
	

 Halmstad University, PO Box 823, SE-301 18 Halmstad, Sweden
Visiting address: Kristian IV:s väg 3, Phone +46 35 16 71 00, registrator@hh.se

	

Centre	
 for	
 Research	
 on	
 Embedded	
 Systems	
 (CERES)	

Embedded	
 Systems	
 Programming	

Model	
 Examination,	
 October	
 13,	
 2015	

Instructions. No reading material, computer or calculator is allowed into the examination; you may only
use a paper-based dictionary. The exam comprises 5 questions in 2 pages and will take 3 hours. Before
starting to answer the questions, please make sure that your copy is properly printed. Good luck!

Question 1 (20/100 points). Explain how reading from memory differs from reading from memory mapped
IO (one difference suffices, (5 points), what kind of challenge arises from the differences (mention two
challenges, (10 points) and how these challenges can be overcome (mention at least one programming
technique, (5 points).

Question 2 (20/100 points). Consider the following implementation of a program reading a temperature
and a pressure sensor, calculating new goal temperature and pressure values based on the values read
from the sensors and controlling a thermostat to reach the goal values.
	

int	
 main()	
 {	

	
 	
 int	
 temp,	
 goal_temp;	

	
 	
 int	
 pres,	
 goal_pres;	

	
 	
 while	
 (1)	
 {	

	
 	
 	
 	
 	
 	
 if	
 (New_Temp)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 temp	
 =	
 Temp_Data;	

	
 	
 	
 	
 	
 	
 	
 	
 calculate_goal_temp(temp,	
 &goal_temp);	
 	
 	

	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 if	
 (New_Pres)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 pres	
 =	
 Temp_Pres;	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 calculate_goal_pres(pres,	
 &goal_pres);	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 control_thermostat(goal_temp,	
 goal_pres);	
 	

	
 	
 }	

	
 return	
 ERR_CODE;	

}	

	

Criticize	
 and	
 explain	
 can	
 go	
 wrong	
 with	
 the	
 above-­‐given	
 program	
 (10	
 points).	
 	

Re-­‐write	
 this	
 into	
 a	
 program	
 that	
 does	
 not	
 suffer	
 from	
 the	
 problems	
 you	
 noticed	
 (10	
 points).	

	

	

	

	

	

	

	

	

	

 Halmstad University, PO Box 823, SE-301 18 Halmstad, Sweden
Visiting address: Kristian IV:s väg 3, Phone +46 35 16 71 00, registrator@hh.se

Question 3 (40/100 points). Consider the following specification of 3 periodic tasks.

Task Execution Time Period = Deadline
A 22 50
B 5 20
C 3 10

3.a. Is this set of tasks schedulable using Rate Monotonic scheduling? Motivate your answer (for your
information: 2(1/2) = 1.4 and 2(1/3) = 1.3. (10 points)

3.b. Show the scheduling of the first instance of A with the first three instances of B and the first 5
instances of C, using both the Rate Monotonic and the Earliest Deadline First algorithm. Assume that the
first instance of all three tasks arrive simultaneously. (15 points)

3.c. Assume that we modify the task set by adding a new task and also relaxing the assumption of Period
= Deadline, as follows.

Task Execution Time Period Deadline
A 22 50 20
B 5 20 15
C 2 10 5
D 3 10 10

Analyze whether this task set is schedulable using deadline monotonic scheduling. (15 points)

Question 4 (10/100 points). Assume that you have two tasks Ta1 and Ta2 with the periods T1 and T2,
respectively such that T1 < T2. Moreover assume that C1 and C2 are their worst-case execution times and
D1 = T1 and D2 = T2 are their deadlines. Show that the worst response time for Ta2 happens when Ta1 and
Ta2 arrive at the same time. How many times an instance of Ta2 should be preempted in such a case? (10
points)

Question 5 (10/100 points). Explain how an Android application can spawn a new thread and how the
worker thread can interact with the activity.

 Halmstad University, PO Box 823, SE-301 18 Halmstad, Sweden
Visiting address: Kristian IV:s väg 3, Phone +46 35 16 71 00, registrator@hh.se

Answer 1. Reading from memory usually results in reading a useful value stored in the memory location
while reading memory-mapped IO does not necessarily result in a useful value. The challenges are:

- Dealing with possibly different rates for different sensor data,
- Not wasting CPU time while waiting for useful data to arrive, and
- Frequently checking for new values while performing time-consuming calculations.

