of sets
such as lists) to track the set of displays associated with a command, and then
use set theory in verification. As for command listeners, the platform enables
only one per screen:

public class Command {

// The (only) Displayable object this command is attached to

//@ public ghost Displayable displayable;

}

public class Displayable {

//@ public ghost CommandListener commandListener;

Midlet Navigation Graphs in JML 7

//@ ensures cmd.displayable == this; assignable cmd.displayable;

public void addCommand(/*@non_null@*/ Command cmd);

//@ ensures commandListener == l; assignable commandListener;

public void setCommandListener(/*@non_null@*/ CommandListener l);

}

Finally, the specification of CommandListener should reflect the MIDP plat-
form guarantees, namely that the current displayable and command are not null,
and that the invoked command is in fact associated with the given displayable4:

public interface CommandListener {

//@ requires c.displayable == d;

//@ assignable \everything;

public void commandAction(/*@non_null@*/ Command c,

/*@non_null@*/ Displayable d);

}

If we trust the platform not to behave abnormally, these assumptions are safe.
For security-sensitive API calls, that may result in say network usage or

access to private information, we want our API specification to track the number
of invocations. For this we declare suitable static ghost variables to count the
number of invocations. This allows us to express restrictions on these numbers
in a specification for midlet. For example, for the open method of the Connector
class, which establishes new network or SMS connections, we can specify

public class Connector {

//@ public static ghost int openCount;

//@ ensures Connector.openCount == \old(Connector.openCount) + 1;

//@ assignable Connector.openCount;

public static Connection open(/*@non_null@*/ String name);

}

4.2 Midlet Annotations – the Mobius Case Study

We will present the JML annotations for midlets using the Mobius demonstration
midlet. The midlet implements a simple mobile phone quiz game. The security
sensitive operations of the quiz game are using an HTTP connection to download
game questions, sending answers and scores in SMS messages, and also accessing
the Personal Information Manager (PIM), i.e. the phone book. Fig. 6 shows the
complete navigation graph of this midlet.

The application class structure is as follows. There is a singleton class Quiz-
Midlet which is the main application container. Then there are several classes to
represent different screens of the game: main menu, options screen, about screen,

4 The assignable \everything clause in the spec means that classes implementing
this method are in principle free to have any side-effects.

8 W. Mostowski and E. Poll

Aboutlaunch

Main

OK About

Options
Options

Defaults

OK, Cancel
Exit

Question

Wait (load)

Continue Back

New

 [HTTP]

Wait (sms)

Select Answer

 [SMS]

Final Score

 [HTTP*]

No

Wait (load PIM)Yes Send Scores [PIM]

Cancel

Wait (Sending)

OK

Alert (sent)

 [SMS]

OK

Alert (error)

 [SMS*]

Error

error

error
error

error

Stop logo animation

Fig. 6. State diagram: navigation graph for the Mobius game

the main game screen, etc. Most of these classes use the Singleton pattern, mean-
ing there will only ever be a single instance of them. These classes also implement
the CommandListener interface to handle user actions. The class QuizQuestion
encapsulates a single quiz question and a displayable object for this question.
Finally, there are two utility classes that handle network connections and PIM
access. The whole application consists of 13 small classes.

We start with specifying possible screens and screen transitions of our midlet.
As it turns out this is the more difficult part and also one that exhibits the biggest
problems with accurate specification of the navigation graph in JML. Later we
deal with the calls to sensitive operations.

Screen State To specify the navigation graph accurately we need to keep track
of screen changes in our midlet. For this we use the current instance field of
the Display object associated with our midlet. A suitable invariant enforces the
limit on the set of possible screens, as follows:

public class QuizMidlet extends MIDlet {

private /*@ spec_public non_null @*/ Display display;

private /*@ spec_public non_null @*/ MainMenu mainMenu;

/*@ invariant display.current == mainMenu.list ||

display.current == About.about.alert ||

display.current == Options.opts.form ...; @*/

However, we quickly run into problems with completing this invariant, because
for every screen – i.e. Displayable – the application uses we need some program
variable (like mainMenu.list) to refer to it. Such variables do not always exist.
Some objects of type Displayable are created on the fly, and cannot be referred

Midlet Navigation Graphs in JML 9

to from the class QuizMidlet. For example, this is the case for the FinalScore
screen in the game, which is created locally in the MainMenu class:

public void quizFinished() {

int score = currentGame.getScore(); ...

