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Abstract. SystemC is an IEEE standard system-level language usediwaee/software co-design
and has been widely adopted in the industry. This paper itbesca formal approach to verifying
SystemC designs by providing a mapping to the process ageBRL2. Our mapping formalizes
both the simulation semantics as well as exhaustive spateesexploration of SystemC designs.
By exploiting the existing reduction techniques of mMCRL2 aiso its model-checking tools, we
efficiently locate the race conditions in a system and restitem. A tool is implemented to au-
tomatically perform the proposed mapping. This mappingtaedmplemented tool enabled us to
exploit process-algebraic verification techniques toyaeh number of case-studies, including the
formal analysis of a single-cycle and a pipelined MIPS pssoe specified in SystemC.
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1. Introduction

A growing trend in the microelectronics field is to integrateomplete and sophisticated system on a
single chip (System on Chip). One of the most challengingiisgigs of the SoC approach is to define a
description language which is capable of specifying thelerdesign at a higher level of abstraction. At
this level of abstraction, usually known as system leveigiel22], the main concern is to simultaneously
and homogeneously describe both hardware and softwargstebs. Among the different languages for
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system level design, SystemC has become very popular artiveidopted by several leading companies
in this field. Moreover, SystemC 2.1 has been standardizé8ES standard 1666 [1].

SystemC is a library of classes and macros implemented int@attare to be used in the system
level specification. As SystemC is an add-on to the core lagguall the features of C++ are available
in modeling but the designer has to adhere to the partictyée given by SystemC. The set of data
types in SystemC contains the necessary elements for syestehtesigns, such as bits, bit vectors, four
state logic (low, high, undefined, tri-state), and data syfue fixed-point arithmetic of arbitrary size.
The notion of concurrency is realized by introducing preess Concurrent processes are scheduled in
a non-preemptive fashion. A process may suspend itself artecglar event, after the occurrence of
which it will be ready to resume. The sensitivity of processe the events can be static or dynamic.
The communication of different components is represemtetlystemC by the concepts of channels and
ports.

One of the goals of SystemC is to provide verification at hidgneels of abstraction. Several attempts
have been made in this direction [12, 21, 23, 25, 26, 35] bstabpect of the language is still in its early
stages [37].

In this paper, we describe a mapping from SystemC progratosi@RL2 [14], a process algebra
enhanced with data types, which provides a common framefsodnalyzing and verifying systems. By
translating the SystemC code to mMCRL2 we can carry out vaukinds of analysis using its backbone
toolset. First of all thes-calculus model-checker of mMCRL2 makes it possible to yaht safety and
liveness properties of the system. Particularly using riiodecking we can ensure the absence of race
conditions. For this purpose, we check a temporal formuleoeffect that no two conflicting assign-
ments to a signal or variable are performed (in two pathsinduat delta cycle. To prove that the race
conditions do not exist in the model we can alternativelythgeconfluence checker tool. We hide all the
irrelevant actions which do not have an impact on the valubeftlesired output. Under this setting, we
show the absence of race condition by proving that the systeanfluent.

We implemented a tool that made this translation autom&tie translation and the implemented
tool enabled us to verify a number of case studies. Thesestadies range from simple specifications
of combinatorial and sequential circuits (e.g., addenssffops) to a simplified single-cycle (comprising
about 1000 lines of SystemC code) MIPS processor to a ratmplicated pipelined MIPS processor
(comprising 2500 lines of SystemC code).

Related Work. The authors of [12] propose a model-checking technique feulzset of SystemC,
comprising fundamental constructs of sequential circuidsir work improves upon [12] by treating a
much larger subset of SystemC and supporting moaediculus as the specification language.

In [21], a translation from SystemC to an extension of PettisNs defined. Their translation requires
an upper bound on the size of dynamic constructs, which isagptired in our approach. However, [21]
supports quantitative time, which we do not support. We piegxtend our translation with quantitative
time since it can be modeled using mCRL2.

In [23], SystemC programs are partitioned into software badlware and are verified separately.
This separation is not necessary in our case, since we trgnisform both hardware and software parts
into MCRL2 at the same time.

In [25] a special process algebra is introduced for System&igds. This process algebra is used
only for formalizing SystemC. For verification, the coderaislated into Promela, the input language of
Spin [20]. In our approach, we benefit from the existing teei-for mCRL2 and thus, provide a single
framework both for formal semantics and formal verificatirSystemcC.
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The authors of [26] have described a toolbox, called LugSialyzing the transaction level models
written in SystemC. An automaton-based intermediate laggywith guards, messages and assignments
on transitions) is used between SystemC and the languae dlaick-end verifier tool. This language
is also used for describing the scheduler. One of the godlaus$y is that “the user should not have
to learn a timed logic”, so the properties are expressedringef assertions. Although this makes
the verification of safety problems more convenient, thchitéque has its limitations when it comes
to liveness properties. To overcome the limitations, Lua8gitionally supports some general liveness
properties such as “a process cannot terminate”. In cosgravvith [26], our approach has the advantage
of allowing for modalu-calculus for property specification which is more expressind can code other
(less expressive) temporal logics such as PSL as syntajar.sin [35], the intermediate language of
LusSy is translated into Promela, the input language of SRI&are not aware of an implementation of
this translation so that we can compare its performance auitimplementation.

In [29], the authors present an approach for model-drivestirig of SystemC designs. For this
purpose, the modeler formally specifies the intended spatiifin of the system in the AsmL [10]. The
result is accompanied with another AsmL description, whagplains the discrete event semantics of
the simulator. Spec Explorer [8] uses the two AsmL code teerpe test cases for the system. The
conformance of the test cases with the implementation isketesubsequently. As the back-end tool
supports C# programming language, an interface is writedwéen C# and the actual SystemC code.
[29] formalizes the scheduler in AsmL and the rest of Systeroistructs are directly called through a
wrapper. In our approach, however, we formalize the whokigthein the process-algebraic formalism.
Also, [29] focuses on testing while in this paper, we focusfammal verification. Similar to [29], in
[15], a translation from SystemC to AsmL is given and PSL prtips are also embedded in the same
formalism as monitors. Then the combination can be bothlsited and model-checked.

