
Fundamenta Informaticae XXI (2001) 1001–1025 1001

IOS Press

Formal Analysis of SystemC Designs in Process Algebra

Hossein Hojjat

Ecole Polytechnique F́ed́erale de Lausanne, Lausanne, Switzerland

MohammadReza Mousavi

Eindhoven University of Technology, Eindhoven, The Netherlands

Marjan Sirjani

University of Tehran, Tehran, Iran

Reykjavik University, Reykjavik, Iceland

Abstract. SystemC is an IEEE standard system-level language used in hardware/software co-design
and has been widely adopted in the industry. This paper describes a formal approach to verifying
SystemC designs by providing a mapping to the process algebra mCRL2. Our mapping formalizes
both the simulation semantics as well as exhaustive state-space exploration of SystemC designs.
By exploiting the existing reduction techniques of mCRL2 and also its model-checking tools, we
efficiently locate the race conditions in a system and resolve them. A tool is implemented to au-
tomatically perform the proposed mapping. This mapping andthe implemented tool enabled us to
exploit process-algebraic verification techniques to analyze a number of case-studies, including the
formal analysis of a single-cycle and a pipelined MIPS processor specified in SystemC.

Keywords: SystemC, Process Algebra, Formal Verification, mCRL2

1. Introduction

A growing trend in the microelectronics field is to integratea complete and sophisticated system on a
single chip (System on Chip). One of the most challenging requisites of the SoC approach is to define a
description language which is capable of specifying the whole design at a higher level of abstraction. At
this level of abstraction, usually known as system level design [22], the main concern is to simultaneously
and homogeneously describe both hardware and software subsystems. Among the different languages for

Address for correspondence: Department of Computer Science, TU/Eindhoven, P.O. Box 513, Eindhoven, NL-5600MB, The
Netherlands

1002 H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra

system level design, SystemC has become very popular and widely adopted by several leading companies
in this field. Moreover, SystemC 2.1 has been standardized asIEEE standard 1666 [1].

SystemC is a library of classes and macros implemented in C++that are to be used in the system
level specification. As SystemC is an add-on to the core language, all the features of C++ are available
in modeling but the designer has to adhere to the particular style given by SystemC. The set of data
types in SystemC contains the necessary elements for systemlevel designs, such as bits, bit vectors, four
state logic (low, high, undefined, tri-state), and data types for fixed-point arithmetic of arbitrary size.
The notion of concurrency is realized by introducing processes. Concurrent processes are scheduled in
a non-preemptive fashion. A process may suspend itself on a particular event, after the occurrence of
which it will be ready to resume. The sensitivity of processes to the events can be static or dynamic.
The communication of different components is represented in SystemC by the concepts of channels and
ports.

One of the goals of SystemC is to provide verification at higher levels of abstraction. Several attempts
have been made in this direction [12, 21, 23, 25, 26, 35] but this aspect of the language is still in its early
stages [37].

In this paper, we describe a mapping from SystemC programs into mCRL2 [14], a process algebra
enhanced with data types, which provides a common frameworkfor analyzing and verifying systems. By
translating the SystemC code to mCRL2 we can carry out various kinds of analysis using its backbone
toolset. First of all theµ-calculus model-checker of mCRL2 makes it possible to verify the safety and
liveness properties of the system. Particularly using model-checking we can ensure the absence of race
conditions. For this purpose, we check a temporal formula tothe effect that no two conflicting assign-
ments to a signal or variable are performed (in two paths) during a delta cycle. To prove that the race
conditions do not exist in the model we can alternatively usethe confluence checker tool. We hide all the
irrelevant actions which do not have an impact on the value ofthe desired output. Under this setting, we
show the absence of race condition by proving that the systemis confluent.

We implemented a tool that made this translation automatic.The translation and the implemented
tool enabled us to verify a number of case studies. These casestudies range from simple specifications
of combinatorial and sequential circuits (e.g., adders, flip-flops) to a simplified single-cycle (comprising
about 1000 lines of SystemC code) MIPS processor to a rather complicated pipelined MIPS processor
(comprising 2500 lines of SystemC code).
Related Work. The authors of [12] propose a model-checking technique for asubset of SystemC,
comprising fundamental constructs of sequential circuits. Our work improves upon [12] by treating a
much larger subset of SystemC and supporting modalµ-calculus as the specification language.

In [21], a translation from SystemC to an extension of Petri Nets is defined. Their translation requires
an upper bound on the size of dynamic constructs, which is notrequired in our approach. However, [21]
supports quantitative time, which we do not support. We planto extend our translation with quantitative
time since it can be modeled using mCRL2.

In [23], SystemC programs are partitioned into software andhardware and are verified separately.
This separation is not necessary in our case, since we try to transform both hardware and software parts
into mCRL2 at the same time.

In [25] a special process algebra is introduced for SystemC designs. This process algebra is used
only for formalizing SystemC. For verification, the code is translated into Promela, the input language of
Spin [20]. In our approach, we benefit from the existing tool-set for mCRL2 and thus, provide a single
framework both for formal semantics and formal verificationof SystemC.

H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra 1003

The authors of [26] have described a toolbox, called LusSy, for analyzing the transaction level models
written in SystemC. An automaton-based intermediate language (with guards, messages and assignments
on transitions) is used between SystemC and the language of the back-end verifier tool. This language
is also used for describing the scheduler. One of the goals ofLusSy is that “the user should not have
to learn a timed logic”, so the properties are expressed in terms of assertions. Although this makes
the verification of safety problems more convenient, this technique has its limitations when it comes
to liveness properties. To overcome the limitations, LusSyadditionally supports some general liveness
properties such as “a process cannot terminate”. In comparison with [26], our approach has the advantage
of allowing for modalµ-calculus for property specification which is more expressive and can code other
(less expressive) temporal logics such as PSL as syntactic sugar. In [35], the intermediate language of
LusSy is translated into Promela, the input language of SPIN. We are not aware of an implementation of
this translation so that we can compare its performance withour implementation.

In [29], the authors present an approach for model-driven testing of SystemC designs. For this
purpose, the modeler formally specifies the intended specification of the system in the AsmL [10]. The
result is accompanied with another AsmL description, whichexplains the discrete event semantics of
the simulator. Spec Explorer [8] uses the two AsmL code to generate test cases for the system. The
conformance of the test cases with the implementation is checked subsequently. As the back-end tool
supports C# programming language, an interface is written between C# and the actual SystemC code.
[29] formalizes the scheduler in AsmL and the rest of SystemCconstructs are directly called through a
wrapper. In our approach, however, we formalize the whole design in the process-algebraic formalism.
Also, [29] focuses on testing while in this paper, we focus onformal verification. Similar to [29], in
[15], a translation from SystemC to AsmL is given and PSL properties are also embedded in the same
formalism as monitors. Then the combination can be both simulated and model-checked.

In [3, 31], a translation from SystemC to the object-based language Rebeca [32] is defined. In
order to encode SystemC constructs efficiently, the Rebeca language had to be extended (in terms of
an intermediate language) with global variables and wait statement. The generality of process algebraic
constructs in mCRL2 allowed us to do without any extension. Furthermore, we could apply existing
process-algebraic analysis techniques to SystemC designsas we illustrate in this paper, whereas in [3, 31]
a customized model checking engine is proposed.