FinalScore finalScore = new FinalScore(midlet, score);

finalScore.show(getDisplayable());

}

The finalScore object, the screen that displays the score, is only visible locally
in the quizFinished method and it cannot be referred to in a global midlet
invariant. There are other examples of such locally created displayables in the
midlet code.

To solve this problem we turn to static ghost variables. Although the prob-
lematic displayable objects are created locally, there is only one object of a given
kind created and possibly active at a time. So we simply store such locally cre-
ated displayable object in a static ghost variable. Since we can make the static
variable public it will be in scope for all our specifications. The fact that it is
static lets us make sure that we keep track of only the most recently (and thus
current) created displayable object of a given type, and also that access to this
ghost variable is object reference independent. For the FinalScore class the
relevant annotations are the following:

public class FinalScore implements CommandListener {

//@ public static ghost Alert displayable;

public void show(Displayable next) { ...

Alert alert = new Alert("Final Scores");

//@ set FinalScore.displayable = alert;

alert.setTimeout(Alert.FOREVER); ...

midlet.getDisplay().setCurrent(alert);

}

Then our invariant can refer to the FinalScore.displayable field:

/*@ invariant ... display.current == Options.opts.form ||

display.current == FinalScore.displayable || ... ; @*/

However, this solution brings up another problem. The visible state seman-
tics of invariants requires all invariants of all objects to hold in all visible states
(i.e. all pre- and post-states of all method calls) during the execution of our
midlet. This obviously does not hold in the code above. Our invariant is broken
in all the states between the state where FinalScore.displayable is set and
the state when the display is updated by invoking setCurrent. In these inter-
mediate states display.current may point to a reference that is not stored in
FinalScore.displayable anymore.

A (standard) trick we use to solve this problem is introducing a global boolean
guard, Display.displayUpdated, to switch invariants on and off at appropriate
points, as shown below.

10 W. Mostowski and E. Poll

public class Display {

//@ public static ghost boolean displayUpdated;

//@ ensures current == nextDisplayable && preAlert == null;

//@ ensures Display.displayUpdated;

//@ assignable current, preAlert, Display.displayUpdated;

public void setCurrent(/*@non_null@*/ Displayable nextDisplayable); }

/*@ invariant Display.displayUpdated ==>

display.current == Options.opts.form ||

display.current == FinalScore.displayable || ...; @*/

By setting Display.displayUpdated to false we can temporarily ‘switch off’
the invariant. The specification of setCurrent ensures that the guard is re-
established, so that the invariant has to hold after every call to setCurrent.

Screen Transitions The invariant above suffices to limit the set of screens
of a given midlet. In the next step we need to specify when and how screen
transitions happen. In general, this is a very difficult problem: midlets are con-
current applications and screens can be changed by the J2ME environment at
any time without user interaction. A notable example of this is an incoming
call on a mobile phone, or simply midlet environment warning screens, e.g. to
confirm sensitive operations. Note that we have already skipped such screens in
the specifications above, and in the navigation graph too. The non-deterministic
character of such screens would make the graph and the specification unneces-
sarily complex. Furthermore, we are interested in verifying the application itself
rather than the whole environment it runs in.

Apart from the cases mentioned above, the midlet screen transitions are
triggered by user input and actions. All user actions are handled by different
implementations of the commandAction method. This is where we add anno-
tations to limit the possible screen changes. The precondition limits the set of
commands that can be invoked on this screen, the postcondition describes how
the FinalScore screen will change after processing the command:

//@ requires c==cmd_yes || c==cmd_no;

//@ requires next == midlet.mainMenu.list;

//@ ensures c==cmd_no ==> midlet.display.current == next;

//@ ensures c==cmd_yes ==>

midlet.display.current == SendScores.displayable;

//@ assignable ...;

public void commandAction(Command c, Displayable d) {

if (c == cmd_no) {

midlet.getDisplay().setCurrent(next); }

else if (c == cmd_yes) {

SendScores sendScores = new SendScores(midlet);

sendScores.show(score, next); }

}

Midlet Navigation Graphs in JML 11

Sensitive Operations In the last step we limit the sensitive operations our
midlet performs. For any method that ultimately calls down to one of these
operations we need to add a contract for the associated ghost variable that, as
described at the end of Sect. 4.1, tracks the number of invocations.

