

Java Card Applet FirewallJava Card Applet Firewall

Exploration and ExploitationExploration and Exploitation

Wojciech Mostowski and Erik Poll
Digital Security

Radboud University Nijmegen
The Netherlands

http://www.cs.ru.nl/~{woj,erikpoll}/

Study of the Java Card firewall mechanism in connection
with research on Java Card malicious code vulnerabilities:

Firewall specification study

Firewall compliance tests

Shareable Interface Object as a way to introduce type
confusion on the card

Type confusion + firewall weakness  AID exploit

Experimental studies on 8 cards (4 producers)

IntroductionIntroduction

Specifications assume type correctness, i.e. bytecode is
type correct.

Not always clear at first sight – cause of implementation
mistakes

Followed carefully to construct a compliance test

Smaller and bigger noncompliance:

Smaller: security is preserved, but the specification
not followed to the letter

Bigger: possible security (or at least robustness)
problems

Java Card 3.0 Classic Edition essentially the same as for
2.2.X

Java Card SpecificationsJava Card Specifications

Runtime protection mechanism

Provides applet data separation: each reference belongs
and is confined to a context (applet), foreign reference is
not accessible, including type information

Provides applet data sharing: a reference can be
explicitly tagged as shareable – declared methods
accessible to anyone

The Java Card Runtime Environment has root privilege:
can read and write anything

JCRE data not accessible to anyone, unless it is special,
e.g. JCRE entry points

Again: specs assume type correctness – can we exploit
the firewall with broken bytecode?

Java Card FirewallJava Card Firewall

The firewall compliance test:

Test all firewall features / requirements one by one

Only features testable from the applet level are tested

Give warnings in human readable form

A few ideas borrowed from Riscure's JCWorkBench, a few
ideas transferred to JCWorkBench

Out of 8 cards 5 were testable, the rest refused to install
code using shareable interfaces (probable cause:
bytecode verifier, loader parameters)

Java Card Firewall TestJava Card Firewall Test

Query the Shareable interface status:

Noncompliance #1Noncompliance #1

if (o instanceof Shareable) ...

Query the Shareable interface status:

Specification on instanceof

o belongs to other context and is not shareable 
SecurityException

Noncompliance #1Noncompliance #1

if (o instanceof Shareable) ...

Query the Shareable interface status:

Specification on instanceof

o belongs to other context and is not shareable 
SecurityException

Cards

Only one card non-compliant: it says false.

Noncompliance #1Noncompliance #1

if (o instanceof Shareable) ...

Query the Shareable interface status:

Specification on instanceof

o belongs to other context and is not shareable 
SecurityException

Cards

Only one card non-compliant: it says false.

Severity

None: the overall check results are equivalent

Noncompliance #1Noncompliance #1

if (o instanceof Shareable) ...

Privileged API methods (system owned AID instance):

Noncompliance #2Noncompliance #2

public boolean equals(Object o);

Privileged API methods (system owned AID instance):

Required checks

1. firewall check: o is accessible to the calling context

2. o is an AID? if not return false

3. compare the AID bytes: return true or false

Noncompliance #2Noncompliance #2

public boolean equals(Object o);

Privileged API methods (system owned AID instance):

Required checks

1. firewall check: o is accessible to the calling context

2. o is an AID? if not return false

3. compare the AID bytes: return true or false

Cards

Two cards do 2-1-3, others 1-2-3

Noncompliance #2Noncompliance #2

public boolean equals(Object o);

Privileged API methods (system owned AID instance):

Required checks

1. firewall check: o is accessible to the calling context

2. o is an AID? if not return false

3. compare the AID bytes: return true or false

Cards

Two cards do 2-1-3, others 1-2-3

Severity

Very Mild: 2-1-3 can reveal that o is an AID

Noncompliance #2Noncompliance #2

public boolean equals(Object o);

Accessing an array belonging to another context:

Noncompliance #3Noncompliance #3

a[i] = x;

Accessing an array belonging to another context:

Specification

Should result in SecurityException

Noncompliance #3Noncompliance #3

a[i] = x;

Accessing an array belonging to another context:

Specification

Should result in SecurityException

Cards

One card reports SystemException

Noncompliance #3Noncompliance #3

a[i] = x;

Accessing an array belonging to another context:

Specification

Should result in SecurityException

Cards

One card reports SystemException

Severity

None: the overall result is the same

Noncompliance #3Noncompliance #3

a[i] = x;

Creation of and accessing clear-on-deselect arrays

Noncompliance #4Noncompliance #4

Creation of and accessing clear-on-deselect arrays

Specification

Forbidden when the context is not the currently selected
applet context

Noncompliance #4Noncompliance #4

Creation of and accessing clear-on-deselect arrays

Specification

Forbidden when the context is not the currently selected
applet context

Cards

One card overdoes this: creation of clear-on-reset arrays
is also not possible, while only clear-on-deselect should
not be

Noncompliance #4Noncompliance #4

Creation of and accessing clear-on-deselect arrays

Specification

Forbidden when the context is not the currently selected
applet context

Cards

One card overdoes this: creation of clear-on-reset arrays
is also not possible, while only clear-on-deselect should
not be

Severity

Very mild: limits the functionality of the card

Noncompliance #4Noncompliance #4

Non-multiselectable applets and SIOs

Noncompliance #5Noncompliance #5

Non-multiselectable applets and SIOs

Specification

Access to SIO is forbidden if the server is not
multiselectable and is active on another logical channel

