
.

Unit	testing,	Integration	testing	
TDD	(Test	Driven	Development)	

Mocking

by	Micael	Andersson

Goals of todays presentation
• Automated Testing Theory (Brief overview)

– To introduce and motivate Automated Tests
– To describe how Automated Testing fits within a Software Development

Process
– To provide a classification of Automated Testing Strategies and Tools

• Unit Testing (Brief overview)
– Provide theoretical background for Unit Testing
– Hands-on experience with Unit Testing tools and frameworks

• TDD - Test Driven Development (Agile development)
– Process, In Practice, Benefits

2

Goals of next presentation

• Integration Testing
– Provide theoretical background for and overview of Integration Testing
– Overview of Integration Testing tools and frameworks

• Design for testability
– Some design patterns

• Mocking ()
– Basic principles
– Hands-on experience with Mockito

3

Training material - Java

• These slides...
• Online resources

– www.junit.org
– code.google.com/p/mockito/
– www.dbunit.org
– strutstestcase.sourceforge.net

– Source code to exercises

4

http://www.junit.org/
http://code.google.com/p/mockito/
http://www.dbunit.org/
http://www.strutstestcase.sourceforge.net/

TDD	Training

Testing
and

Automated tests
Training provided by

Combitech Grow

About Tests …
Everybody knows they should, but few actually do

• “Why isn’t this tested before”?
– Because it has been too expensive, difficult,

cumbersome to test
– Because we have been too busy
– Because things have changed

6

Discussion:
In case the application
you currently work on

lacks tests;
- In your opinion; what’s
the main reason for this?

Quality Assurance precedes Quality Assessment
• Testing is about Quality Assurance, not just Quality

Assessment
• Quality Assessment only indirectly affect quality
• Testing reveals information
• Testing helps focus project activity

7

Test Automation Goals
Tests should be S.M.A.R.T:

• Self Checking
• Maintainable
• Act as documentation
• Repeatable and Robust
• To the point – provide ”defect

triangulation”

8

Manual Tests are …
• Repetitive
• Error-prone
• Difficult to test other units than

the User Interface

• yet …

• a (Manual) Test Process must
be present in order to
automate it!

9

Critical Success Factors for Automated Tests
• Repeatability and Consistency

– Once the test is complete, it should pass repeatedly, whether it executes by
itself or within a test suite.

– When a completed test fails, we need to quickly and accurately pinpoint the
cause: did the test uncover a bug in the system, or is the test itself faulty?

• Readability

– The tests are the definitive reference for the system requirements.

• Maintainability

– Iterative, test-first development yields as much (or
more) test code than system code

– Thus we have to be as concerned (or more) with the maintenance costs of
test code as compared to system code.

10

Testability
• Testability consists of two fundamental characteristics:

• Visibility – the tester can see (and understand) what
happens within the system (i.e. can observe
important aspects of the internal state of the system)

• Control – the tester can force interesting things to
happen within the system (i.e. can control its
behavior)

• Testability doesn’t just happen. It must be designed and
built into a system. Writing tests before designing and
building the system (a.k.a. Test-First or Test-Driven
Development) is a great way of achieving good testability.

11

Classifying Automated Tests
• Granularity

– Entire system
– Individual units

• Point of Contact
– Existing User Interface
– Testability API

• Test Case Production
– Record & Play Back
– Hand Written (programmatic)

12

A
PI

G
U

I

System
Unit

R & PB Program

Test (and build) automation

13

TDD	Training

Introduction
to

Unit Testing with JUnit and Eclipse
Training provided by

Combitech Grow

Unit Tests
• Black-box or White-box test of a logical unit, which

verifies that the logical unit behaves correctly – honors
its contract.

15

What exactly is a Unit Test?
• A self-contained software module (in OO languages

typically a Class) containing one or more test
scenarios which tests a Unit Under Test in isolation.

• Each test scenario is autonomous, and tests a
separate aspect of the Unit Under Test.

16

PlantStructureService PlantStructureDAOPlantStructureServiceTest

Data

Smoke Tests
• A set of Unit Tests (which tests a set of logical units)

executed as a whole provides a way to perform a
Smoke Test: Turn it on, and make sure that it doesn’t
come smoke out of it!

• A relatively cheap way to see that the units “seems to
be working and fit together”, even though there are
no guarantees for its overall function (which requires
functional testing)

17

Developer testing vs Acceptance testing
• Unit Tests are written by developers, for developers.