In [17] the authors have given a translation from SystemC to UPPAAL, a model checker based on
timed automata [24]. For this purpose the scheduler is stated as timed automaton. For every event,
channel and process instances in the original design a corresponding automaton is constructed in the
UPPAAL model. The main advantage of [17] comparing to our work is modeling the quantitative time
with the clock capability in UPPAAL. The benefit of our mapping is using the strength of the mCRL2
toolset in state space reduction and visualization. Furthermore the liveness properties in UPPAAL are
bounded, i.e., they can only be verified within a certain timebound. We do not have such constraints
with mCRL2 and can ensure liveness in infinite executions using µ-calculus model checking.

An improved simulation technique is introduced in [5] to prevent the simulator from exploring the
unnecessary interleavings. Prior to actual simulation a model checker is executed on the pairs of con-
current processes. If the model checker fails to prove the consistency in race conditions then an error
is reported. After locating the spurious executions by the model checker the simulator is informed on
unnecessary traces. The simulator uses partial order reduction to simulate only the necessary paths. The
partial order reduction of [5] is equivalent to our tau-confluence reduction in Section 7. However the
reduction is used in [5] to improve the simulation of the SystemC designs. In this paper we eliminate the

1004 H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra

spurious executions for the purpose to reduce the state space and make the huge designs accessible for
further analysis.

This paper is an extended and improved version of [18].

2. Background

2.1. SystemC

In this section, we give an overview of the fundamental structures in SystemC. The basic building block
of SystemC programs are modules (SCMODULE). The actual behavior of a module is performed by
the SystemC processes, running concurrently in a module. There are essentially three types of processes
in SystemC: methods, threads and cthreads. In the initialization stage, all the defined processes in the
program are executed once. The method processes cannot be suspended during their execution. So,
after being enabled, a method executes its body from beginning to end. A method is reactivated again
whenever an event occurs in the system, to which the method issensitive. Threads are activated only
once, and it is their own duty to suspend themselves on the desired points, by callingwait(). The
simulator has to implicitly save the internal state of threads, in order to use them when they resume.
Cthreads or clocked threads, are special kinds of threads, which can be sensitive to only one edge of one
clock in their sensitivity list of signals.

There is a scheduler in the model to manage the concurrent execution of the processes. The logic of
the scheduler is determined by the simulator. Processes arenon-preemptive, which means that a process,
in its turn, runs a piece of code and voluntarily releases thecontrol. There are two different cases by
which a process releases the control: when it executes a waitstatement, or when it terminates. In Figure
1, a simple SystemC model with two processes, namely,get input andcount, is given for a D-type
Flip-Flop. The first process, i.e.,get input, is a method, and the second one,count, is a thread which
has a wait statement on an event.

Each process can be made sensitive to a set of events. When a process, which is sensitive to a
particular event, is suspended, it will be activated again as soon as that event occurs. This mechanism
helps synchronize different processes, and also it is useful in creating responsive elements that react to
the events in their environment. Sensitivity can be static or dynamic. In static sensitivity the processes
are made sensitive to a fixed set of signals at their declaration by the keywordsensitive. Whenever a
change is spotted in a signal, the corresponding event is generated so that all the sensitive processes to
that signal can be activated. Each process can be made sensitive to the positive edge of a signal (.pos()),
the negative edge (.neg()) or both. For exampleget input is sensitive to the positive edge ofclk.
Whenever the value ofclk has a transition fromfalse to true, an event is generated automatically by
the system so that ifget input is suspended, it will continue its execution. In dynamic sensitivity the
process explicitly mentions at the waiting point the event for which it is waiting. In Figure 1,count tells
the scheduler that it is waiting for the evente. So, whenever another process explicitly triggers the event
by calling the methodnotify one, count will be again switched to a ready process.

The communication mechanism is based on two concepts: portsand channels. A port is a kind of
pointer to a channel. For example,clk is an input anddout is an output port. Usually when the modules
are instantiated, channels are used to interconnect the modules together.Signal channelis a special kind
of channel, which does not change its value immediately whena new value is written to it. When all the
ready processes are evaluated, the simulation enters a new step called the update phase. In this phase

H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra 1005

SC MODULE(dff) {
sc in<bool> din; // data input port

sc in<bool> clk; // clock input port

sc out<bool> dout; // data output port

sc event e; // communication event

sc int<16> num; // counting the changes in din

SC CTOR(dff) { // constructor

num = 0;

SC METHOD(get input); //create a method

sensitive pos << clk; //static sensitivity

SC THREAD(count); //create a thread

}
void get input() {
dout.write(din.read()); //change output

e.notify(SC ZERO TIME);

}
void count() {
while(true) {

wait(e); // wait on e

num = num + 1; } // increasing num

}
};

Figure 1. SystemC module for DFF

the old values of the channels are updated, the contentions are resolved and the suspended processes that
have to be awaked are notified. The evaluate-update round is usually known as thedelta cycle.
Simulation Semantics. The formal semantics of simulation in SystemC is described using distributed
abstract state machines in [27]. Here we overview the simplephases in the simulation kernel, which take
place after the elaboration phase in which modules are instantiated and channels are connected among
modules. These are the steps in the simulation of the SystemCdesigns [28]:

1. Initialize: Execute all processes to initialize the system.

2. Evaluate: Execute a process that is ready to run. Iterate until all ready processes are executed.
Events occurring during the execution could add new processes to the ready list.

3. Update: Execute any update calls made during step 2. This step is used by the signal channels as a
synchronization point. When a signal is modified during the program execution, its current value
does not change. The new value can only be observed in the update phase. The contentions are
also resolved.

4. Notify: If delayed notifications are pending, determine the list ofready processes and proceed to
Evaluate phase (step 2).

Finally, when the simulation is finished a clean-up phase destructs the created structure and releases the
allocated memory.

1006 H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra

sc_start();

CleanUP

Initialize Evaluate
Advance

Time

while

processes

ready

.notify()

immediate

.notify(SC_ZERO_TIME)

delayed

.notify(t)

timed

sc_main() SystemC Simulation Kernel

Update

Elaborate

Figure 2. SystemC Simulation kernel ([4])

There is a further step in the original algorithm to advance the time and perform time-notification, but
we ignore quantitative time here. Each evaluate-update phase is called a delta cycle in terms of simulation
semantics. Notice that the number of delta cycles can be morethan one, since in the evaluate phase some
events (such as notifying an event or changing a signal) can occur that awake suspended processes.
Immediate notifications are the ones that deliver their events as soon as they occur. In contrast, delta
delayed notifications deliver their events in the next deltacycle. The syntax for delta cycle notification is
notify(SC ZERO TIME).

Figure 2 shows the transition diagram of the simulation kernel, which is inspired from [4].