In [3, 31], a translation from SystemC to the object-base@jlage Rebeca [32] is defined. In
order to encode SystemC constructs efficiently, the Relmwgubhge had to be extended (in terms of
an intermediate language) with global variables and watestent. The generality of process algebraic
constructs in mCRL2 allowed us to do without any extensioartiermore, we could apply existing
process-algebraic analysis techniques to SystemC dessgms illustrate in this paper, whereas in [3, 31]
a customized model checking engine is proposed.

In [17] the authors have given a translation from SystemC R&PRAL, a model checker based on
timed automata [24]. For this purpose the scheduler isdstasetimed automaton. For every event,
channel and process instances in the original design aspameing automaton is constructed in the
UPPAAL model. The main advantage of [17] comparing to ourkismmodeling the quantitative time
with the clock capability in UPPAAL. The benefit of our mapgiis using the strength of the mCRL2
toolset in state space reduction and visualization. Forthee the liveness properties in UPPAAL are
bounded, i.e., they can only be verified within a certain timend. We do not have such constraints
with mCRL2 and can ensure liveness in infinite executionsgigicalculus model checking.

An improved simulation technique is introduced in [5] toyamet the simulator from exploring the
unnecessary interleavings. Prior to actual simulation dahohecker is executed on the pairs of con-
current processes. If the model checker fails to prove timsistency in race conditions then an error
is reported. After locating the spurious executions by tleeleh checker the simulator is informed on
unnecessary traces. The simulator uses partial ordertreddo simulate only the necessary paths. The
partial order reduction of [5] is equivalent to our tau-caefice reduction in Section 7. However the
reduction is used in [5] to improve the simulation of the 8ysC designs. In this paper we eliminate the
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spurious executions for the purpose to reduce the state spatmake the huge designs accessible for
further analysis.
This paper is an extended and improved version of [18].

2. Background

21. SystemC

In this section, we give an overview of the fundamental $tma&s in SystemC. The basic building block
of SystemC programs are modules (MIODULE). The actual behavior of a module is performed by
the SystemC processes, running concurrently in a modulexeTdre essentially three types of processes
in SystemC: methods, threads and cthreads. In the indi#diz stage, all the defined processes in the
program are executed once. The method processes cannospendad during their execution. So,
after being enabled, a method executes its body from begjrioi end. A method is reactivated again
whenever an event occurs in the system, to which the methsenisitive. Threads are activated only
once, and it is their own duty to suspend themselves on theedegoints, by callingwait (). The
simulator has to implicitly save the internal state of thigain order to use them when they resume.
Cthreads or clocked threads, are special kinds of thredushwan be sensitive to only one edge of one
clock in their sensitivity list of signals.

There is a scheduler in the model to manage the concurreotitixe of the processes. The logic of
the scheduler is determined by the simulator. Processe®arpreemptive, which means that a process,
in its turn, runs a piece of code and voluntarily releasesctivdrol. There are two different cases by
which a process releases the control: when it executes ataégiment, or when it terminates. In Figure
1, a simple SystemC model with two processes, nangely, input andcount, is given for a D-type
Flip-Flop. The first process, i.ezet_input, is a method, and the second oneunt, is a thread which
has a wait statement on an event.

Each process can be made sensitive to a set of events. Wheresgr which is sensitive to a
particular event, is suspended, it will be activated agaisa@on as that event occurs. This mechanism
helps synchronize different processes, and also it is sefweating responsive elements that react to
the events in their environment. Sensitivity can be statidymamic. In static sensitivity the processes
are made sensitive to a fixed set of signals at their deataraty the keywordensitive. Whenever a
change is spotted in a signal, the corresponding event isrgid so that all the sensitive processes to
that signal can be activated. Each process can be madéwsetwsthe positive edge of a signaldos O)),
the negative edge. feg()) or both. For examplget_input is sensitive to the positive edge ofk.
Whenever the value aflk has a transition fronfalse to true, an event is generated automatically by
the system so that get_input is suspended, it will continue its execution. In dynamics#@rity the
process explicitly mentions at the waiting point the eventfhich it is waiting. In Figure l¢ount tells
the scheduler that it is waiting for the eventSo, whenever another process explicitly triggers theteven
by calling the methodotify one, count will be again switched to a ready process.

The communication mechanism is based on two concepts: god<€hannels. A port is a kind of
pointer to a channel. For examptek is an input andiout is an output port. Usually when the modules
are instantiated, channels are used to interconnect thalestbgetherSignal channels a special kind
of channel, which does not change its value immediately veheew value is written to it. When all the
ready processes are evaluated, the simulation enters atepwalled the update phase. In this phase
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SC_MODULE (dff) {
SC.in<bool> din;
sc_in<bool> clk;
SC_.0ut<bool> dout;
sc_event e;
sc_int<16> num;
SC_CTOR(dff) {

// data input port
// clock input port
// data output port
// communication event
// counting the changes in din
// constructor

num = O;

SC_METHOD (get_input); //create a method
sengitive.pos << clk; //static sensitivity
SC_THREAD (count) ; //create a thread

}

void get_input() {

dout.write(din.read()); //change output
e.notify(SC_ZERO_TIME) ;

void count() {
while( true) {
wait( e);

// wait on e

num = num + 1; } // increasing num

}
}s

the old values of the channels are updated, the contentienesolved and the suspended processes that
have to be awaked are notified. The evaluate-update roursdi@ly known as theelta cycle

Figure 1. SystemC module for DFF

Simulation Semantics. The formal semantics of simulation in SystemC is descrit&dgudistributed

abstract state machines in [27]. Here we overview the sipipdeses in the simulation kernel, which take
place after the elaboration phase in which modules arentigtad and channels are connected among
modules. These are the steps in the simulation of the Systlsigns [28]:

1. Initialize: Execute all processes to initialize the system.

2. Evaluate Execute a process that is ready to run. Iterate until aliygaocesses are executed.
Events occurring during the execution could add new prasetsthe ready list.

3. Update Execute any update calls made during step 2. This step dshysthe signal channels as a
synchronization point. When a signal is modified during thegpam execution, its current value
does not change. The new value can only be observed in theeupkase. The contentions are

also resolved.