• Unit Tests do not address formal validation and
verification of correctness (even though it has indirect
impact on it!) - Unit Tests prove that some code does
what we intended it to do

• Unit Tests complements Acceptance Tests (it does
not replace it)

18

Why should I (as a Developer) bother?
• Well-tested code works better. Customers like it better.
• Tests support refactoring. Since we want to ship useful function early

and often, we know that we'll be evolving the design with refactoring.
• Tests give us confidence. We're able to work with less stress, and we're

not afraid to experiment as we go.
• Hence Unit Testing will make my life easier

– It will make my design better
– It will give me the confidence needed to refactor when necessary
– It will dramatically reduce the time I spend with the debugger
– It will make me sleep better when deadlines are closing in

19

Requirements on Unit Tests

• Easy to write a test class
• Easy to find test classes
• Easy to test different aspects of a contract
• Easy to maintain tests
• Easy to run tests

20

XUnit: A Framework for Unit Tests

• www.junit.org
• www.csunit.org
• www.vbunit.org
• cppunit.sourceforge.net

21

http://cppunit.sourceforge.net

JUnit Test Example
public interface Account {
 public void deposit(int amount);
 public void withdraw(int amount) throws AccountException;
 public int getBalance();
 …  
}

public class AccountImplTest {
 @Test
 public void testWithdraw() throws AccountException {
 AccountImpl account = new AccountImpl(“1234-9999”, 2000);
 account.withdraw(300);
 Assert.assertEquals(1700, account.getBalance());
 }

 @Test
 public void testWithdrawTooMuch() throws AccountException { … }
 …  
}

22

Naming Conventions and Directory Structure

• Unit Tests should be named after the Unit that is tested, with "Test"
appended. 
A class usually represents a noun, it is a model of a concept. An
instance of one of your tests would be a 'MyUnit test'. In contrast, a
method would model some kind of action, like 'test [the] calculate
[method]'.

23

• the MyUnit test --> MyUnitTest
• test the calculate method -->

testCalculate()
• JUnit tests should be placed

within the same Java package
as the Unit under Test, but in a
different directory structure.

Test cases and test methods
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;

public class AccountImplTest {
 @Test
 public void testWithdraw() throws AccountException {
 AccountImpl account = new AccountImpl(“1234-9999”, 2000);
 account.withdraw(300);
 Assert.assertEquals(1700, account.getBalance());
 }

 @Test
 public void testWithdrawTooMuch() throws AccountException { … }
 …  
}

24

All methods annotated with

@Test are considered test

scenarios

Assert: Support for verifying conditions

static void assertEquals(int expected, int actual);  
 // Asserts that two ints are equal.

static void assertEquals(double expected, double actual, double delta);  
 // Asserts that two doubles are equal concerning a delta.

static void assertEquals(java.lang.Object expected, java.lang.Object actual);  
 // Asserts that two objects are equal.

static void assertFalse(java.lang.String message, boolean condition);  
 // Asserts that a condition is false.

static void assertTrue (java.lang.String message, boolean condition);  
 // Asserts that a condition is true.

static void assertNull(java.lang.String message, java.lang.Object object);  
 // Asserts that an object is null.

static void assertNotNull(java.lang.String message, java.lang.Object object);  
 // Asserts that an object isn't null.

// Etc…

25

Executing JUnit Tests: Test Runners

26

TDD	Training

Exercise 1
(Writing unit tests to Account)

Training provided by
Combitech Grow

Exercise 1 description
Sometimes you need to write Unit tests to already
existing software when you want to implement a change
request e.t.c. In this example we have the source code
but no tests, your task is to write them.

28

Exercise 1

• Create an Unit test case which tests the initial
balance of an Account (i e. tests the constructor and
GetBalance() method of Account).
@Test
public void testInitialBalance() { … }

• Add tests for the Deposit() method of Account.
@Test
public void testDeposit() { … }

29

TDD	Training

Continued introduction
to

Unit Testing with JUnit and Eclipse
Training provided by

Combitech Grow

Typical unit test scenario – The Three A’s
1. Arrange - Instantiate Unit under Test and set up test data

2. Act - Execute one or more methods on the Unit Under Test

3. Assert - Verify the results
public interface Account {
 public void deposit(int amount);
 public void withdraw(int amount) throws AccountException;
 public int getBalance();
 …  
}
public class AccountImplTest {
 @Test
 public void testWithdraw() throws AccountException {
 AccountImpl account = new AccountImpl(“1234-9999”, 2000); // ARRANGE
 account.withdraw(300); // ACT
 Assert.assertEquals(1700, account.getBalance()); // ASSERT
 }

… … …
}

31

General Rules of Thumb
• Create a single test class for each non-trivial application class you have.
• Give a readable, meaningful name to each test method. A good name candidates

are to name the test method using the same name as the method that it is testing,
with some additional info appended to the name. For instance if testing a method
called "Withdraw" in an Account class, create a few test methods to test different
ways of withdrawal:

@Test
 public void testWithdrawTooMuch() throws AccountException {…}

@Test
 public void withdrawBigAmount() throws AccountException {…}

@Test
 public void withdrawNegativeAmount() throws AccountException {…}

• The scope of how much checking to do in a single test case (test method) is a
judgment call. It is usually better to test only one scenario (and hence one potential
error condition) in each test method. Remember : tests should be “to the point”.