2.2. mCRL2

mCRL2 is a successor toµCRL, and extends it by including features such as true concurrency (in terms
of multi-actions), real time, higher-order functions and concrete data types.µCRL, in turn, extends the
Algebra of Communicating Processes (ACP) [2] with abstractdata types. We refer to [14] for a more
elaborate description of mCRL2 features. The choice of mCRL2 as our formal language is motivated
by the existence of a rich set of abstract data types as first-class entities in mCRL2. The strong tool-set
also provides a powerful mechanism for analyzing specifications. The summarized syntax of mCRL2
processes is given below.

p ::= a(d1, . . . , dn) | τ | δ | p+p | p·p | p ‖ p | τI(p) |

∂H(p) | ∇V (p) | ΓC(p) |
∑

d:D p | c → p ⋄ p

A basic actiona of a process may have a number of argumentsd1, . . . , dn. These arguments cor-
respond to the data elements. Actionτ (which does not take any parameter) denotes the internal (un-
observable) action. Processδ denotes the deadlocked process in which no further transition is possible.
Non-deterministic choice between two processes is denotedby the “+” operator. Processes can be com-
posed sequentially and in parallel by means of “·” and “‖”, respectively. The abstraction operatorτI(p)

H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra 1007

renames actions inI into τ and thus makes them unobservable. To enforce synchronization, the encapsu-
lation operator∂H(p) specifies the set of actionsH which are not allowed to occur. Conversely, the allow
operator∇V (p) indicates the only actions that are allowed to occur. To showpossible communications
in a system and the resulting actions, communication operator ΓC(p) is used. The elements of setC are
of the forma1 | a2 | · · · | an → c (for n ≥ 2), which intuitively means that actionc is the result of the
multi-party synchronization of actionsa1, a2, . . ., andan. The non-deterministic operator is generalized
by the parameterized sum operator

∑
d:D p, where the variabled may appear (and is bound by

∑
in

the processp. A conditional statement is represented byc → p0 ⋄ p1, where processp0 will start if the
conditionc evaluates to true, or otherwisep1 will take over.

There are a number of built-in data types in mCRL2, such as integers, reals, lists, sets and functions
which are quite useful for our implementation.

An mCRL2 specification contains a set of definitions; each of them are prefixed with a keyword
determining their purpose. By asort definition one can define a new data type. The constructors of a
data type are given bycons (for constructor) andstruct declarations. Constructors defined usingstruct
get their equality and inequality axioms generated for free. A data type can equipped withmaps, which
are user-defined mappings for manipulating data. A set of equations (eqn) can be defined to specify
the definition of a mapping. A new process is declared byproc. The initial process is designated with
keywordinit.

The mCRL2 tool-set contains tools for state space generation, reduction, simulation, visualization
and model-checking. Furthermore, it can be smoothly integrated with the CADP tool-set [9].

3. Kernel Data Types

There is a generic pattern of specification which is repeatedin each translation from SystemC to mCRL2.
This pattern concerns the definition of common data types, e.g., for variable names, signal names, pro-
cess names, bits and vectors, and the kernel processes for the simulation semantics of SystemC. In this
section, we illustrate the generic definition of data types.The simulation kernel processes of SystemC
are described in Section 4.

The set of data types that are commonly used in all translations from SystemC to mCRL2 are sum-
marized in Figure 3. For the sake of brevity, we only describethe data type mappings and do not present
the specification of the equations manipulating the data types here. The interested reader may find the
complete implementation in [34]. The first part of the definitions, given in Figure 3 - Part 1, represents
the identifiers and names used in the program. These identifiers and names are extracted from the pro-
gram code by the tool. Six sorts are defined for this purpose,ID: the unique identifers which are assigned
to processes (cf. Section 5),SigName: the names of the signals used in the program,PortName: different
names which are used as ports,VarName: the names of variables,EvnName: the names of events, and
ModuleIns: module instance names.

We assign a natural number to each delta cycle, which helps usdifferentiate delta cycles; this number
is calledround in our model. So, if we are in the delta cyclei, a process which is ready in the delta cycle
i + 1 cannot be executed at the moment. Round is defined in Figure 3 -Part 2.

Following the above-explained definitions, there are threegroups of data type definitions: variables,
signals and process information. In Figure 3 - Part 3, a list of variables (VarList) is defined, which offers
two maps for changing and finding the value of a variable. For each variable, other than its name, value,

1008 H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra

%– Part 1 - Program definitions

sort
ID = struct · · · ; % process names

SigName =struct · · · ; % signal names

PortName =struct · · · ; % port names

EvnName =struct · · · ; % event names

VarName =struct · · · ; % variable names

ModuleIns =struct · · · ; % module names

%– Part 2 - Rounds

sort Rnd = Nat;

%– Part 3 - Variables

sort
Scope =struct local(getProc:ID)| field(getModule:ModuleIns);

Value =struct boolean(getValBool:Bool)?isBool|

integer(getValInt:Int,getIntSize:Nat))?isInt|

array(getValArray:Array)?isArray|NullVal?isNull;

Var = struct variable(getVarName:VarName, getVal:Value,getScope:Scope);

VarList = List(Var);

map
changeVar:VarList× Var → VarList;

findVarVal:VarList× VarName× Scope→ Value;

%– Part 4 - Signals

sort
Sig = struct sig(getName:SigName,

getCurVal:Value,getNewVal:Value);

SigList = List(Sig);

map
findCurSigVal:SigList× SigName→ Value;

changeSig:SigList× SigName× Value→ SigList;

updateSig:SigList× SigName× Value→ SigList;

findChangedSigs:SigList→ SigList;

%– Part 5 - SystemC process information

sort
Evn = struct event(getEvnName:EvnName,

getModuleIns:ModuleIns);

Stat =struct finished?isfinished| ready(getRnd:Rnd)

?is ready| suspended(getEvn:Evn)?issuspended;

SensType =struct both | none| negedge| posedge;

SigSens =struct sigsens(getName:SigName,getType:SensType);

SigSensList = List(SigSens);

ProcInf =struct procInf(getID:ID,getStat:Stat,getSensitiveList:SigSensList)|NullInf;

ProcQueue = List(ProcInf);

map
changeStat:ProcQueue× ID × Stat→ ProcQueue;

notifyEvn:ProcQueue× Evn× Rnd→ ProcQueue;

findSensType:SigSensList×SigName→SensType;

notifySigChange:ProcQueue×SigName×Rnd×SensType→ProcQueue;

getFirstReady:ProcQueue× Rnd→ ProcInf;

isAnyReady:ProcQueue→ Bool;

Figure 3. Generic data types used in the translated mCRL2 specifications

H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra 1009

Evaluate SysProc1 SysProc2
Process

Queue
Variables Signals

update signal x

Scheduler SystemC Processes State Holders

SysProc1

start

change signal x

change my status suspended

No one

notify changes

get first ready

finish

get first ready

Figure 4. A schematic view of the generic mCRL2 processes fora SystemC specification

and bit width, a scope discriminator is also designated to distinguish the variables in different scopes. A
scope of a variable is the place where the variable is defined,and can be local to a process or field of a
module.

Generic data type definitions for signals are given in Figure3 - Part 4. There are two values for
each signal, one for the current and one for its new value. ThemapchangeSigcan be used to give a
new value to a signal. This map is used in translating the regular assignments to signals in the SystemC
code. The signal does not get the new value immediately afterthis call, only by callingupdateSigthe
new value is copied to the current one. This is due to the special treatment of signal modifications in
SystemC. The only use ofupdateSigis in the update phase, where the signals get their new values. The
mapfindChangedSigreturns the signals of which the current and the new values are different.

In Figure 3 - Part 5, a list data type (ProcQueue) for process-related information is declared. For each
process in this list, three facts are recorded: ID, status and the sensitivity list. ID is a unique identifier,
which is used to differentiate between processes. The status can befinished, ready, or suspended. Ready
has an argument which shows the current round. For the sensitivity to a signal, it should also be specified
if the sensitivity is to a positive edge, a negative edge or toany changes in the signal. There are several
maps declared for changing the status of a process, notifying an event, and gathering information from
the queue.

