LBT for
Procedural and Reactive Systems

Part 4: Procedural Systems

Karl Meinke,
karim@kth.se
KTH Rovyal Institute of Technology Stockholm

0. Overview of Talk

1. Introduction and Motivation
2. Technical Approach

3. Benchmarking Results

4. Conclusions

Based on:
K. Meinke, Automated Black-Box Testing of Functional Correctness using
Function Approximation, in: Proc ISSTA 2004

K. Meinke and F. Niu, A Learning-Based Approach to Unit Testing of Numerical
Software, in Proc. ICTSS 2010

1.2. LBT for Procedural Code

SUT-Req pass/fail

.—-""'——-‘——-I

. ‘:‘x“?\““g ‘ n-dimensional
"W S 2 - function-model
S V

Learner

Q: How would MBT cope with this scenario?

1.3. LBT for Numerical Codes

Requirements Language — Hoare logic over

— first-order logic over real-closed fields

Models

— non-gridded n-dimensional piecewise polynomials of low
degree (d=1,2,3) (= “n-wise testing)

Model checker

— Hoon-Collins CAD algorithm, a satisfiability algorithm
(Mathematica)

Learning algorithm
— local polynomial interpolation

1.4 Why Numerical Code?

M.G. Cox, P.M. Harris, E.G. Johnson, P.D. Kenward, and G.I. Parkin. Testing
the numerical correctness of software. Technical Report CMSC 34/04,
National Physical Laboratory, Teddington, January 2004.

Showed numerical errors in NAG, IMSL, Microsoft Excel, Lab-
VIEW and Matlab,

Numerical specifications exist!
Insight into other cases (e.g. integers)
Data-oriented testing

The algorithms and models fit together extremely well!

Technical Approach

2.1 Models of Numerical Code

e Assume numerical code can be modeled as a
function f: ™ — Q"

* (ignores non-termination)

* Decompose into n co-ordinate functions
ffrAM—=NR, i=1,.,n

2.2 Medial Spheres Approximation

Decompose f; : i™ — Jinto piecewise polynomial
approximations f1,..., f¥

over m-dimensional spheres S, ,..., S, with centres c,,...,
C,, and radiiry,..., r,

Looks like Weierstrass Theorem on polynomial
approximation.

Piecewise methods tolerate discontinuities.

Correct approximation theory is medial sphere
approximation (c.f. solid modeling)

2.3 Approximation Support

(d+1)™ points in S needed to uniquely determine an
m-dimensional degree d interpolating polynomial

p(S)

Xy, f(x1) 5 - cor Xde1) 7 f(X(d+1))

X1, s Xg41)" are the support for interpolant p(S)
Point can be randomly placed in S.
p(S) = 0 tends to infinity outside S,

— 50 no extrapolation!

Spheres S, can (and should) overlap for smoothness

2.4 Choosing Support Sets

A gridded approach to data sampling doesn’t
work

Exponential blowup in grid-point number with
dimension size (m)

Can’t sample off-grid so might miss bugs
Need a non-gridded approach

2.5 Non-gridded Piecewise Models

-~ ot -
N .
*. Overlapping Area
\

Two overlapping 2-dimensional
local models (cubics)

2.6 Model Refinement

* Every data point c becomes the centre of a
sphere S,

* Members of S_ are the (d+1)™ -1 nearest
members.

* As new points are added globally, spheres
tend to shrink, improving their approximation
accuracy.

2.7 Model Convergence

Measure convergence of each sphere locally
as an integral

fSnew p(SoId) o fSnew p(Snew)

Compute this by a quick and dirty Monte Carlo
approximation

Choose least converged sphere as a breadth
first search heuristic - minimise uncertainty

2.8 Requirements Modeling

Use Hoare triples pre{code }post

pre and post are arbitrary first-order formulas
(quantifiable!) over language L(:R) of real-
closed fields.

Tarski’s Theorem “Th g, (1) is decidable”
Hoon-Collins CAD algorithm

Cylindric algebraic decomposition

Doubly exponential time algorithm!
Solvable for 6-8 free variables in practise.

2.9(a) What to solve?

* pre contains invars X, ,..., X

m
’

* post contains x, ,..., X, and outvars X’ ,..., X’

e X" is post execution state of x, e.g.
x 2 0.0 {Newton-code} | x'*x’ —x|<¢

Replace x’. by p(S') (X, ,..., X..) in post, e.g.
x 2 0.0 {Newton-code} | p(S') (x) *p(S') (x) —xI<¢
for each sphere S'for co-ordinate f.

2.9(b) What to Solve?

Solve for x, ,..., x. € J1 the formula

pre(X, ,..., X,,) &
D o 2> (2 S TR e 1] 52

= POSt(Xy ..., Xy P(S) (Xq ey Xpn) 5 ooy PS") (Xq 5eery X))

We call CAD on this formula, and can ask for
several solutions to x, , ..., X,,..

Use k-wise testing for large m, where k < m

Part 3: Benchmarking Results
3.1 How to evaluate?

Decided to benchmark against random
testing.

Small numerical algorithms are VERY fragile
against mutations.

Small mutation has large destructive effect.

Built a random use-case generator
— Randomly generated numerical functions
— Associated formal specifications

3.4. Specific Case Studies

e.g. Bubblesort: LBT is 10X faster than random

Model of
unmutated code

Model of
mutated code

3000 —
2500 —
2000 —
1500 f
1000

500 -

3.2. Statistical Evaluation

I I I
! ! !
[| [[
[[[
[[[|
[[[[
[[[[
[[[[
[[[
[[[
[[[[
[[[
	!	
! ! ! !		
[[[[
[[\ 7 1 [[
!	mutation 71 mutatidn ! !	
	\Y A	
! L N T 0 T . B B
50 100 150 200

Randomly generated
and mutated SUT

equations

inequalities

Automatically generated
pre and postconditions

3.3. Statistical Benchmarking
against Random TCG

. Equational spec.
Performance ratio IRT/LBT

4 . Inequational spec.
12
10

;

6

4

z

: T | Y I . 0
001 0.1 1 0 100 Error size (%)

4. Conclusions

Computationally tractable case
Good example of the LBT paradigm

Interpolation “works” as inductive inference,
especially due to continuity over Qh

Convincing benchmark results
Provides insight into data-oriented LBT

Used these methods to learn hybrid automata
Open Questions
N and Z are a whole different ball-game ...

Thanks to the HSST Organisors!