32

Setup and teardown
• Methods annotated with @Before are executed before every test

method.
• Methods annotated with @After are executed after every test

method.
public class AccountImplTest {

private AccountImpl account;

@Before
public void setUp() {

account = new AccountImpl(“1234-9999", 2000);
}
@Test
public void testInitialBalance() {

int actualBalance = account.getBalance();
Assert.assertEquals(2000, actualBalance);

}
@Test
public void testWithdraw() throws AccountException {

account.withdraw(300);
 int actualBalance = account.getBalance();

Assert.assertEquals(1700, actualBalance);
}

 …  
}

33

Working with Exceptions
• Unexpected exceptions thrown during execution of a test will be caught by

the JUnit framework and reported as Errors (i.e. test will fail)
• A Test method must declare that it throws any checked exceptions that the

Unit under Test may throw. If there are several checked exceptions that may
occur, it is perfectly valid for a test method to declare throwing
java.lang.Exception.

• Expected exceptions (exceptions that the test is expecting the Unit under Test
should throw in a certain situation) are expressed using the
@Test(expected=ExpectedException.class) attribute

@Test(expected=NastyException.class)
public void doSomethingNastyTest() {

SomeUnit target = new SomeUnit();
target.doSomethingNasty();

}

34

Working with Exceptions (Contd.)

• Or using the following idiom:

SomeUnit target = new SomeUnit();
try {

target.doSomethingNasty();
Assert.fail("NastyException expected");

} catch (NastyException expected) {
// Expected

}

35

Ignore a Test

• To temporary ignore a test, use the Ignore attribute:

@Test
@Ignore("Not right now, but most definitely later")
public void testThatDoesNotWorkYet(){

SomeUnit target = new SomeUnit();
 target.doSomethingThatDoesNotWork();
 Assert.assertTrue(target.isValid());
}

36

TDD	Training

Exercise 2
(refactor unit tests to Account)

Training provided by
Combitech Grow

Exercise 2

• Refactor your test data from the last example into a
@Before annotated setUp() method

• Add tests for the withdraw() method.

38

TDD	Training

Continued introduction
to

Unit Testing with JUnit and Eclipse
Training provided by

Combitech Grow

Testing private or protected methods/members
JUnit will only test those methods in my class that are
public or protected, but…
In principle you got four options

• Don't test private methods. (Good or Bad?)
• Give the methods package-private access. (Good or

Bad?)
• Use a inner class or anonymous class. (Does it work?)
• Use reflection. (Is this good?)

http://stackoverflow.com/questions/34571/whats-the-
proper-way-to-test-a-class-with-private-methods-using-
junit

40

http://stackoverflow.com/questions/34571/whats-the-proper-way-to-test-a-class-with-private-methods-using-junit

Testing private or protected methods/members
The best way to test a private method is via another public method. If
this cannot be done, then one of the following conditions is true:
 1. The private method is dead code.
 2. There is a design smell near the class that you are testing.
 3. The method that you are trying to test should not be private.

When I have private methods in a class that is sufficiently
complicated that I feel the need to test the private methods directly,
that could be a code smell: my class is too complicated.
But, it might also be SDK or Framework code or Security or
encryption/decryption code. That type of code also need tests, but
no publicity…

41

Testing protected methods (Java)
• Protected methods are visible by default when using the same parallel

package structure for tests, but if in different packages, it will not work!

package productionpackage;
public class ProtectedMethod {

protected String myProtectedMethod (String s) {
return "MyClass: " + s; }

}

package testpackage;
public class ProtectedMethodTest {

@Test
public void testProtectedMethod() {

String expected = "MyClass: Hello";
ProtectedMethod unitUnderTest = new ProtectedMethod();
String actual = unitUnderTest.myProtectedMethod("Hello");
boolean equal = actual.equalsIgnoreCase(expected);
Assert.assertTrue("Strings not equal", equal);

}
}

42

Will not work!

Testing protected methods (Java)
The Subclass and Override idiom is used to write unit tests for protected methods:
package productionpackage;
public class ProtectedMethodClass {

protected String protectedMethod (String s) {
return "Protected: " + s; }

}

package testpackage;
public class ProtectedMethodClassTest {

// Create an inner class to expose the protected method
class ExposeProtectedMethodClass extends ProtectedMethodClass {

public String exposeProtectedMethod(String s) {
return super.protectedMethod(s);

}
}
@Test
public void testProtectedMethod() {

String expected = "Protected: Hello";
ExposeProtectedMethodClass unitUnderTest = new ExposeProtectedMethodClass();
String actual = unitUnderTest.exposeProtectedMethod("Hello");
boolean equal = actual.equalsIgnoreCase(expected);
Assert.assertTrue("Strings not equal", equal);

}
}

43

We can live with
this since the
exposure is done
in test package,
that will be
stripped out in the
production code!