1010 H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra

4. Kernel Processes

In this section, we present the generic mCRL2 processes which implement the simulation semantics of
SystemC. A schematic view of the generic mCRL2 processes resulting from our translation is presented
in Figure 4. Initially, we create a scheduler process, one process corresponding to each SystemC process
and three processes for saving and updating the latest values of the process queue, variables, and signals.
The scheduler process synchronizes with process queue in order to find out, which process is the next
ready process to be executed. Note that any scheduling algorithm (including a chaotic non-deterministic
choice or any other fixed- or dynamic-order) can be implemented in the process queue process to re-
turn the next ready process conforming to the desired scheduling algorithm. We revisit this subject in
Section 7. Afterwards, the next ready process is signaled, which may change the value of signals and
variables in the course of its execution (by synchronizing with with the variables and signals processes)
and eventually suspends itself by synchronizing first with the process queue (in order to change its status)
and then with the scheduler (to return the control flow). The process of choosing and scheduling ready
processes continues until no more process is enabled. At this stage, the scheduler changes its state to the
update phase. During this phase, the scheduler process performs all delta-delayed changes to signals and
variables and updates the status of processes. When all these synchronization have taken place a new
evaluate round starts. Finally, when the repetition of evaluate and update rounds reaches a fixed-point, a
new set of inputs are applied, triggering another round of delta cycles.

A summary of the mCRL2 specification of the processes in Figure 4 is given in Figure 5. The first
three processes which are prefixed with “Handler” are containers for the variables, signals and process
information lists. The lists are kept in the arguments of theprocess. Apart from usual actions for
retrieving and setting the values from/to the list, the following actions are provided by processes. In the
variable handler, the actionr changeVaris used for changing the value of a variable.SigHandleroffers two
actions for changing and updating the values of a signal:r changeSigandr updateSig. There are actions
for changing the status of a process (r changeStat) and notifying an event (r notifyEvn) or a change in a
signal (r notifySigChange) in the processProcQueueHandler. Other than the three handlers, the process
Evaluateand the translated processes of the model are initiated at the beginning. Each of the threads or
methods that are defined in the model is mapped into one mCRL2 process. This mapping is described in
more detail in the following section.

An alternative approach to translating variables (signals) would be to include a parameter for each
variable (signal) in its handler process. This approach is tried in [19] for a different source language, but
it does not scale well to large SystemC specifications (in theorder of a thousand lines of code), since the
signature and the specification of the handler process becomes too huge and unmanageable.

The processEvaluateis the central process of the system. It has an argument showing the current
round. The major work ofEvaluateis to choose a ready process from the process information list. The
selected process should be ready in the current delta cycle.Then it commands the corresponding mCRL2
process to commence. This is performed by the actions start. As the scheduling is non-preemptive,
Evaluatehas to wait untils finish is issued by the recently started mCRL2 process. This means that the
running process has finished its work, and another process can be initiated. Before a process finishes, it
should change its state tosuspendedor finishedin its corresponding entry in the process information list.
The evaluate phase will be repeated till no more processes are ready in the current delta cycle. At this
moment, the processEvaluatewill convert to another process,Update. This process recursively checks all
the signals to see if there is a signal, of which the current value is different from the new value. If so, it

H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra 1011

proc VarHandler(vl:VarList)=∑
v:Varr changeVar(v).

VarHandler(changeVar(vl,v)) +∑
n:VarName

∑
s:Scoper getValue(n, findVarVal(vl,n,s),s).VarHandler(vl) +

r getVarList(vl).VarHandler(vl);
proc SigHandler(sl:SigList)=∑

n:SigName
∑

v:Valuer changeSig(n,v).SigHandler(changeSig(sl,n,v)) +∑
n:SigName

∑
v:Valuer updateSig(n,v).SigHandler(updateSig(sl,n,v)) +

r getSigList(sl).SigHandler(sl);
proc ProcQueueHandler(pq:ProcQueue)=∑

i:ID
∑

s:Statr changeStat(i,s).
ProcQueueHandler(changeStat(pq,i,s))+∑

e:Evn
∑

r:Rndr notifyEvn(e,r).
ProcQueueHandler(notifyEvn(pq,e,r))+∑

n:SigName
∑

r:Rnd
∑

st:SensType
r notifySigChange(n,r,st).
ProcQueueHandler(notifySigChange(pq,n,r,st))+
r getQueue(pq).ProcQueueHandler(pq);

proc Evaluate(round:Rnd)=∑
pq:ProcQueues getQueue(pq).

(getFirstReady(pq,round)6=NullInf)→
(s start(getID(getFirstReady(pq,round)),round).
r finish(getID(getFirstReady(pq,round))).
Evaluate(round))⋄
(
∑

sl:SigLists getSigList(sl).
Update(round,findChangedSigs(sl)));

proc Update(round:Rnd,sl:SigList)= (sl6=[])→
(s updateSig(getName(head(sl)),getNewVal(head(sl))).
((isBool(getNewVal(head(sl)))∧
getValBool(getNewVal(head(sl))) == false∧
getValBool(getCurVal(head(sl))) == true)→
s notifySigChange(getName(head(sl)),round + 1,negedge)⋄
s notifySigChange(getName(head(sl)),round + 1,posedge))

.Update(round,tail(sl)))⋄
(
∑

pq:ProcQueues getQueue(pq).
(isAnyReady(pq)→Evaluate(round+1)⋄Validate));

Figure 5. The kernel mCRL2 processes

updates the signal and also notifies the lists, so that if a process is waiting for a signal change, it will be
converted to ready for the next delta cycle. The condition inthis process is to check the changed signal to
see if it is Boolean and also if there is a positive edge occurring in it. If so, it passes aposedgeargument
with thes notifySigChangein order to awake the processes which are only sensitive to a positive edge of
the signal. Otherwise, the argument isnegedge. Thes notifySigChangemessage is received by the queue
handler which then marks all processes waiting on the corresponding signal (signal edge) as ready.

At the end ofUpdate, the queue of processes is checked to see if any ready processis remaining. If
so, another round of evaluation (with an increased round number) is begun. When all the processes are
finished, the processValidate is run to check the system for another set of inputs. This is explained in
more detail in Section 6.

1012 H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra

proc get input(pID:ID,container:ModuleIns)=∑
ro:Rnd.r start(pID,ro).

∑
sl:SigList.s getSigList(sl).

s changeSig(signalConnect(dout,container),
boolean(getValBool(findCurSigVal
(sl,signalConnect(din,container))))).

s notifyEvn(event(e, container), ro).
s changeStat(pID, suspended(event(NullEvn,container))).
s finish(pID).getinput(pID, container);

proc count(pID:ID,container:ModuleIns)=∑
ro:Rnd.r start(pID,ro).loop1(pID,container).

s changeStat(pID,finished).sfinish(pID);
proc loop1(pID:ID,container:ModuleIns)=
s changeStat(pID,suspended(event(e,container))).
s finish(pID).∑

ro:Rnd.r start(pID,ro).
∑

vl:VarList.s getVarList(vl).
s changeVar(variable(num,integer(getValInt(
findVarVal(vl,num,field(container)))+1,16),field(container))).
loop1(pID,container);

Figure 6. Translation of the proc. in Fig. 1

5. From SystemC to mCRL2 Processes

Generic definitions given in Sections 3 and 4 form the bases for our translation from SystemC to mCRL2.
To translate specific SystemC code, it only remains to translate its specific processes and statements
therein. In this section, we give an overview of this translation scheme.

Each specific SystemC process is mapped into an mCRL2 process. Each such mCRL2 process has
two arguments: the first one is the ID of the process which differentiates it from others. The second one
is the module instance that contains this process. The reason for differentiating among processes in such
a manner is that a module can be instantiated more than once ina program, and a SystemC process can be
instantiated more than once in a module. The translation of the body of the process goes in between the
start and the finish actions. Figure 6 shows the mCRL2 translation of the SystemC processes in Figure 1.