4. Notify. If delayed notifications are pending, determine the listeafdy processes and proceed to

Evaluate phase (step 2).

Finally, when the simulation is finished a clean-up phas¢rdets the created structure and releases the

allocated memory.
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sc_main( systemcC Simulation Kernel

Elaborate ;
while
processes

ready

scjsta rt( ); 4’
_notify(SC_ZERO_TIME)
delayed

.notify()
immediate

notify(t)
timed

Figure 2. SystemC Simulation kernel ([4])

There is a further step in the original algorithm to advateetime and perform time-notification, but
we ignore quantitative time here. Each evaluate-updateegoisacalled a delta cycle in terms of simulation
semantics. Notice that the number of delta cycles can be thareone, since in the evaluate phase some
events (such as notifying an event or changing a signal) canrahat awake suspended processes.
Immediate notifications are the ones that deliver their tsvas soon as they occur. In contrast, delta
delayed notifications deliver their events in the next deftee. The syntax for delta cycle notification is
notify (SC_ZERO_TIME).

Figure 2 shows the transition diagram of the simulation &knwhich is inspired from [4].

22. mCRL2

MCRL2 is a successor jaCRL, and extends it by including features such as true coecay (in terms
of multi-actions), real time, higher-order functions ammhcrete data types:CRL, in turn, extends the
Algebra of Communicating Processes (ACP) [2] with abstdata types. We refer to [14] for a more
elaborate description of mCRL2 features. The choice of mZR4& our formal language is motivated
by the existence of a rich set of abstract data types as fass-entities in mMCRL2. The strong tool-set
also provides a powerful mechanism for analyzing specifinat The summarized syntax of mCRL2
processes is given below.

pu=aldy,....dy) |76 | ptp|pplpllpl ()|
ou(p) | Vvp) I Te) | Ygpplc—pop

A basic actiona of a process may have a number of argumehts. ., d,. These arguments cor-
respond to the data elements. Actiorfwhich does not take any parameter) denotes the internal (un
observable) action. Processlenotes the deadlocked process in which no further trangiipossible.
Non-deterministic choice between two processes is dermtdide “+” operator. Processes can be com-
posed sequentially and in parallel by means-dfhd “||”, respectively. The abstraction operatg(p)



H. Hojjat, M.R. Mousavi, M.Sirjani/ Formal Analysis of SgistC Designs in Process Algebra 1007

renames actions ihinto 7 and thus makes them unobservable. To enforce synchranizétie encapsu-
lation operatody (p) specifies the set of actiod$ which are not allowed to occur. Conversely, the allow
operatorVy (p) indicates the only actions that are allowed to occur. To shogsible communications
in a system and the resulting actions, communication opefai(p) is used. The elements of Setare

of the forma; | as | --- | a, — ¢ (for n > 2), which intuitively means that actionis the result of the
multi-party synchronization of actions, as, . . ., anda,,. The non-deterministic operator is generalized
by the parameterized sum operaloy,. , p, where the variablel may appear (and is bound By in
the proces®. A conditional statement is representeddsy pg © p1, where procesg, will start if the
conditionc evaluates to true, or otherwige will take over.

There are a number of built-in data types in mCRL2, such agérs, reals, lists, sets and functions
which are quite useful for our implementation.

An mCRL2 specification contains a set of definitions; eachheht are prefixed with a keyword
determining their purpose. Bysart definition one can define a new data type. The constructors of a
data type are given bgons (for constructor) andtruct declarations. Constructors defined ussgict
get their equality and inequality axioms generated for.fieeata type can equipped withaps, which
are user-defined mappings for manipulating data. A set catgaps €gn) can be defined to specify
the definition of a mapping. A new process is declareginc. The initial process is designated with
keywordinit.

The mCRL2 tool-set contains tools for state space genetatamluction, simulation, visualization
and model-checking. Furthermore, it can be smoothly iategrwith the CADP tool-set [9].

3. Kernd Data Types

There is a generic pattern of specification which is repeatedch translation from SystemC to mCRL2.
This pattern concerns the definition of common data types, ®r variable names, signal names, pro-
cess hames, bits and vectors, and the kernel processee feinthlation semantics of SystemC. In this
section, we illustrate the generic definition of data typEse simulation kernel processes of SystemC
are described in Section 4.

The set of data types that are commonly used in all trans&fimm SystemC to mCRL2 are sum-
marized in Figure 3. For the sake of brevity, we only desctfilzedata type mappings and do not present
the specification of the equations manipulating the datagypere. The interested reader may find the
complete implementation in [34]. The first part of the defomis, given in Figure 3 - Part 1, represents
the identifiers and names used in the program. These idesiifiel names are extracted from the pro-
gram code by the tool. Six sorts are defined for this purp@sahe unique identifers which are assigned
to processes (cf. Section BigName the hames of the signals used in the progranritName different
names which are used as poNarName the names of variablegvnName the names of events, and
Modulelns module instance names.

We assign a natural number to each delta cycle, which helgdfasentiate delta cycles; this number
is calledroundin our model. So, if we are in the delta cydlea process which is ready in the delta cycle
i+ 1 cannot be executed at the moment. Round is defined in FiguRag 2.

Following the above-explained definitions, there are tigreeips of data type definitions: variables,
signals and process information. In Figure 3 - Part 3, a fishdables YarList) is defined, which offers
two maps for changing and finding the value of a variable. Bohevariable, other than its name, value,
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%-— Part 1 - Program definitions

sort
ID = struct - - - ; % process names
SigName =struct - - - ; % signal names
PortName =struct - - - ; % port names
EvnName =struct - - - ; % event names
VarName =struct - - - ; % variable names
Modulelns =struct - - - ; % module names

%-— Part 2 - Rounds

sort Rnd = Nat;

%-— Part 3 - Variables

sort

Scope =struct local(getProc:ID) field(getModule:Modulelns);

Value =struct boolean(getValBool:Bool)?isBopl
integer(getVallnt:Int,getIntSize:Nat))?is|nt
array(getValArray:Array)?isArrgiullVal?isNull;