Testing Interfaces or Abstract Classes (Java only)
• Sometimes, you want to write tests for an Interface or Abstract Class,

and have those tests executed against all implementations.
• Specify the tests in an Abstract Test class, with one concrete Test class

for each concrete implementation

44

Testing Interfaces - Java example
package somepackage;
import org.junit.*;

public abstract class AbstractSomeInterfaceTest {
 private SomeInterface unitUnderTest;
 @Before
 public void setUp() {
 unitUnderTest = implementSomeInterfaceTest();
 }
 @Test
 public void testSomeMethodReturnsTrue () {
 Assert.assertTrue("someMethod() should return true", unitUnderTest.someMethod());
 }
 protected abstract SomeInterface implementSomeInterfaceTest();
}

public class ImplementationXTest extends SomeInterfaceTest {
@Override
protected SomeInterface implementSomeInterfaceTest() {

 return new ImplementationX();
}

}

45

package somepackage;
public class ImplementationX implements SomeInterface {

@Override
public boolean someMethod() {

return false;
}

}

Instances like this
one, will run
automatically
according to test
scheme in the
abstract class.

TDD	Training

Exercise 3
(refactor unit tests to Account)

Training provided by
Combitech Grow

Exercise 3 - As Demo
• Refactor your test case from the last example into an

abstract test case for the interface Account, with a
concrete test of the Account implementation

• Show it by running project TDD_Account_Solution
concrete implementation ConcretAccountTest.

47

What should be tested?
• Everything that could possibly break!
• Corollary: Don’t test stuff that is too simple to break!
• Typical problematic areas:

– Boundary conditions
• Conformance
• Ordering
• Range
• Reference
• Existence
• Cardinality
• Time

– Error conditions

48

Exercise 4

Given the following interface for a fax sender service:
/* Send the named file as a fax to the given phone number.
* Phone numbers should be of the form 0nn-nnnnnn where n is
* digit in the range [0-9]
*/
public boolean SendFax(String phone, String filename) {

. . .
}

What tests for boundary conditions can you think of?

49

TDD	Training

Introduction
to TDD

(Test-Driven Development)
Training provided by

Combitech Grow

Test-Driven Development
Unit Tests may be written very early. In fact, they may even

be written before any production code exists:

• Write a test that specifies a tiny bit of functionality
• Ensure the test fails (you haven't built the functionality yet!)
• Write the code necessary to make the test pass
• Refactoring the code to remove redundancy

There is a certain rhythm to it: Design a little – test a little –
code a little – design a little – test a little – code a little – ...

51

Test-Driven Development process
1. Think about what you want to do.
2. Think about how to test it.
3. Write a small test. Think about the desired API.
4. Write just enough code to fail the test.
5. Run and watch the test fail (and you’ll get the "Red Bar").
6. Write just enough code to pass the test (and pass all your previous tests).
7. Run and watch all of the tests pass (and you’ll get the "Green Bar").
8. If you have any duplicate logic, or inexpressive code, refactor to remove

duplication and increase expressiveness.
9. Run the tests again (you should still have the “Green Bar”).
10.Repeat the steps above until you can't find any more tests that drive

writing new code.

52

Test-Driven Development process (TDD process)

53

Add a test

Run tests see
new failure

Write code to fix itRun tests see all
pass

Refactor

Simple Design
• “Simplicity is more complicated than you think. But it’s

well worth it.”  
 Ron Jeffries  

• Satisfy Requirements
– No Less
– No More

54

You can use your
developer intuition
to find best choice

Simple Design Criteria
• In Priority Order

– The code is appropriate for the intended audience
– The code passes all the tests
– The code communicates everything it needs to
– The code has the smallest number of classes
– The code has the smallest number of methods

Should we then have all code in one class and only have the
one method the “main”-method?
Of course not, but why?

55

Refactoring
• Definition: Improve the code without changing its

functionality
• Code needs to be refined as additional requirements

(tests) are added
• For more information see  

Refactoring: Improve the Design of Existing Code – Martin
Fowler

56

Working Breadth First - Using a Test List
• Work Task Based

– 4-8 hour duration (maximum)
• Brainstorm a list of developer tests
• Do not get hung up on completeness… you can

always add more later
• Describes completion requirements

57

Red/Green/Refactor

58

Write a test for
new capability

Start

Compile

Fix compile
errors

Run the test
And see it failWrite the code

Run the test
And see it pass

Refactor as needed