As it can be seen in the translation of the processes, the translated processes are basically sequences of
different actions for communicating with the kernel processes. These include modifications to the signals
and variables. The mapsignalConnect, used in the description of the processget input, is a mapping of the
form PortName× ModuleIns→ SigName. It determines the signal to which a port of a module instanceis
connected. As the processget input is a method, in its termination it changes its state to wait ona dummy
event. This will also occur when a thread executes the command wait(). This means that the process
has ended but can be reactivated when one of the events in its sensitivity list occurs.
Statements. By interacting with the kernel processes, the values of signals and variables can be obtained
and changed. This makes the translation of assignments and similar statements straightforward. In
hardware modeling normally bitwise operations are frequently used, which are not supported in mCRL2.
For this purpose we implemented the required functions for converting a value to its binary form and
also perform bitwise operations. Further details can be consulted from the code in [34].

Concerning the mapping for control flow statements, the conditional statements such as if-then-
else and switch-case are mapped to mCRL2 conditionals. Loops are translated into recursive processes
guarded by their conditions, if any.

H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra 1013

proc Validate =
∑

f0:Bool.s changeSig(clksig, boolean(f0)).∑
f1:Bool.s changeSig(dinsig,boolean(f1)).Evaluate(0);

Figure 7. Verification proc. for Fig. 1

�������

����� 	�����

	��

���

��
	��

���

��
	��

���

��
	��

���

��

Figure 8. A simple shift register

6. Model checking the code

In order to perform model-checking on a model, all the possible values for the signals form the envi-
ronment have to be examined. We add a particular process to the system in order to generate all these
possibilities. In the remainder of this section, we first describe this process and then illustrate our ap-
proach by model-checking a small example.

6.1. Process Validate

To verify a SystemC module in our model, we include the process Validate in the mCRL2 code. This
process generates all the possible inputs for the module. For example, Figure 7 shows this process for
the SystemC module in Figure 1. The signaldin sig is connected to the portdin andclk sig is connected
to clk. If one of the inputs of the module is an integer, we should also specify the range of the variable in
generating different values for the input. In addition to this approach, we use an alternative approach in
Section 8.2 (inspired by [6]) in order to verify the data semantics of a pipelined architecture.

6.2. Example

We take four modules of the D Flip-Flop (as described in Figure 1, without thecount method) to build
a simple shift register. The design is depicted in Figure 6.2.

There are two input signals from the environment to this circuit: trigger and input. By altering
the values of these signals in theValidate process, various executions are possible. The state space
of this system contains 2248 states and 2440 transitions. A visualization of the state space using the
visualization tool ltsview (included in the mCRL2 toolset)is depicted in Figure 6.2 . We also verified
the correctness of the system by using the theµ-calculus model-checker of mCRL2, which translates
the combination of an mCRL2 specification and a modal formulainto a Parameterized Boolean Equation
System (PBES) (by using the tool lps2pbes) and solves it (by means of the tool pbestool). The correctness

1014 H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra

requirement for the shift register is that the value of the input should be communicated after four clock
cycles (positive edges of trigger signal) to the output signal. This can be expressed in the modalµ-
calculus in terms of the following formula:

∀b : Bool.[(true∗).changeSig(din, boolean(b)).

(¬updateSig(trigger, boolean(true)) ∧ ¬changeSig(din, boolean(¬b)))∗ .

updateSig(trigger, boolean(true)).

(¬updateSig(trigger, boolean(true)))∗ .updateSig(trigger, boolean(true)).

(¬updateSig(trigger, boolean(true)))∗ .updateSig(trigger, boolean(true)).

(¬updateSig(trigger, boolean(true)))∗ .updateSig(trigger, boolean(true)).

(¬updateSig(trigger, boolean(true)) ∧ ¬changeSig(out, boolean(b)))∗ .

updateSig(trigger, boolean(true))]false

The above property states that whenever a change is spotted in the signaldin which lasts till the first
positive edge of trigger, it should be propagated in the shift register in such a way that after four posi-
tive edges of trigger, it reaches theout signal (changeSig(out, boolean(b)), note that we have checked
deadlock-freedom before hand and hence the above formula isonly true if the expected change ac-
tion is observed before the fifth trigger). The positive edges in trigger are identified here by the action
updateSig(trigger, boolean(true))), which is issued only when the value of trigger is modified from
false to true.

6.3. Tool

We have implemented a tool for automatically translating the SystemC code into mCRL2. It supports
a reasonable subset of SystemC including the features described above. This includes most of the con-
structs which are necessary in an RTL design. In the C++ related features, we support different kinds of
loops, conditionals and assignments. From the SystemC constructs we support modules, processes, ports
and the primitive channels. The tool is written using the Java programming language and the ANTLR
compiler generator.

7. Non-determinism in delta-cycles

Non-determinism is not allowed for synthesizable hardware. Hence, many existing SystemC simulators
pre-assume that the specification does not include non-determinism, i.e., race conditions, and thus sched-
ule the ready processes in a deterministic manner, usually according to their order of definition in the
original code. For example in the initial phase and at each clock cycle of the system in Section 6.2, there
are different orders in which the D Flip-Flops propagate their inputs to the output. However, a typical
SystemC simulator only considers one path of execution.

Considering only one path of execution sweeps possible raceconditions under the carpet. The mod-
eler cannot see whether/when the system has a form of non-determinism and thus different orders of
scheduling result in observably different states. An initial attempt to detect such pathological situations
is to replace theEvaluateprocess of Figure 5 with that of Figure 13. The latterEvaluateprocess chooses
the next ready process non-deterministically and thus generates all possible orders of scheduling. Ap-
plying this approach to the example of Section 6.2, results in a state-space with 6670 states and 7423
transitions.

H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra 1015

Figure 9. A visualization for the state space of 6.2

1016 H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra

The state space of this problem does not show the (very much expected) drastic increase in its size
after introducing non-determinism in delta cycles. There are mainly three factors in this system respon-
sible for this incident. First of all, notice that the systemhas a sequential behavior: only after a process
writes on its output signal, the next process is notified to get the data. Thus, after the initialization phase
in which all the processes are ready, the value written on theinput signal advances step by step in the
processes. Secondly, the only shared signal between the processes, which can influence the readiness of
all processes, is the trigger signal. This signal cannot awake the processes more than four times, since
after four positive edges of trigger the input reaches the output. Finally, this circuit has an important
characteristic, calledconfluence. This means that different orderings in delta cycles alwaysend in a
single state. Therefore different branching in a delta cycle cannot affect the branching in the next delta
cycle.

In most practical cases, however, different interleavingsof actions lead to immensely huge state
spaces. This is an incarnation of the well-known state-space explosion problem. For instance, with
15 enabled processes the number of all schedules goes beyondone thousand billion. Process algebraic
reduction techniques, implemented in the mCRL2 tool-set, can mitigate this problem. By first abstracting
from unobservable action, i.e., actions that do not change variables, one can check whether different
schedules are confluent (using the tool lpsconfcheck) before attempting to generate the state space. After
finding the confluent paths, the state-space generation can be done by only generating one instance among
confluent paths. After generating the state-space, the state-space can be reduced, e.g., modulo weak trace
equivalence. The result is usually a small state-space, which can be examined using the visualization or
the model-checking tools.