Var =struct variable(getVarName:VarName, getVal:Value,getScopeps);
VarList = List(Var);

map

changeVar:VarListx Var — VarList;

findVarVal:VarList x VarNamex Scope— Value;

%-— Part 4 - Signals

sort
Sig =struct sig(getName:SigName,
getCurVal:Value,getNewVal:Value);
SigList = List(Sig);

map
findCurSigVal:SigListx SigName— Value;
changeSig:SigLisk SigNamex Value — SigList;
updateSig:SigListx SigNamex Value — SigList;
findChangedSigs:SigList- SigList;

%-— Part 5 - SystemC process information

sort
Evn =struct event(getEvnName:EvnName,
getModulelns:Modulelns);
Stat =struct finished?isfinished| ready(getRnd:Rnd)
?isready| suspended(getEvn:Evn)2ssispended,;
SensType sstruct both| none| negedgd posedge;
SigSens sstruct sigsens(getName:SigName,getType:SensType);
SigSensList = List(SigSens);
Procinf =struct procInf(getID:ID,getStat: Stat,getSensitiveList: SegSList|NullInf;
ProcQueue = List(ProclInf);

map
changeStat:ProcQueue ID x Stat— ProcQueue;
notifyEvn:ProcQueuex Evn x Rnd— ProcQueue;
findSensType:SigSensLisSigName—SensType;
notifySigChange:ProcQuenesigNamex Rndx SensType-»ProcQueue;
getFirstReady:ProcQueue Rnd — Proclinf;
isAnyReady:ProcQueue> Bool;

Figure 3. Generic data types used in the translated mCRLdf&adions
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Figure 4. A schematic view of the generic mMCRL2 processea faystemC specification

and bit width, a scope discriminator is also designatedgtirgjuish the variables in different scopes. A
scope of a variable is the place where the variable is defaredican be local to a process or field of a
module.

Generic data type definitions for signals are given in FiglirePart 4. There are two values for
each signal, one for the current and one for its new value. MapchangeSigcan be used to give a
new value to a signal. This map is used in translating thelaeggsignments to signals in the SystemC
code. The signal does not get the new value immediately #fiercall, only by callingupdateSighe
new value is copied to the current one. This is due to the ap&reiatment of signal modifications in
SystemC. The only use ofbdateSigs in the update phase, where the signals get their new valles
mapfindChangedSigeturns the signals of which the current and the new valuedifferent.

In Figure 3 - Part 5, a list data typerocQueugfor process-related information is declared. For each
process in this list, three facts are recorded: 1D, statdstla@ sensitivity list. 1D is a unique identifier,
which is used to differentiate between processes. Thesstatu befinished ready or suspendedReady
has an argument which shows the current round. For the ségdiv a signal, it should also be specified
if the sensitivity is to a positive edge, a negative edge @y changes in the signal. There are several
maps declared for changing the status of a process, ngiginevent, and gathering information from
the queue.
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4. Kerne Processes

In this section, we present the generic mCRL2 processeshwiimiglement the simulation semantics of
SystemC. A schematic view of the generic mMCRL2 processedtiresfrom our translation is presented
in Figure 4. Initially, we create a scheduler process, ooegss corresponding to each SystemC process
and three processes for saving and updating the latestsvaldilee process queue, variables, and signals.
The scheduler process synchronizes with process queudén tr find out, which process is the next
ready process to be executed. Note that any schedulingthlgaincluding a chaotic non-deterministic
choice or any other fixed- or dynamic-order) can be impleextin the process queue process to re-
turn the next ready process conforming to the desired séihgdalgorithm. We revisit this subject in
Section 7. Afterwards, the next ready process is signaléithasmay change the value of signals and
variables in the course of its execution (by synchronizirith with the variables and signals processes)
and eventually suspends itself by synchronizing first withgrocess queue (in order to change its status)
and then with the scheduler (to return the control flow). Trexess of choosing and scheduling ready
processes continues until no more process is enabled. Astdmge, the scheduler changes its state to the
update phase. During this phase, the scheduler processmeréll delta-delayed changes to signals and
variables and updates the status of processes. When al sashronization have taken place a new
evaluate round starts. Finally, when the repetition of wstd and update rounds reaches a fixed-point, a
new set of inputs are applied, triggering another round tadwmycles.

A summary of the mCRL2 specification of the processes in Eiduis given in Figure 5. The first
three processes which are prefixed withahdlet are containers for the variables, signals and process
information lists. The lists are kept in the arguments of pinecess. Apart from usual actions for
retrieving and setting the values from/to the list, thedwling actions are provided by processes. In the
variable handler, the actionchangeVais used for changing the value of a variat#égHandleoffers two
actions for changing and updating the values of a signetiangeSigandr_updateSig There are actions
for changing the status of a processifangeStatand notifying an eventr(notifyEvn) or a change in a
signal ¢_notifySigChanggin the processrocQueueHandlerOther than the three handlers, the process
Evaluateand the translated processes of the model are initiateck diehinning. Each of the threads or
methods that are defined in the model is mapped into one mCRic2gs. This mapping is described in
more detail in the following section.

An alternative approach to translating variables (signatsuld be to include a parameter for each
variable (signal) in its handler process. This approached in [19] for a different source language, but
it does not scale well to large SystemC specifications (irother of a thousand lines of code), since the
signature and the specification of the handler process bextmo huge and unmanageable.

