Evaluation and Improvement of Test Suites

Rainer Niedermayr

CQSE GmbH, Garching b. Miinchen, Germany

niedermayr@cqgse.eu

1 Problem Context

Tests help to ensure software quality and can reveal faults before the software is shipped to
customers. Thereby they prevent and reduce failure follow-up costs. Test cases execute parts of
the system and compare the observed results with expected ones. They can either be automated
or manual.

Automated tests are implemented as executable code or described as scenarios in natural
language. An initial effort is necessary to create them and they need to be maintained, e.g. if
the specification or data structures of the software change. Apart from that, no human effort is
necessary to execute them repeatedly in a software development environment with continuous
integration.

Manual tests are carried out by humans. The testers usually have a test specification,
perform the described actions and verify the observed results against the expected ones. Some
effort is necessary to develop and maintain the test specification. Furthermore, each execution
is associated with considerable effort. The advantage of manual tests is that minor changes to
the software (eg. to the UI or to internal structures) do not require adjustments.

While most modern systems are tested automatically to a high degree, many systems are
still tested manually. Decades-old systems were not designed in a way that they can be tested
automatically and this cannot be changed without huge effort and risks. Moreover, some parts
of the software — especially graphical user interfaces (GUIs) and hardware interfaces — are
difficult to test automatically and would need a high maintenance effort.

2 Problem Description

Both automated and manual tests require a lot of effort and thus devour a significant part of
the development budget. Although up to 50% of the budget of a typical IT project is spent
on testing according to a recent report [4], it is not feasible to fully test a software system.
Therefore, it is necessary to focus testing activities on the relevant areas to gain the best
cost-benefit ratio. The relevant areas comprise code that is mission-critical or exhibits a high
fault-density. In order to cost-effectively improve a test suite, it is promising to augment it
by adding test cases for code in the relevant areas that is either not covered or not tested
adequately by any of the existing test cases.

3 Approach

The idea is to develop measures for evaluating test suites to determine their effectiveness and
reveal inadequately tested code, and to propose how to improve the suites.

In a first step, we assessed how thoroughly tested covered code is by applying mutation
testing to a set of open-source projects. Methods get executed by test cases and appear as
covered, however, this does not necessarily mean that all covered methods were tested in a way



Niedermayr

that the tests could have found faults. Therefore, we investigated the expressiveness of code
coverage at the method level as indicator for test effectiveness (see Section 4). We want to
further analyze methods that were covered but not adequately tested to find indicators that
reveal these methods in a static analysis. We plan to investigate metrics such as the minimal
distance on the call stack between test case and method, and the number of tests executing a
method.

For improving test suites we plan to develop a defect-prediction model that is applicable to
real-world systems. Our use case for the model is the augmentation of test suites with additional
test cases. We will consider code metrics as well as process metrics to build a model at the
cross-project level. In order to narrow down the scope for test developers, we want to propose
which methods are fault-prone and need (more) thorough testing, therefore we need to work
at the method level. Currently, most existing work in the research area of defect prediction
operates at the granularity level of components or files [5]. We plan to validate our approach
both with open-source and closed-source systems. Currently, only few studies on the validation
of defect-prediction models on commercial systems exist.

We will start by developing an algorithm for classifying changed methods in commits in
order to be able to detect bug fixes at the method level. We will integrate the algorithm into
the static-analysis tool Teamscale so that we have a framework for analyzing version control
systems of software projects and can build up a fault-distribution database. Then, we will
combine traditional source code metrics (such as complexity and nesting depth) and process
metrics (time span since last change, change frequency in near history) to classify methods that
are likely to contain faults. According to previous work ([2], [1]), metrics concerning recent
changes are promising indicators. We have access to industrial systems with version control
systems and issue trackers and plan to use them when evaluating the defect-prediction model.

Besides the localization of fault-prone code that should be thoroughly tested, we also want
to localize code that is not or hardly relevant for testing. First, we plan to carry out an
experiment to detect methods that are very trivial and therefore presumably less fault-prone.
We expect some methods (e.g. one-line setters and getters, simple delegation methods, very
short methods) to relatively unlikely exhibit faults and want to implement a static analysis for
their detection. We will evaluate the detected methods empirically using the fault database and
developer interviews. Second, since longstanding industrial systems often contain a significant
amount of code that is never executed [3] and therefore does not need to be tested, we want to
implement a heuristic to detect this code. We assume that code stability and code centrality can
be used as predictor: Code that is decentral (i.e. seldom referenced) and stable (unchanged for
a long time) might be either perfect or unused. The validation of the concept will be done in a
case study in which the computed results will be compared with recorded data of instrumented
systems and in developer interviews.

4 Results

In order to assess existing test cases, we carried out an experiment to investigate the validity
of code coverage as measure for test effectiveness. We implemented and applied a mutation
testing approach to investigate code that is covered by test cases. The results of our experiment
with 14 open-source projects written in Java show that code coverage at the method level is a
valid indicator for the effectiveness of unit tests (in terms of detecting new regression faults)
but it is not for system tests that execute large portions of a system [6]. We also found that
some of the inadequately tested methods might not be worthy testing due to their triviality or
low importance for the software.



5

Niedermayr

Future Milestones

Q3 2015: Start of the Ph.D.

Q3 2016: Refinement of topic and planning
Q1 2017: Interim presentation

Q1 2019: Thesis complete

References

(1]

Robert M Bell, Thomas J Ostrand, and Elaine J Weyuker. Does measuring code change improve
fault prediction? In Proceedings of the 7th International Conference on Predictive Models in Soft-
ware Engineering, page 2. ACM, 2011.

Sebastian Eder, Benedikt Hauptmann, Maximilian Junker, Elmar Juergens, Rudolf Vaas, and Karl-
Heinz Prommer. Did We Test Our Changes? Assessing Alignment between Tests and Development
in Practice. In Proc. AST ’13, 2013.

Sebastian Eder, Maximilian Junker, Elmar Jiirgens, Benedikt Hauptmann, Rudolf Vaas, and Karl-
Heinz Prommer. How much does unused code matter for maintenance? In Software Engineering
(ICSE), 2012 34th International Conference on, pages 1102-1111. IEEE, 2012.

Worldwide Software Testing Practices Report 2015 - 2016. Technical report, International Software
Testing Qualifications Board (ISTQB), 2016.

Jaechang Nam. Survey on software defect prediction. Department of Compter Science and Engi-
neerning, The Hong Kong University of Science and Technology, Tech. Rep, 2014.

Rainer Niedermayr, Elmar Juergens, and Stefan Wagner. Will My Tests Tell Me If I Break This
Code? In Proc. CSED ’16. ACM, 2016.



	Problem Context
	Problem Description
	Approach
	Results
	Future Milestones