To better illustrating this technique, we analyze a rather straightforward case study. (Note that we use
a smaller case study to show the actual state-space; the combination of reduction and model-checking
technique explained in the remainder of this section, however, scales up to much larger case studies.)
Consider a two-bit shift register, similar to the four-bit counterpart of Section 6.2. This shift register
consists of merely two D Flip-Flop modules, as depicted in Figure 10. In order to distinguish between
different delta cycles better in the final state space, we usetwo specific actions in the model to show the
start and the end of a delta cycle, calledstr(x) andfin(x), for the start and the end of delta-cyclex,
respectively. The beginning of a delta cycle can be marked inthe processEvaluate, after the condition
that tests if there are any processes ready in the process queue. The end of a delta cycle can be best
identified when the processValidateis initiated, since at this position we can ensure that all the possible
execution paths have been finished.

Since the changes in the values of the signals are of interestfor us, we hide all the actions except
for the ones that assign a new value to a signal. Also we keep the actions that are added to the system
for designating the delta cycles. Under these conditions, the state space of the problem after branching
bisimulation reduction is shown in Figure 11. The states in which non-deterministically a ready process
is chosen are represented with a darker color. These states form a confluent (i.e., a diamond) structure
in the state space. Thus, the order of executions do not matter and we can minimize the diamonds using
tau-confluence reduction. This has been done in Figure 12.

In the case of a two-bit shift register, the absence of race condition can be checked manually by
examining the reduced state space. However, for larger designs, the above technique must be combined
with model-checking to detect race-conditions. The model-checking problem is about checking a tem-
poral formula to the effect that no two conflicting assignments to a signal or variable are performed (in
two paths) during a delta cycle. The following formula showstheµ-calculus property which has been

H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra 1017

trig

in out
dout

DFF

dindout

DFF

din

Figure 10. A two bit shift register

trig=false

trig=false

trig=false

in=true

in=truein=false

trig=true

out=true
qd=true

out=false

qd=true

out=false

qd=false

out=true

qd=false

out=true

out=false

qd=false

trig=true

in=false

qd=false out=false

trig=false

trig=false

trig=false

in=false
in=true

in=true

qd=false

trig=true

trig=true

trig=true
trig=true

qd=true

out=false

out=true

out=false

in=false

Figure 11. The state space of Figure 10 after branching bisimulation reduction

1018 H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra

trig=truetrig=true

din=false

trig=false

trig=false

trig=false
din=true
din=false

din=true

trig=true

out=true

out=false

qd=true

out=false

out=true

qd=false

trig=true

in=false

out=false

trig=false

trig=falsetrig=false

in=true
in=false

in=true

qd=false

trig=true trig=true

qd=true

qd=false

Figure 12. The state space of Figure 10 after tau-confluence reduction

used in our shifter example.

[true ∗ .str(x)](
[
(¬str(x) ∧ ¬fin(x)) ∗ . changeSig(out, boolean(false)).
(¬changeSig(out, boolean(false)) ∧

¬changeSig(out, boolean(true)) ∧ ¬fin(x)) ∗ .

f in(x)
]false

∨
[
(¬str(x) ∧ ¬fin(x)) ∗ . changeSig(out, boolean(true)).
(¬changeSig(out, boolean(false)) ∧

¬changeSig(out, boolean(true)) ∧ ¬fin(x)) ∗ .

f in(x)
]false

The above formula states that at any point, if the start of delta cyclex is observed then both of the
actions changeSig(out, boolean(true)) and changeSig(out, boolean(false)) cannot be seen within the
delta cycle.

H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra 1019

proc Evaluate(round:Rnd) =
∑

pq:ProcQueue.
s getQueue(pq). (getFirstReady(pq,round)6=NullInf) →
(
∑

x:ProcInf.(x in getReadyList(pq,round))→
s start(getID(x),round).rfinish(getID(x)).Evaluate(round))

⋄ (
∑

sl:SigList.s getSigList(sl).Update(round, findChangedSigs(sl)));

Figure 13. Evaluate for the non-deterministic scheduling

8. Case Study

We considered both single-cycle and pipelined specification of mMIPS (mini MIPS) which is the generic
basis for MIPS processors. With some extensions for incorporating network facilities, mMIPS is used
in MiniNoC, a Network-On-Chip based multi-processor SoC. We analyzed both simplified single-cycle
version of the mMIPS processor (comprising about 1000 linesof SystemC code) as well as its pipelined
version (comprising about 2500 lines of SystemC code), which are explained in the coming subsections.

8.1. Single-Cycle mMIPS

The overall design of the single-cycle MIPS processor is depicted in Figure 14. It is a simplified SystemC
implementation of a classic single-cycle MIPS processor asdescribed in [16].

To deal with its complexity, we partitioned the system into subsystems, and for each part we sep-
arately translated the described components into mCRL2 using our tool and analyzed it for different
properties. The subsystems are the data path for controlling the program counter, arithmetic (R-type)
instructions, and memory unit. The rationale behind this separation is avoiding state space explosion. In
Figure 14, the program counter datapath and memory unit components are shown. To verify arithmetic
instructions part, we had to exclude the data memory sub-component (denoted by “dmem” in Figure 14)
from our selected components.

We verified the system with a computational program. In orderto verify the system, we used pro-
cesses for monitoring the actions of the system for each temporal property. These processes synchronize
with the actions in the system in the order specified by the temporal property. If these synchronizations
cannot take place, then a deadlock is reported in the state space generation. In the first subsystem, the
monitor synchronizes itself with the changes in the programcounter (pc) signal and after each non-jump
operation, checks them to be incrementing. In the second subsystem, it checks the inputs and also the
output of the ALU. For the memory part, the changes of the memory signals are watched; in the PC sub-
system, we were able to find a minor bug (due to an inappropriate type definition in the SystemC code)
leading to deadlock. The mistake was happening in the model because of declaring a signed variable
for the program counter. When half of the expected interval is enumerated by the counter, because it is
signed, its value will wrap around. This will make the simulation erroneously.

The following table shows the size of the state-space generated for each subsystem.

Subsystem Memory ALU PC Datapath

States 130601 230757 6838

Trans. 138726 256009 7836

1020 H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra

��

�
�
�
�
�

�
�
	

�

�

�

	
�

�
�
�
�
�
�

��

�
�

�

�

���

����

����

	

�

�

�

�
� ����

�

��
�

��
	

�
�

�

���

����	�

�
�

�
�
��

�
�

�
	

�������	���

��
�
��

����������	

���������	�

������	��		

������	���

���������

����
���
�������������	

����
���
������������	�

����
���
������������

��
�

��
	

�
�

�

���

������

���

��

 �
�
�
���

�
!

�

�

�
�
�

!
��

�

�
�������

��

�
�

�

���"������
�

����
���
���������	���

��

����"	

��

����"�

��

����"

��

�
���"

��

�

�
��

"
	

��

�

�
��

"
�

�

��
�

��
	

�
�

�

�

��
���

#���

��
��

��

�
�
�

��$� ��� ��

�
���
���

������"�����	

�
�

�
�

�
�"

�
�

�
��

�

����
������

���"�������

����
���������

��
�

��
	

�
�
�

���

������

��������

���

���

�
��

������

�
�

�
�

�
����

�
�

�����������"�����

�����$� ���� �

�
�
	�

����
���#���
�����������
��$

 �

����
�
	

����������������"

���

���

�

��

�
����

������

������

� �

������"�������

����������������� ��������������

������

���������
�����

�
�
�
�
�

�
�
�

�
�

�
�

�

�
�

�
	

���������
����

�����������"
��

�
�

�
�
�

�
�
�

��

���

Figure 14. A Schematic View of the Single-Cycle mMIPS Design

8.2. Pipelined mMIPS

The pipelined mMIPS processor substantially extends the instruction sets of the single-cycle processor
and implements the classic pipelined architecture of [16].It supports about thirty instructions from the
MIPS instruction set (about 5 times as many as the single-cycle design), and is used in the design of a
Network-on-Chip (NoC) multi-processor system (MiniNoC).In this section, we first describe the generic
verification technique and afterwards, we explain the application of the technique to our case study.