The procesEvaluateis the central process of the system. It has an argument spdivé current
round. The major work oEvaluateis to choose a ready process from the process informatibnTiise
selected process should be ready in the current delta ciiobn it commands the corresponding mCRL2
process to commence. This is performed by the actistart As the scheduling is non-preemptive,
Evaluatehas to wait untils_finish is issued by the recently started mCRL2 process. This méatshe
running process has finished its work, and another procesbecaitiated. Before a process finishes, it
should change its state saspendear finishedin its corresponding entry in the process information list.
The evaluate phase will be repeated till no more processeready in the current delta cycle. At this
moment, the procesdvaluatewill convert to another procestpdate This process recursively checks all
the signals to see if there is a signal, of which the currehtevis different from the new value. If so, it
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proc VarHandler(vl:VarList)=
> vivarf_changeVar(v).
VarHandler(changeVar(vl,v)) +
>~ n:varNamey. s:scopé-getValue(n, findVarVal(vl,n,s),s).VarHandler(vl) +
r_getVarList(vl).VarHandler(vl);

proc SigHandler(sl:SigList)=
>~ n:sigNamey_, v:valuef-changesSig(n,v).SigHandler(changeSig(sl,n,v)) +
> n:sigNamey_, v:valuef-updateSig(n,v).SigHandler(updateSig(sl,n,v)) +
r_getSigList(sl).SigHandler(sl);

proc ProcQueueHandler(pg:ProcQueue)=
> b Y s:staf-changeStat(i,s).
ProcQueueHandler(changeStat(pq,i,s))+
>~ e:Evn_ rRndl-NOtIfyEVN(e, ).
ProcQueueHandler(notifyEvn(pg,e,r))+
Z n:SigNameZ r:RndZ st:SensType
r_notifySigChange(n,r,st).
ProcQueueHandler(notifySigChange(pg,n,r,st))+
r_getQueue(pq).ProcQueueHandler(pq);

proc Evaluate(round:Rnd)=
>~ pq:ProcQueus-getQueue(pag).
(getFirstReady(pqg,rounghMullinf) —
(s_start(getID(getFirstReady(pg,round)),round).
r_finish(getID(getFirstReady(pq,round))).
Evaluate(round})
(3 sisigLisiS-getSigList(sl).
Update(round,findChangedsSigs(sl)));

proc Update(round:Rnd,sl:SigList)= ¢s[}j —
(s.updateSig(getName(head(sl)),getNewVal(head(sl))).
((isBool(getNewVal(head(sl))\
getValBool(getNewVal(head(sl))) == falge
getValBool(getCurVal(head(sl))) == true)

s_notifySigChange(getName(head(sl)),round + 1,negedge)
s_notifySigChange(getName(head(sl)),round + 1,posedge))

.Update(round,tail(sl)})

(3= pa:ProcQueus-getQueue(pq).
(isAnyReady(pa)-Evaluate( round+Y)alidate));

Figure 5. The kernel mCRL2 processes

updates the signal and also notifies the lists, so that if egsis waiting for a signal change, it will be
converted to ready for the next delta cycle. The conditiathiimprocess is to check the changed signal to

see if it is Boolean and also if there is a positive edge oaugiin it. If so, it passes posedgeargument
with the s_notifySigChangén order to awake the processes which are only sensitive tsitiyie edge of

the signal. Otherwise, the argumenhigyedge Thes notifySigChangenessage is received by the queue

handler which then marks all processes waiting on the qooreting signal (signal edge) as ready.

At the end ofUpdate the queue of processes is checked to see if any ready prieaessaining. If

so, another round of evaluation (with an increased roundbeum)ris begun. When all the processes are

finished, the procesgalidateis run to check the system for another set of inputs. This jdaéxed in

more detail in Section 6.
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proc getinput(pID:ID,container:Modulelns)=
>~ roRnaI-start(pID,ro)y " si:sigList-S-getSigList(sl).
s_changeSig(signalConnect(dout,container),
boolean(getValBool(findCurSigVal

(sl,signalConnect(din,container))))).

s_notifyEvn( event( e, container), ro).
s_.changeStat( pID, suspended( event( NullEvn,container)))
sfinish(pID).getinput( pID, container);

proc count(plD:1D,container:Modulelns)=
> ro:rna-r-start(plD,ro).loop1(pID,container).
s.changeStat(pID,finished)fiish(pID);

proc loop1(plID:ID,container:Modulelns)=
s_changeStat(pID,suspended(event(e,container))).
s finish(pID).
> ro:rna-r-start(plD,ro)y " vi-varList-S-getVarList(vl).
s_changeVar(variable(hum,integer(getVallnt(
findVarVal(vl,num,field(container)))+1,16),field(contiar))).
loop1(pID,container);

Figure 6. Translation of the proc. in Fig. 1

5. From SystemC to mCRL 2 Processes

Generic definitions given in Sections 3 and 4 form the bagesuiotranslation from SystemC to mCRL2.
To translate specific SystemC code, it only remains to ted@sts specific processes and statements
therein. In this section, we give an overview of this tratislascheme.

Each specific SystemC process is mapped into an mCRL2 progask such mCRL2 process has
two arguments: the first one is the ID of the process whicleddfitiates it from others. The second one
is the module instance that contains this process. Themdasdifferentiating among processes in such
a manner is that a module can be instantiated more than oagaraggram, and a SystemC process can be
instantiated more than once in a module. The translatioheobbdy of the process goes in between the
start and the finish actions. Figure 6 shows the mCRL2 traoslaf the SystemC processes in Figure 1.

As it can be seen in the translation of the processes, thaldtad processes are basically sequences of
different actions for communicating with the kernel prasgss These include modifications to the signals
and variables. The magignalConnectused in the description of the procegsinput, is a mapping of the
form PortNamex Modulelns— SigName It determines the signal to which a port of a module instasce
connected. As the procegstinputis a method, in its termination it changes its state to waa dammy
event. This will also occur when a thread executes the cordmaft (). This means that the process
has ended but can be reactivated when one of the events anggigity list occurs.

Statements. By interacting with the kernel processes, the values ofafgand variables can be obtained
and changed. This makes the translation of assignmentsimnildrsstatements straightforward. In

hardware modeling normally bitwise operations are fretjyarsed, which are not supported in mCRL2.
For this purpose we implemented the required functions dowerting a value to its binary form and

also perform bitwise operations. Further details can bewted from the code in [34].

Concerning the mapping for control flow statements, the itimmél statements such as if-then-
else and switch-case are mapped to mCRL2 conditionals. d.agptranslated into recursive processes
guarded by their conditions, if any.
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proc Validate =% fo:Bool.s.changeSig(clksig, boolean()).
>~f1:Bool.s.changeSig(dirsig,boolean(f)).Evaluate(0);

Figure 7. \Vferification proc. for Fig. 1

input| ;. output
PU Gin dout din dou din dout| din doutf———>
>DFF DFF DFF DFF
trigger

Figure 8. A simple shift register

6. Model checking the code

In order to perform model-checking on a model, all the pdssifalues for the signals form the envi-
ronment have to be examined. We add a particular proces® teytem in order to generate all these
possibilities. In the remainder of this section, we firstalid this process and then illustrate our ap-
proach by model-checking a small example.