//@ ensures Connector.openCount == \old(Connector.openCount);

public void commandAction(Command c, Displayable d) { ... }

Then we allow the sensitive operations to be performed by the implementations
of the commandAction that correspond to transitions in the graph:

public class SendScores {

//@ ensures c == cmd_ok ==>

MessageConnection.smsSent <= \old(MessageConnection.smsSent) + 1;

//@ assignable MessageConnection.smsSent, ...;

public void commandAction(Command c, Displayable d) {

... else if (c == cmd_ok) {

WaitAlert.getInstance().show(midlet, Consts.SENDING_RESULT);

String s = numberField.getString();

sendSMS(s); ... }

}

}

A similar approach is used to limit access to personal data (e.g. the phone book)
in the MIDP environment.

If properties are expressed in postconditions, we have to consider the issue
of non-termination. Verification would have to be done using total correctness
to ensure that, say, limits on the number of SMS sent are not broken in non-
terminating executions of a method. Still, for commandAction methods which
do not have the MessageConnection.smsSent in their assignable clause, the
contract does rule out that any SMS are sent in non-terminating executions.

5 Specification and Verification Issues

During the verification of this case study with ESC/Java2 two practical issues
surfaced. The first one has to do with singleton pattern classes, the second one
with visible state semantics of invariants.

Singleton Objects Many classes in midlet code study and in the MIDP API
follow the singleton pattern [8], i.e. only one instance of these classes is ever cre-
ated. Knowing that a class is only ever going to have a single instance could in
principle simplify reasoning. However, specifying that a class follows the single-
ton pattern in JML, and verifying it with ESC/Java2, can be a bit clumsy. E.g.,
specifying that Options is a singleton class could be specified by an invariant

private /*@ spec_public @*/ static Options instance = null;

//@ invariant this == instance;

12 W. Mostowski and E. Poll

saying that all Options objects are equal to the static instance. However, this
invariant is typically too strong, given the visible state semantics of invariants.
If the singleton object is created by a static get-method as is done in the code,
e.g.

//@ ensures \result != null && \result == instance;

//@ assignable Options.instance;

public static Options getInstance() {

if (instance == null) instance = new Options();

return instance;

}

then the constructor call new Options() by itself does not establish the invari-
ant, as it will not hold till after the assignment to instance.

A possible solution is to make the constructor a helper:

public /*@ helper @*/ Options() {...}

effectively telling ESC/Java2 to inline calls to the constructor, but it turns out
that ESC/Java2 reasons in a rather unpredictable way when a private construc-
tor is declared as helper.

In the end we let ESC/Java2 complain about the possibly unsatisfied this
== instance invariant after a call to new Options() in getInstance() and
suppressed this warning with the @nowarn directive.

It would be nice to have a standard, e.g. following ideas from [19], simple way
of specifying singleton behaviour in JML, so that no necessary complications and
side conditions are introduced during reasoning.

Visible State Semantics of Invariants JML uses the visible state semantics
for object invariants [13]. This means that all invariants of all objects of all types
have to hold in all visible states, which includes all post-states of constructor calls
and all pre- and post-states of method calls5.

This semantics makes verification very hard, and non-modular6: when verify-
ing a method in one class one should take into consideration breaking invariants
of other objects, of any class, that happen to be allocated. To enable modular
verification, ESC/Java [7] uses a slightly weaker and potentially unsound seman-
tics. ESC/Java2 [11] uses the same semantics, but now includes features to warn
users about potential problems [12, 10].

Working on the case study, this generated several false positives, where the
code was incorrectly deemed to be correct. The root of the problem was that
when checking code that calls API methods, ESC/Java2 will assume that these
API methods preserve all invariants. When checking the implementation of these
API methods the tool would probably warn that they do not preserve invariants,

5 Except those constructors and methods designated as helper’s
6 However, the semantics is sound, unlike more simple-minded semantics for object

invariants!

Midlet Navigation Graphs in JML 13

but as we are only ever checking the midlet code – i.e. client code of the API –
and never implementation of this API, this issue can easily go undetected.

The example below illustrates this:

public class APIClass {

//@ requires array.length == 1;

//@ ensures array[0] == v; assignable array[0];

public static void setArray(/*@ non_null @*/ int[] array, int v);

}

public class ClientClass {

private /*@ non_null @*/ int[] values = {1};

//@ invariant values[0] == 1 && values.length == 1;

public void modifyArray() { APIClass.setArray(values, 2); }

}

Checking the modifyArray method with ESC/Java2 does not show any prob-
lems. However, it is clear that a call to APIClass.setArray breaks the class
invariant for ClientClass. However, the tool assumes that the API class will
re-establish all invariants.