In their seminal paper [6], Burch and Dill put forward an efficient approach to the verification of the
pipelined execution of instructions. This method has been widely considered as a fundamental way to
formally prove the correctness of processors, and has been used in many case studies such as [36, 7, 33].
The verification scheme is depicted in the commuting diagramof Figure 15.

The state of the processor is defined at two different abstraction levels: ISA (Instruction Set Ar-
chitecture) and MA (Micro Architecture). In ISA, only thoseparts of the system are considered which
are visible to the user: register file, data memory and program counter. In MA, the actual state of the
system is considered, containing all the intermediate storages which are also important to the actual im-
plementation of the pipeline processor. The functionsFImpl andFSpec are the transition functions for
implementation and specification. A transition function gets the current state as well as the inputs and
gives the next state.

The key idea of Burch and Dill’s approach is to use the flushed state of the MA level, in the sense
that only those states are investigated in which the processor is stalled for a sufficient number of cycles.
In the flushed states, no partially executed instruction remains in the pipeline. The processor is said to be

H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra 1021

MA0 MAn

ISA0 ISAm

h h

(flushed) (flushed)

FImpl

FSpec

n steps

m steps

Figure 15. Burch and Dill’s Commuting Diagram

correct if any arbitrary sequence of execution at the MA level has the same effect as its ISA counterpart
on the observable components, as long as the comparison is done in the flushed states. The functionh is
an abstraction function that maps an MA state to its corresponding ISA state by stripping off all but the
programmer visible parts of the implementation state.

We translated the SystemC specification of the pipelined mMIPS to mCRL2. In order to observe the
result of a single instruction, we put it at the beginning of the pipeline, i.e., the output signal from the
instructions ROM. As we seek the finite state space representing this instruction, we prevent the program
counter adder to increase unboundedly. With each edge of theclock, the instruction advances one stage
in the pipe, and since no new instruction is allowed to come into the system, after quite a number of steps
the state space generation is stopped. On average, after about 5000 states (in the mCRL2 specification)
an instruction traverses all through the pipeline. Notice that the Burch and Dill approach cannot be
directly applied to the above state space, since in our case,we have to deal with labeled transition
systems in which all the information is reflected on the labels. In the original approach, two paths
of specification and implementation were checked to see thatthe user-visible components of the state
are modified similarly or not. Likewise, here we have to checkwhether the actions that are in charge
of changing the contents of the user-visible components arematching. For this purpose, we use the
mCRL2 abstraction operator to hide all the uninteresting actions which do not have any effects on these
components. By applying tau-confluence reduction to eliminate all the confluent internal actions (i.e., the
abstraction function in the Burch and Dill approach), the result can be compared with the specification to
see if the actions are issued correctly. As an example, consider the R-type instructions, that is, arithmetic
and logic operations with all operands in registers. For this kind of instructions, what is important is
the result from the ALU, which is written back to the memory inthe write-back stage of the pipeline.
Similarly for the store instructions, the main actions are those that write the actual value into the memory
in the memory stage of the pipeline. We considered differenttypes of instructions of the system (about
15 different types), and investigated the exposed behaviorto be the same as the desired behavior of the
processor.

During our analysis, we discovered a flaw in the semantics of the arithmetic shift instruction. In the
different flavors of the shift right instructions in the previous implementation, the sign bit of the register
was not shifted inside. Instead the processor used to introduce zeros in the register. Although this is
reasonable for unsigned number, but when the negative numbers are taken into account, the situation

1022 H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra

Case Study States Transitions

DFF (Deterministic) 2248 2440

DFF (Nondeterministic) 6670 7423

Memory 130601 138726

ALU 230757 256009

PC Datapath 6838 7836

Table 1. The size of the generated state spaces

differs. For negative numbers the shifted bit should be one.This error was reported to the designers and
corrected in the new version of the code.

8.3. Discussion

Verifying the above-mentioned case studies has helped us improve our translation and extend its scope to
a larger subset of SystemC. Furthermore, it has revealed certain structures in the state space of SystemC
designs, which can be exploited further to reduce their state-spaces while preserving the modal properties
of interest. Table 1 gives an overview of the size of the generated state spaces. The following observations
can be made:

Firstly, all the state spaces seem to be a sparse graph and almost linear, since a dense graph or a fre-
quently appearing branching would result in a considerabledifference between the number of states and
transitions. Secondly, the difference between the deterministic and nondeterministic version of schedul-
ing is considerable but not huge (a factor of 3 in the case of the DFF). Both facts can be explained by
the nature of hardware, which is supposed to be deterministic. Thus, it seems feasible to detect the
(seemingly) few sources of non-determinacy in the system design and prove (e.g., by the static analysis
of code) that they deliver the same outcome. Then, a simple linear search of part of the state space
would provide an exhaustive proof of correctness. Elsewhere, in [30], we have investigated this path by
detecting the source of non-determinism in a subset of the Verilog language.

From our experience with the case studies, it seems unavoidable to use compositional techniques for
analyzing larger designs. An obstacle in the practical application of this technique is to re-define the
interfaces and the properties on the decomposed components. Mechanizing the decomposition of both
the system and the properties is a challenging task, which wewould like to take on next in our research.

9. Conclusions

In this paper, we presented a formalization of SystemC code in the process algebra mCRL2. The formal-
ization is implemented in a tool and this enables automatic translation and formal verification of SystemC
code in the mCRL2 tool-set. The mCRL2 code can be analyzed in different aspects. A useful application
is to prove output determinism, which is ensuring that different orderings in a delta cycle does not affects
the final outcome. We showed two systematic ways for this purpose: model-checking and confluence
checking.

H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra 1023

Using the implemented tool, we analyzed several case studies including a single-cycle and a pipelined
MIPS processor. We plan to extend our work by providing support for more advanced features of Sys-
temC, such as quantitative timing and transaction level modeling (TLM). In particular, we believe that
our approach is very suitable for the verification of TLM designs due to its algebraic natures. Namely,
one can verify the computation components separately and once locally proven correct, they can be re-
placed by abstract specification processes in order to verify the overall behavior of the TLM design.
Furthermore, we think that tailor-made reduction techniques are yet to be developed for the process
graphs resulting from hardware designs, in general, and SystemC designs, in particular.

As for the particular case of the mMIPS pipelined design, we did not investigate matters related to
control hazards and instruction dependencies. This mainlyresults from the fact that we only allowed
one instruction to go through the pipe that then closed it forthe other instructions entrance. There is a
possibility that if particular sequences of instructions are put in the pipe some undetected problems occur
because of the inconsistencies between them. In order to tackle these issues, we are working to find an
upper bound on the length of the sequence of instructions which has to be checked to guarantee that in
general, no such problem may take place in the system.

Mechanizing the (de)compositional reasoning about large system-level designs is another research
line, which we deem essential for the future application of formal verification techniques at larger scales.