6.1. Process Validate

To verify a SystemC module in our model, we include the predatidatein the mCRL2 code. This
process generates all the possible inputs for the moduleeXample, Figure 7 shows this process for
the SystemC module in Figure 1. The sigdal sig is connected to the podin andclk_sig is connected

to clk. If one of the inputs of the module is an integer, we should afgecify the range of the variable in
generating different values for the input. In addition tis tapproach, we use an alternative approach in
Section 8.2 (inspired by [6]) in order to verify the data seties of a pipelined architecture.

6.2. Example

We take four modules of the D Flip-Flop (as described in Feglirwithout thecount method) to build
a simple shift register. The design is depicted in Figure 6.2

There are two input signals from the environment to thisuifrctrigger andinput By altering
the values of these signals in thalidate process, various executions are possible. The state space
of this system contains 2248 states and 2440 transitionsisdalization of the state space using the
visualization tool Itsview (included in the mCRL2 toolsét)depicted in Figure 6.2 . We also verified
the correctness of the system by using the ghealculus model-checker of mCRL2, which translates
the combination of an mCRL2 specification and a modal forrmitaa Parameterized Boolean Equation
System (PBES) (by using the tool Ips2pbes) and solves it @ggns of the tool pbestool). The correctness
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requirement for the shift register is that the value of thauirshould be communicated after four clock
cycles (positive edges of trigger signal) to the output gigrirhis can be expressed in the mogal
calculus in terms of the following formula:
Vb : Bool.[(true*).changeSi@iin, boolean(b)).
(—updateSi¢trigger, boolean(true)) A ~changeSi@lin, boolean(—b)))*.
updateSigtrigger, boolean(true)).
(—updateSi¢irigger, boolean(true)))* .updateSigtrigger, boolean(true)).
(—updateSi¢trigger, boolean(true)))* .updateSigtrigger, boolean(true)).
(—updateSi¢irigger, boolean(true)))* .updateSigtrigger, boolean(true)).
(—updateSig¢trigger, boolean(true)) A ~changeSifput, boolean(b)))*.
updateSi@trigger, boolean(true))| false
The above property states that whenever a change is spottieel signakiin which lasts till the first
positive edge of trigger, it should be propagated in thet shdister in such a way that after four posi-
tive edges of trigger, it reaches thet signal (changeSi@ut, boolean(b)), note that we have checked
deadlock-freedom before hand and hence the above formualystrue if the expected change ac-
tion is observed before the fifth trigger). The positive ediyetrigger are identified here by the action
updateSi@trigger, boolean(true))), which is issued only when the value of trigger is modifieaindr
false to true.

6.3. Tool

We have implemented a tool for automatically translating $ystemC code into mCRL2. It supports
a reasonable subset of SystemC including the featuresilded@above. This includes most of the con-
structs which are necessary in an RTL design. In the C++eliatures, we support different kinds of
loops, conditionals and assignments. From the SystemQGractswe support modules, processes, ports
and the primitive channels. The tool is written using theaJarogramming language and the ANTLR
compiler generator.

7. Non-determinism in delta-cycles

Non-determinism is not allowed for synthesizable hardwéence, many existing SystemC simulators
pre-assume that the specification does not include nomrdigtiem, i.e., race conditions, and thus sched-
ule the ready processes in a deterministic manner, usuatiyrding to their order of definition in the
original code. For example in the initial phase and at eastkotycle of the system in Section 6.2, there
are different orders in which the D Flip-Flops propagatérthmputs to the output. However, a typical
SystemC simulator only considers one path of execution.

Considering only one path of execution sweeps possibleaaditions under the carpet. The mod-
eler cannot see whether/when the system has a form of nemudatsm and thus different orders of
scheduling result in observably different states. Anahiittempt to detect such pathological situations
is to replace th&valuateprocess of Figure 5 with that of Figure 13. The lasnaluateprocess chooses
the next ready process non-deterministically and thusrgéeeall possible orders of scheduling. Ap-
plying this approach to the example of Section 6.2, results state-space with 6670 states and 7423
transitions.
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Figure 9. A visualization for the state space of 6.2
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The state space of this problem does not show the (very mymdcted) drastic increase in its size
after introducing non-determinism in delta cycles. Theeerainly three factors in this system respon-
sible for this incident. First of all, notice that the systéas a sequential behavior: only after a process
writes on its output signal, the next process is notified tdlygedata. Thus, after the initialization phase
in which all the processes are ready, the value written onnet signal advances step by step in the
processes. Secondly, the only shared signal between thegses, which can influence the readiness of
all processes, is the trigger signal. This signal cannokeawvifae processes more than four times, since
after four positive edges of trigger the input reaches thpwiu Finally, this circuit has an important
characteristic, calledonfluence This means that different orderings in delta cycles alweys in a
single state. Therefore different branching in a deltaeyennot affect the branching in the next delta
cycle.

In most practical cases, however, different interleavinfsctions lead to immensely huge state
spaces. This is an incarnation of the well-known state-espgalosion problem. For instance, with
15 enabled processes the number of all schedules goes begertiousand billion. Process algebraic
reduction techniques, implemented in the mCRL2 tool-s&t,noitigate this problem. By first abstracting
from unobservable action, i.e., actions that do not charsgiahles, one can check whether different
schedules are confluent (using the tool Ipsconfcheck) beftbtempting to generate the state space. After
finding the confluent paths, the state-space generationecdorte by only generating one instance among
confluent paths. After generating the state-space, thee spatce can be reduced, e.g., modulo weak trace
equivalence. The result is usually a small state-spaceshad@n be examined using the visualization or
the model-checking tools.