Noncompliance #5Noncompliance #5

Non-multiselectable applets and SIOs

Specification

Access to SIO is forbidden if the server is not
multiselectable and is active on another logical channel

Cards

One card ignores this: access always granted

Noncompliance #5Noncompliance #5

Non-multiselectable applets and SIOs

Specification

Access to SIO is forbidden if the server is not
multiselectable and is active on another logical channel

Cards

One card ignores this: access always granted

Severity

Semi serious: the applet has to keep track of its
selections by itself to prevent problems with multiple
access from outside

Noncompliance #5Noncompliance #5

Relates to multiselectable applets and clear-on-deselect
arrays

Unexplained SpecificationsUnexplained Specifications

Relates to multiselectable applets and clear-on-deselect
arrays

Spec: Rule X applies.

Unexplained SpecificationsUnexplained Specifications

Relates to multiselectable applets and clear-on-deselect
arrays

Spec: Rule X applies.

Spec: Rule Y applies (even if condition A is met).

Unexplained SpecificationsUnexplained Specifications

Relates to multiselectable applets and clear-on-deselect
arrays

Spec: Rule X applies.

Spec: Rule Y applies (even if condition A is met).

Problem: Seemingly condition A cannot possibly take place
in scenario Y, because rule X forbids this in the first place.

Unexplained SpecificationsUnexplained Specifications

Relates to multiselectable applets and clear-on-deselect
arrays

Spec: Rule X applies.

Spec: Rule Y applies (even if condition A is met).

Problem: Seemingly condition A cannot possibly take place
in scenario Y, because rule X forbids this in the first place.

Only very careful analysis reveals the other condition for A
to be met in scenario Y. But the short comment “(even if
condition A is met)” is not given a detailed explanation.

Unexplained SpecificationsUnexplained Specifications

Type Confusion via Shareable InterfacesType Confusion via Shareable Interfaces

Client ServerTypeA TypeA

Type Confusion via Shareable InterfacesType Confusion via Shareable Interfaces

Client ServerTypeA TypeATypeB

Client and server compiled and installed at different times

Change the definition of the shareable interface in the meantime

The loader does not catch such changes, BCV does, but then,
forbids SIOs altogether (Non-compliance #6?!)

Two interfaces  two types  type confusion

Type Confusion via Shareable InterfacesType Confusion via Shareable Interfaces

Client ServerTypeA TypeATypeB

Client and server compiled and installed at different times

Change the definition of the shareable interface in the meantime

The loader does not catch such changes, BCV does, but then,
forbids SIOs altogether (Non-compliance #6?!)

Two interfaces  two types  type confusion

Type Confusion via Shareable InterfacesType Confusion via Shareable Interfaces

Client ServerTypeA TypeA

Client thinks:

void service(TypeA a);

Server thinks:

void service(TypeB a);

TypeB

Whether a type confusion (introduced this or any other way) can be
exploited is another subject [CARDIS 2008].

The scenario:

Certain kind of a type attack has to be possible: direct
object access and reference switching

AID ExploitAID Exploit

public class AID {
 private byte[] aidBytes;
 ...

The scenario:

Certain kind of a type attack has to be possible: direct
object access and reference switching

The result:

Malicious applet can change these aidBytes references, and
hence change the applet AID registry in any way!

In turn real impersonation of an applet possible

AID ExploitAID Exploit

public class AID {
 private byte[] aidBytes;
 ...

The scenario:

Certain kind of a type attack has to be possible: direct
object access and reference switching

The result:

Malicious applet can change these aidBytes references, and
hence change the applet AID registry in any way!

In turn real impersonation of an applet possible

In reality subject to: BCV, code signing, runtime type checking,
etc. But, it was possible on two open cards!

Similar exploit allows to bypass firewall, but has limitations.

AID ExploitAID Exploit

public class AID {
 private byte[] aidBytes;
 ...

Confuse an object with an array:

An object

Direct Reference Manipulation DetailsDirect Reference Manipulation Details

public class TestClass {
Object ref = new Object();
short sVal = 10;

}
#fields ref sVal

Confuse an object with an array:

An object

An array

Direct Reference Manipulation DetailsDirect Reference Manipulation Details

public class TestClass {
Object ref = new Object();
short sVal = 10;

}

a.length: 2
a[0]: 0x09E0 // ref
a[1]: 0x000A // sVal

a.length a[0] a[1]

#fields ref sVal

Confuse an object with an array:

An object

An array

All reference values readable and writable directly, public access

Direct Reference Manipulation DetailsDirect Reference Manipulation Details

public class TestClass {
Object ref = new Object();
short sVal = 10;

}

a.length: 2
a[0]: 0x09E0 // ref
a[1]: 0x000A // sVal

a.length a[0] a[1]

#fields ref sVal

Specifications are not followed to the letter: implementations still
safe, but non-compliances question platform interoperability
(what is TCK for?)

Specifications (although correct) still leave a little bit to be
desired, Java Card 3.0 does not change the picture

Restrictive on-card BCV non-compliant?

The tricks and exploits are possible because of

insufficient protection mechanisms against malicious byte code

weak firewall design

Out of 8 cards tested:

4 are non-compliant (one vulnerable to AID exploit)

3 not fully tested (BCV forbids SIOs)

1 fully compliant, but vulnerable to AID exploit

Discussion and ConclusionDiscussion and Conclusion

Questions?

The EndThe End

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42