Acknowledgments. Our mMIPS case studies are due to Sander Stuik from the Electronic Systems
group at the Electrical Engineering Department of TU/Eindhoven. Useful comments from and stimu-
lating discussions with Sander Stuik and Jan Friso Groote are gratefully acknowledged. We are also
appreciative to the members of the formal methods laboratory of the University of Tehran for their useful
discussions on the semantics of delta cycles.

References

[1] 1666-2005, IEEE SystemC LRM, available atwww.systemc.org, 2005.
[2] Baeten J. C. M., Basten T., and Reniers M. A.: “Process Algebra: Equational Theories of Communicating

Processes”, Cambridge, 2010.
[3] Behjati R., Sabouri H., Razavi N., and Sirjani M.: “An effective approach for model checking SystemC de-

signs.”, Proc. of ACSD’08, pp. 56-61, IEEE CS, 2008.
[4] Black D.C., Donovan J.: “SystemC: From the Ground Up”, Kluwer Academics, 2005.
[5] Blanc N., Kroening D.: “Speeding Up Simulation of SystemC Using Model Checking”, Proc. of SBMF’09,

vol. 5902 of LNCS, pp. 1-16, Springer, 2009.
[6] Burch J.R. and Dill D.L.: “Automatic verification of pipelined microprocessor control.”, Proc. of CAV’94, vol.

818 of LNCS, pp. 68-80, Springer, 1994.
[7] Brock B., Kaufmann M. and Moore J.S.: “ACL2 theorems about commercial microprocessors.” Proc. of FM-

CAD’96, pp. 275-293, IEEE CS, 1996.
[8] Campbell C., Grieskamp W., Nachmanson L., Schulte W., Tillmann N., and Veanes M.: “Model-based test-

ing of object-oriented reactive systems with Spec Explorer.” Technical Report MSR-TR-2005-59, Microsoft
Research, 2005.

[9] Fernandez J.-C., Garavel H., Kerbrat A., Mounier L., Mateescu R., and Sighireanu M.: “CADP - a protocol
validation and verification toolbox.” Proc. of CAV’96, pp. 437-440, 1996.

[10] Gurevich Y., Rossman B., and Schulte W.: “Semantic essence of AsmL.” Theoretical Computer Science,
343(3):370–412, 2005.

1024 H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra

[11] Ghenassia F.: “Transaction-level modeling with Systemc: TLM concepts and applications for embedded
systems.” Springer, 2006.

[12] Große D. and Drechsler R.: “Formal verification of LTL formulas for SystemC designs.” Proc. of ISCAS’03,
pp. V-245–248, IEEE, 2003.

[13] Groote J.F. and Ponse A.: “The syntax and semantics ofµCRL, Proc. of ACP’94, pp. 26–62, 1995.
[14] Groote J.F., Mathijssen A., Reniers M., Usenko Y., and van Weerdenburg M.: “The formal specification

language mCRL2.” Proc. of Dagstuhl’07, 2007.www.mcrl2.org.
[15] Habibi A., and Tahar S.: “An approach for the verficationof SystemC designs using AsmL.” Proc. of

ATVA’05, vol. 3707 of LNCS, pp. 69-83, Springer, 2005.
[16] Hennessy J.L. and Patterson D.A.: “Computer architecture: A quantitative approach.” 4th Ed., Morgan Kauf-

mann, 2006.
[17] Herber P., Fellmuth J. and Glesner S. : “Model checking SystemC designs using timed automata”, Proc. of

CODES/ISSS’08, pp. 131-136, ACM Press, 2008.
[18] Hojjat H., Sirjani M. and Mousavi, M.R.: Process algebraic verification of SystemC codes. Proc. of

ACSD’08, pp. 62-67, IEEE CS, 2008.
[19] Hojjat H., Sirjani M., Mousavi, M.R. and Groote J.F.: Sarir: A Rebeca to mCRL2 Translator (Tool Paper).

Proc. of ACSD’07, pp. 216-222, IEEE CS, s2007.
[20] Holzmann G.J.: “The Spin Model Checker - Primer and Reference Manual.” Addison-Wesley, 2003.
[21] Karlsson D., Eles O., and Peng Z.: “Formal verification of SystemC designs using a Petri-Net based repre-

sentation.” Proc. of DATE’06, pp. 1228-1233, ACM Press, 2006.
[22] Keutzer K., Malik S., Newton R., Rabaey J. and Sangiovanni-Vincentelli A.: “System level design: orthogo-

nalization of concerns and platform-based design.” IEEE TCAD, 19(12):1523-1543, 2000.
[23] Kroening D., and Sharygina N.: “Formal verification of SystemC by automatic hardware/software partition-

ing.” Proc. of MEMOCODE’05, pp. 101-110, IEEE CS, 2003.
[24] Larsen K.G., Pettersson P. and Yi W.: “Uppaal in a nutshell”, Journal on Software Tools for Technology

Transfer (STTT), 1(1-2): 134-152, 1997.
[25] Man K.L: ”SystemCFL : a formalism for hardware/software co-design.” Proc. of ECCTD’05, pp. 193-196,

IEEE, 2005.
[26] Moy M., Maraninchi F., and Maillet-Contoz L.: “LusSy: Atoolbox for the analysis of systems-on-a-chip at

the transactional level.” Proc. of ACSD’05, pp. 26-35, IEEECS, 2005.
[27] Müller W., Ruf J., and Rosenstiel W.: “An ASM based systemC simulation semantics.” Chapter 4 of SystemC:

methodologies and applications, pp. 97-126, Kluwer, 2003.
[28] Panda P.R.: “SystemC: a modeling platform supporting multiple design abstractions.” Proc. of ISSS’01, pp.

75-80, ACM Press, 2001.
[29] Patel H.D., and Shukla S.K.: “Model-driven validationof SystemC designs.” Proc. of DAC’07, pp. 29-34,

IEEE, 2007.
[30] Raffelsieper M., Mousavi M.R., Roorda J.-W., Strolenberg C. and Zantema H.: “Formal Analysis of Non-

Determinism in Verilog Cell Library Simulation Models.” Proc. of FMICS’09, pp. 133-148, 2009
[31] Razavi N., Behjati R., Sabouri H. , Khamespanah E., Shali A., and Sirjani M.: “Sysfier: Actor-based Formal

Verification of SystemC”, ACM Transactions on Embedded Computing Systems, 2010. To appear.
[32] Sirjani M., Movaghar A., Shali A., and de Boer F.S.: “Modeling and verification of reactive systems using

Rebeca.” Fundamenta Informaticae, 63(4):385–410, 2004.
[33] Srinivasan S.K., and Velev M.N.: “Formal verification of an Intel XScale processor model with scoreboard-

ing, specialized execution pipelines, and impress data-memory exceptions.” Proc. of MEMOCODE’03, pp.
65-74, IEEE CS, 2003.

[34] SystemC to mCRL2 toolkit,http://www.win.tue.nl/~mousavi/sysc08/.
[35] Traulsen C., Cornet J., Moy M. and Maraninchi F.: “A SystemC/TLM semantics in Promela and its possible

applications.” Proc. of SPIN’07, vol. 4595 of LNCS, pp. 204-222, Springer, 2007.

H. Hojjat, M.R. Mousavi, M.Sirjani / Formal Analysis of SystemC Designs in Process Algebra 1025

[36] Velev M.N. and Bryant R.E.: “Effective use of boolean satisfiability procedures in the formal verification of
superscalar and VLIW microprocessors.” J. Symb. Comput. 35(2):73-106, 2003.

[37] Vardi M.Y.: “Formal techniques for SystemC verification.”, Proc. of DAC’07, pp. 188-192, IEEE CS, 2007.