To better illustrating this technique, we analyze a rattraightforward case study. (Note that we use
a smaller case study to show the actual state-space; thermtinh of reduction and model-checking
technique explained in the remainder of this section, hewescales up to much larger case studies.)
Consider a two-bit shift register, similar to the four-baunterpart of Section 6.2. This shift register
consists of merely two D Flip-Flop modules, as depicted guFe 10. In order to distinguish between
different delta cycles better in the final state space, weawsespecific actions in the model to show the
start and the end of a delta cycle, called(x) and fin(x), for the start and the end of delta-cyate
respectively. The beginning of a delta cycle can be markdtiérproces&valuate after the condition
that tests if there are any processes ready in the proces®.qlUde end of a delta cycle can be best
identified when the processlidateis initiated, since at this position we can ensure that allgbssible
execution paths have been finished.

Since the changes in the values of the signals are of interesis, we hide all the actions except
for the ones that assign a new value to a signal. Also we keepdtions that are added to the system
for designating the delta cycles. Under these conditidres state space of the problem after branching
bisimulation reduction is shown in Figure 11. The states limctv non-deterministically a ready process
is chosen are represented with a darker color. These statasaf confluent (i.e., a diamond) structure
in the state space. Thus, the order of executions do not naaiitewe can minimize the diamonds using
tau-confluence reduction. This has been done in Figure 12.

In the case of a two-bit shift register, the absence of racelition can be checked manually by
examining the reduced state space. However, for largegnigsine above technique must be combined
with model-checking to detect race-conditions. The matheleking problem is about checking a tem-
poral formula to the effect that no two conflicting assigntsen a signal or variable are performed (in
two paths) during a delta cycle. The following formula shadtwvs ;.-calculus property which has been
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Figure 11. The state space of Figure 10 after branching hlation reduction
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Figure 12. The state space of Figure 10 after tau-confluesthection

used in our shifter example.

[true x .str(z)](
[
(=str(x) A = fin(x)) * . changeSi@ut, boolean(false)).
(=changeSi¢ut, boolean(false)) A
—changeSi@ut, boolean(true)) A —fin(x)) * .
fin(x)
|false
V
[
(mstr(xz) A = fin(x)) * . changeSi@ut, boolean(true)).
(—changeSi¢ut, boolean(false)) A
—changeSi@ut, boolean(true)) A —fin(x)) x .
fin(z)
|false

The above formula states that at any point, if the start dadsfclex is observed then both of the
actions changeSigut, boolean(true)) and changeSi@ut, boolean( false)) cannot be seen within the
delta cycle.
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proc Evaluate(round:Rnd) 3~ pq:ProcQueue
s_getQueue(pq). (getFirstReady(pg,rouatiyllinf) —
(>~ xProcint.(X in getReadyList(pg,round)}>
s_start(getID(x),round).finish(getID(x)).Evaluate(round))
o (3 sisigListS-getSigList(sl). Update( round, findChangedSigs(sl)));

Figure 13. Evaluate for the non-deterministic scheduling

8. Case Study

We considered both single-cycle and pipelined specifinaifonMIPS (mini MIPS) which is the generic
basis for MIPS processors. With some extensions for incatjpg network facilities, mMIPS is used
in MiniNoC, a Network-On-Chip based multi-processor So@ aalyzed both simplified single-cycle
version of the mMIPS processor (comprising about 1000 lai€ystemC code) as well as its pipelined
version (comprising about 2500 lines of SystemC code), wvaie explained in the coming subsections.

8.1. Single-CyclemMIPS

The overall design of the single-cycle MIPS processor isadeg in Figure 14. Itis a simplified SystemC
implementation of a classic single-cycle MIPS processatessribed in [16].

To deal with its complexity, we partitioned the system intdvsystems, and for each part we sep-
arately translated the described components into mCRLUjusir tool and analyzed it for different
properties. The subsystems are the data path for congdiiae program counter, arithmetic (R-type)
instructions, and memory unit. The rationale behind thimsa&tion is avoiding state space explosion. In
Figure 14, the program counter datapath and memory unit coergs are shown. To verify arithmetic
instructions part, we had to exclude the data memory sulpoasnt (denoted by “dmem” in Figure 14)
from our selected components.

We verified the system with a computational program. In otdererify the system, we used pro-
cesses for monitoring the actions of the system for eachdaeshproperty. These processes synchronize
with the actions in the system in the order specified by theteal property. If these synchronizations
cannot take place, then a deadlock is reported in the stateggeneration. In the first subsystem, the
monitor synchronizes itself with the changes in the progcaomter (pc) signal and after each non-jump
operation, checks them to be incrementing. In the seconslystdm, it checks the inputs and also the
output of the ALU. For the memory part, the changes of the mgrsignals are watched; in the PC sub-
system, we were able to find a minor bug (due to an inappreptygie definition in the SystemC code)
leading to deadlock. The mistake was happening in the maetUse of declaring a signed variable
for the program counter. When half of the expected interwa&numerated by the counter, because it is
signed, its value will wrap around. This will make the simiga erroneously.

The following table shows the size of the state-space gttkfar each subsystem.

Subsystem| Memory | ALU PC Datapath
States 130601 | 230757 | 6838
Trans. 138726 | 256009 | 7836
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Figure 14. A Schematic View of the Single-Cycle mMIPS Design

8.2. Pipeined mMIPS

The pipelined mMIPS processor substantially extends thieuation sets of the single-cycle processor
and implements the classic pipelined architecture of [1i63upports about thirty instructions from the
MIPS instruction set (about 5 times as many as the singleea@esign), and is used in the design of a
Network-on-Chip (NoC) multi-processor system (MiniNo@)this section, we first describe the generic
verification technique and afterwards, we explain the aptibn of the technique to our case study.

In their seminal paper [6], Burch and Dill put forward an a#fitt approach to the verification of the
pipelined execution of instructions. This method has beiehly considered as a fundamental way to
formally prove the correctness of processors, and has ssshin many case studies such as [36, 7, 33].
The verification scheme is depicted in the commuting diagpéRigure 15.

The state of the processor is defined at two different aligiratevels: ISA (Instruction Set Ar-
chitecture) and MA (Micro Architecture). In ISA, only thogarts of the system are considered which
are visible to the user: register file, data memory and prograunter. In MA, the actual state of the
system is considered, containing all the intermediateags which are also important to the actual im-
plementation of the pipeline processor. The functidis,, andFs,.. are the transition functions for
implementation and specification. A transition functiorisgine current state as well as the inputs and
gives the next state.