Using interrupt-driven input rather than busy waiting and using concurrent threads for time-consuming
calculations are two techniques to overcome these issues.

Answer 2. The problem is that the calculation of the goal values may take long and hence we may miss a
new piece of data arriving at a sensor.

To avoid this, we should perform these calculations in concurrent threads. (Of course the following solution
has the problem of busy waiting and wasting CPU time, but this is another issue not asked for in this
question.)

int	
 temp,	
 goal_temp;	

int	
 pres,	
 goal_pres;	

void temp_sense() {
	
 	
 	
 while	
 (1)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 (New_Temp)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 temp	
 =	
 Temp_Data;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 calculate_goal_temp(temp,	
 &goal_temp);	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 }	

 }

void pres_sense() {
	
 	
 	
 while	
 (1)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 (New_Pres)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 pres	
 =	
 Temp_Pres;	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 calculate_goal_pres(pres,	
 &goal_pres);	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 }	

 }
	

int	
 main()	
 {	

	
 	
 	
 goal_temp	
 =	
 Default_Temp;	

	
 	
 	
 goal_pres	
 =	
 Default_Pres;	

	
 	
 	
 spawn(temp_sense,	
 0);	
 	

	
 	
 	
 spawn(pres_sense,	
 0);	
 	

	
 	
 	
 while	
 (1)	
 {	

	
 	
 	
 	
 	
 	
 control_thermostat(goal_temp,	
 goal_pres);	
 	

	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 return	
 ERR_CODE;	

}	

	

 Halmstad University, PO Box 823, SE-301 18 Halmstad, Sweden
Visiting address: Kristian IV:s väg 3, Phone +46 35 16 71 00, registrator@hh.se

Answer 3.

3.a. The utilization is calculated using the following expression:

U = (22/50) + (5/20) + (3/10) = .99

Since utilization is greater than 3 (2(1/3) -1) = .78, the task set is most likely not schedulable using rate
monotonic scheduling.

3.b.

 Halmstad University, PO Box 823, SE-301 18 Halmstad, Sweden
Visiting address: Kristian IV:s väg 3, Phone +46 35 16 71 00, registrator@hh.se

3.c.

The first step is to sort the tasks by their deadlines:

Number Task Execution Time Period Deadline
1 C 2 10 5
2 D 3 10 10
3 B 5 20 15
4 A 22 50 30

Then, one has to perform the following check for each I <= 4:

𝐶! +
𝐷!
𝑇!

!!!

!!!

𝐶! ≤ 𝐷!

For task 1:

2 + 0 <= 5, pass

For task 2:

3 + [10/10]2 = 5 < = 10, pass

For task 3:

5 + [15/10]3 + [15/10]2 = 5 + 6 + 4 < = 15, pass

For task 4:

22 + [30/20]5 + [30/10]3 + [30/10]2 = 47 < = 30, fail

Hence, the task set is probably not schedulable using deadline monotonic.

Answer 4.

The maximum completion time for Ta2 is T2, when it has to wait till its deadline.
In such a case, |_ T2/ T1 _| instances of Ta1 may preempt the instance of Ta2.

Answer 5. The notation to spawn a new thread is given below where

new	
 Thread(new	
 Runnable()	
 {	

	
 	
 	
 public	
 void	
 run()	
 {	
 	

	
 	
 	
 	
 	
 	
 	
 …	

	
 	
 	
 	
 }	

}).start();	

The worker thread can interact with the main activity by posting a runnable that will be run by the main
thread. An example is given below.

 Halmstad University, PO Box 823, SE-301 18 Halmstad, Sweden
Visiting address: Kristian IV:s väg 3, Phone +46 35 16 71 00, registrator@hh.se

showtext.post(new	
 Runnable()	
 {	

	
 	
 	
 public	
 void	
 run()	
 {	

	
 	
 	
 	
 	
 	
 	
 showtext.setText("blah	
 blah…”);	

	
 	
 	
 	
 }	

	
 	
 });	