Running the tool on an implementation of the setArray method would prob-
ably reveal that the invariant of ClientClass might be broken, but typically
one treats the API as a black box and one does not look at implementations
of it. Unfortunately the inconsistency warning of ESC/Java2 [12, 10] does not
catch these situations.

Sound and modular verification techniques that cope with class invariants
do exist [6], and are for instance used in Spec# [1]. Some verification tools, like
KeY [3], allow a very flexible invariant semantics; there it is up to the user to
choose which class (or even method) is responsible for a given invariant, but that
means soundness is up to the user too.

6 Evaluation and Discussion

An issue often overlooked in research on program verification is coming up with
interesting properties to verify. We have shown a way to specify midlet navigation
graphs by means of JML annotations. This required some generic annotation of
the MIDP API, which provides a ‘ghost state’ to talk about the relevant platform
infrastructure – ghost fields that track which Displayable is being shown, and
hence which CommandListener is active, etc. – and contracts for some API calls
that describe their effect on this ghost state. An individual midlet can then be
annotated to express conformance to a midlet navigation graph, by introducing
an invariant that restricts the possible Displayables that can be shown, and
contracts for commandAction methods that specify the screen transitions that are
allowed. Additional restrictions on security-sensitive API calls, saying in which
states these may occurs, can be expressed if API specifications for these methods
are added to track their usage.

14 W. Mostowski and E. Poll

The translation of a midlet navigation graph to JML, which we did by hand,
could be automated, as done for state diagrams by the AutoJML tool [9]. An
alternative to coding up the midlet navigation graph in JML pre- and postcon-
ditions, as we have done, would be to use special specification constructs for
temporal properties [21] or CSP-style contraints on method sequences [16].

Our approach has been shown to work on a non-trivial (albeit still very
small) midlet, the Mobius Quiz game demonstrator, which consists of 13 classes
and 1350 lines of code, which was then verified using ESC/Java2. Once the
midlet navigation graph is expressed by JML annotations, further annotations
of the midlet are needed for the verification to go through, e.g. to rule out Null-
PointerExceptions, etc. This further annotation took an effort in the order of
days.

As explained in Sect. 4.2, a technical complication is any use of dynamically
created Displayable objects in midlet code, as additional static (ghost) fields
have to be introduced to refer to these objects in specifications.

As discussed in Sect. 5, the main complication is the semantics of (ob-
ject) invariants. JML’s visible state semantics, which ESC/Java2 tries to check
(ESC/Java2 is not guaranteed to be sound in this respect), is often stronger than
we really need or want. The need for more flexible ways for dealing with invari-
ants is of course widely recognised. Spec# [1] provides one such an approach,
and alternatives are systematically compared in [6].

It is very important that the API specifications used are not too rich (i.e.
too expressive) and only specify the aspects relevant for the navigation graphs.
Otherwise the job of annotating and verifying the midlet can become much more
complicated. Also, as discussed in Sect. 5, Singleton classes occur often in the
MIDP API and in typical midlets. Specifying this in JML is a bit clumsy, and
(hence) verification with ESC/Java2 seems more complicated than it needs to
be. Better ways of dealing with this (possibly by additional primitives in JML)
could simplify matters substantially.

A major caveat in our work is that we ignore concurrency. However, the con-
currency patterns used in midlets are very simple – essentially, implementations
of commandAction sometimes start up a worker thread to hand back control to
the GUI as soon as possible – so might well be verifiable using a simple approach.

Midlet navigation graphs express safety properties of code, constraining the
possible behaviour. This means that crashing of a midlet, say with a Null-
PointerException, can never violate the policy expressed by a navigation graph.
This might allow verification to be simplified further: if we can guarantee that
code never catches say NullPointerExceptions – which could be checked using
a simple static analysis – then in the verification we could safely ignore the
possibility of NullPointerExceptions. This is supported by some verification
tools, e.g. the KeY tool [3] offers an option for such simplified reasoning.

PCC The overall goal of the EU project Mobius, in which this research was
carried out, was to provide a Proof-Carrying Code (PCC) framework for Java on
mobile devices [2]. PCC [17] involves (i) some security policy, (ii) some untrusted

Midlet Navigation Graphs in JML 15

code, and (iii) a proof that this code obeys the policy that can be checked.
To ultimately use our approach in a PCC scenario, it has to be possible to
distinguish the JML annotations expressing the desired security policy (i.e. the
navigation graph) from any additional JML annotations that are needed for the
verification to go through. For the former we must check that these really express
the security policy we want. For the latter we do not: we don’t care what these
are, as long as the proof goes through.