The key idea of Burch and Dill's approach is to use the flushatk ©f the MA level, in the sense
that only those states are investigated in which the procésstalled for a sufficient number of cycles.
In the flushed states, no partially executed instructionaiamin the pipeline. The processor is said to be
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Figure 15. Burch and Dill's Commuting Diagram

correct if any arbitrary sequence of execution at the MAllbas the same effect as its ISA counterpart
on the observable components, as long as the comparisonasmlthe flushed states. The functibiis

an abstraction function that maps an MA state to its cornedipng ISA state by stripping off all but the
programmer visible parts of the implementation state.

We translated the SystemC specification of the pipelined Rtb mCRL2. In order to observe the
result of a single instruction, we put it at the beginning tod pipeline, i.e., the output signal from the
instructions ROM. As we seek the finite state space reprieggethiis instruction, we prevent the program
counter adder to increase unboundedly. With each edge aldbk, the instruction advances one stage
in the pipe, and since no new instruction is allowed to coneetime system, after quite a number of steps
the state space generation is stopped. On average, afigrsD states (in the mCRL2 specification)
an instruction traverses all through the pipeline. Notitat the Burch and Dill approach cannot be
directly applied to the above state space, since in our casehave to deal with labeled transition
systems in which all the information is reflected on the labeln the original approach, two paths
of specification and implementation were checked to seetlieatiser-visible components of the state
are modified similarly or not. Likewise, here we have to chediether the actions that are in charge
of changing the contents of the user-visible componentsraehing. For this purpose, we use the
MCRL2 abstraction operator to hide all the uninterestirtgpas which do not have any effects on these
components. By applying tau-confluence reduction to elit@rall the confluent internal actions (i.e., the
abstraction function in the Burch and Dill approach), theuiecan be compared with the specification to
see if the actions are issued correctly. As an example, dengie R-type instructions, that is, arithmetic
and logic operations with all operands in registers. Fa Kimd of instructions, what is important is
the result from the ALU, which is written back to the memorytle write-back stage of the pipeline.
Similarly for the store instructions, the main actions &@se that write the actual value into the memory
in the memory stage of the pipeline. We considered diffetgmes of instructions of the system (about
15 different types), and investigated the exposed beh&wibe the same as the desired behavior of the
processor.

During our analysis, we discovered a flaw in the semanticheftithmetic shift instruction. In the
different flavors of the shift right instructions in the piews implementation, the sign bit of the register
was not shifted inside. Instead the processor used to imtederos in the register. Although this is
reasonable for unsigned number, but when the negative ngnaloe taken into account, the situation
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Case Study States Transitions
DFF (Deterministic) 2248 2440

DFF (Nondeterministic) | 6670 7423
Memory 130601 | 138726
ALU 230757 | 256009

PC Datapath 6838 7836

Table 1. The size of the generated state spaces

differs. For negative numbers the shifted bit should be dinés error was reported to the designers and
corrected in the new version of the code.

8.3. Discussion

Verifying the above-mentioned case studies has helpedp®ira our translation and extend its scope to
a larger subset of SystemC. Furthermore, it has revealégirtstructures in the state space of SystemC
designs, which can be exploited further to reduce theiestpices while preserving the modal properties
of interest. Table 1 gives an overview of the size of the gateerstate spaces. The following observations
can be made:

Firstly, all the state spaces seem to be a sparse graph aostdinear, since a dense graph or a fre-
guently appearing branching would result in a considerdiflerence between the number of states and
transitions. Secondly, the difference between the detéstic and nondeterministic version of schedul-
ing is considerable but not huge (a factor of 3 in the case ®tRF). Both facts can be explained by
the nature of hardware, which is supposed to be determinigthus, it seems feasible to detect the
(seemingly) few sources of non-determinacy in the systesigdeand prove (e.g., by the static analysis
of code) that they deliver the same outcome. Then, a simpéaulisearch of part of the state space
would provide an exhaustive proof of correctness. Elseghiar[30], we have investigated this path by
detecting the source of non-determinism in a subset of thiésogdanguage.

From our experience with the case studies, it seems undleittause compositional techniques for
analyzing larger designs. An obstacle in the practicaliegfibn of this technique is to re-define the
interfaces and the properties on the decomposed compordathanizing the decomposition of both
the system and the properties is a challenging task, whiclvaugd like to take on next in our research.

9. Conclusions

In this paper, we presented a formalization of SystemC aotleel process algebra mCRL2. The formal-
ization is implemented in a tool and this enables automatitstation and formal verification of SystemC
code in the mCRL2 tool-set. The mCRL2 code can be analyzeiffémeht aspects. A useful application
is to prove output determinism, which is ensuring that déffe: orderings in a delta cycle does not affects
the final outcome. We showed two systematic ways for this gaep model-checking and confluence
checking.
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Using the implemented tool, we analyzed several case studikiding a single-cycle and a pipelined
MIPS processor. We plan to extend our work by providing supfms more advanced features of Sys-
temC, such as quantitative timing and transaction levelatiog (TLM). In particular, we believe that
our approach is very suitable for the verification of TLM dgs due to its algebraic natures. Namely,
one can verify the computation components separately aoel logally proven correct, they can be re-
placed by abstract specification processes in order toyverd overall behavior of the TLM design.
Furthermore, we think that tailor-made reduction techegjare yet to be developed for the process
graphs resulting from hardware designs, in general, ante®y3 designs, in particular.

As for the particular case of the mMIPS pipelined design, wdendt investigate matters related to
control hazards and instruction dependencies. This magdylts from the fact that we only allowed
one instruction to go through the pipe that then closed itlierother instructions entrance. There is a
possibility that if particular sequences of instructions jaut in the pipe some undetected problems occur
because of the inconsistencies between them. In orderktetdese issues, we are working to find an
upper bound on the length of the sequence of instructionshwiias to be checked to guarantee that in
general, no such problem may take place in the system.

Mechanizing the (de)compositional reasoning about laygéem-level designs is another research
line, which we deem essential for the future applicationooffrfal verification techniques at larger scales.
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