It seems possible to make this distinction here. However, the JML annotations
expressing the desired security policy – the navigation graph – do have to refer
to program variables (namely the Displayables that the program uses), so we
cannot quite have these annotations – our “policy” – completely independent of
the midlet code.

Also, a malicious midlet could contain specification statements (set-state-
ments) that affect the values of the ghost state used in the API specification,
making any certification meaningless; it would have to be checked that there are
no such statements in the midlet code.

Of course, to then verify and provide PCC certificates for midlets, instead of
using ESC/Java2, one should use a sound verification approach that can provide
proofs (certificates) [2].

Acknowledgements This work is supported by the MOBIUS project in the
Information Society Technologies programme of the European Commission and
the CHARTER project in the ARTEMIS Embedded Computing Systems Initia-
tive. We would also like to thank the anonymous reviewers for their insights.

References

1. M. Barnett, K. Leino, and W. Schulte. The Spec# programming system: An
overview. In CASSIS’04, volume 3362 of LNCS, pages 151–171. Springer, 2004.

2. G. Barthe, P. Crégut, B. Grégoire, T. Jensen, and D. Pichardie. The MOBIUS
proof carrying code infrastructure. In FMCO’07, number 5382 in LNCS, pages
1–24. Springer, 2008.

3. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNAI. Springer, 2007.

4. P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond assertions: Advanced
specification and verification with JML and ESC/Java2. In FMCO’05, volume
4111 of LNCS, pages 342–363. Springer, 2006.

5. P. Crégut. Extracting control from data: User interfaces of MIDP applications.
In Trustworthy Global Computing, volume 4912 of LNCS, pages 41–56. Springer,
2008.

6. S. Drossopoulou, A. Francalanza, P. Müller, and A. Summers. A unified framework
for verification techniques for object invariants. In ECOOP, volume 5142 of LNCS,
pages 412–437. Springer, 2008.

7. C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R. Stata. Extended
static checking for Java. In PLDI’2002, pages 234–245. ACM, 2002.

8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison
Wesley, 1999.

16 W. Mostowski and E. Poll

9. E. Hubbers and M. Oostdijk. Generating JML specifications from UML state
diagrams. In Forum on Specification & Design Languages (FDL’03), pages 263–
273. ECSI, 2003.

10. M. Janota, R. Grigore, and M. Moskal. Reachability analysis for annotated code.
In SAVCBS, pages 23–30. ACM, 2007.

11. J. Kiniry and D. Cok. ESC/Java2: Uniting ESC/Java and JML. In CASSIS’04,
volume 3362 of LNCS, pages 108–128. Springer, 2004.

12. J. Kiniry, A. E. Morkan, and B. Denby. Soundness and completeness warnings in
ESC/Java2. In SAVCBS’06, pages 19–24. ACM, 2006.

13. G. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry,
and P. Chalin. JML reference manual. Available from http://www.jmlspecs.org,
2003-2007.

14. G. T. Leavens, A. L. Baker, and C. Ruby. JML: A Notation for Detailed Design.
Kluwer Academic Publishers, 1999.

15. Mobius. Deliverable D5.1 – Selection of case studies. Mobius, http://mobius.
inria.fr, 2005.

16. M. Möller, E. Olderog, H. Rasch, and H. Wehrheim. Linking CSP-OZ with UML
and Java: A case study. In Integrated Formal Methods, volume 2999 of LNCS,
pages 267–286. Springer, 2004.

17. G. C. Necula. Proof-carrying code. In POPL, pages 106–119. ACM, 1997.
18. D. Pichardie. Bicolano: a Java bytecode semantics in Coq. http://mobius.inria.

fr/twiki/bin/view/Bicolano, 2006.
19. C. Pierik, D. Clarke, and F. S. de Boer. Creational invariants. In ECOOP Workshop

on Formal Techniques for Java-like Programs (FTfJP’2004), 2004.
20. The Java Verified Program. Unified Testing Criteria for Java technology-based

applications for mobile devices, version 3.0, 2009.
21. K. Trentelman and M. Huisman. Extending JML specifications with temporal

logic. In AMAST’2002, volume 2422 of LNCS, pages 334 – 348. Springer, 2002.

