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Algorithmics - the science of algorithms

Putting this 3 lectures in the context of a course on Algorithms we have:

• The good news:

◦ Algorithms and data (getting it done)
◦ Algorithmic methods (getting it done methodically)
◦ The correctness of algorithms (getting it done right)
◦ The efficiency of algorithms (getting it done cheaply)

• The bad news:
◦ Intractability (you can’t always get it done cheaply)
◦ Noncomputability (sometimes it can’ t be done at all!)
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Bibliographic References

These slides are strongly based on the first

More suggestions of reading material will be given along the slides!
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Biblografical References II

• Computers Ltd.: What They Really Can’t Do. David Harel.
Oxford University Press.

• Algorithmics: The Spirit of Computing. David Harel and Yishai
Feldman. Springer

• Algorithm Design. By Jon Kleinberg and Eva Tardos. Pearson

• Computational Complexity: A Modern Approach. Sanjeev Arora
and Boaz Barak. Cambridge University Press.
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Topics to be covered

1. Computability (1st lecture)
◦ Kinds of problem we are interested in
◦ Example of non-computable problems
◦ Nothing interesting about computation is computable
◦ Church-Turing Thesis

2. Complexity (2nd and 3rd lectures)
◦ Lower and upper bounds of problems
◦ Tractability x Untractability
◦ Problems with tractability status unkown
◦ NP-Complete problems
◦ P=NP?
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Bad news in computing...

• These 3 lectures are about the inherent limitations of computing,
such as . . .

◦ . . . the impossibility of solving a problem with a computer or,

◦ . . . the impossibility of solving a problem efficiently

• We concentrates on proven, lasting and robust limitations

• And by ”proven" we mean .....

mathematically proven!!
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Why to study these limitations?

Why one would care about care about studying or doing research (or
even get informed) on the inherent limitations of computing ?

• To satisfy intellectual curiosity

• To discourage futile efforts

• To encourage development of new paradigms

• To make possible the otherwise impossible
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Discourage of futile efforts

• If a computational problem has been proved to admit no solution
then seeking a solution is pointless

• The same goes for computational problems that do admit solution,
but have been proved to require:

◦ Unreasonable amount of space (say, much larger than the entire known
universe!!), or that take

◦ Unreasonable amount of time (say, a lot more than has elapsed since
the Big Bang!!)
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Rules of the game I

• We concentrate only on precisely defined computational problems

• We won’t focus on problems such as run companies, carry out
medical diagnosis, compose music, find a good match for boyfriend
or girlfriend, etc...

• No one can say, for instance that he/she has developed an algorithm
that solves the problem of running a company because ”running a
company" . . .

. . . is not a precisely defined computational problem!!
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Rules of the game II

We require that a computational problem

1. be associated with a set of legal inputs

2. its solution should work for any input from the set of legal inputs

3. has an infinite set of legal inputs

(1) and (2) above are clear: we need to know the set of possible inputs
to a problem, and the solution should work not only for some of these
possible inputs but for all of them.

But what about requirement (3) ?
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Rules of the game III

If the set of legal inputs of a problem is finite, them the problem always
has a solution!

Example: A problem with a finite set {I1, I2, . . . , IK} of legal inputs,
that should answer only yes (if the input has some property) or no (if
the input doesn’t have some property).

The problem has an algorithm that “contains” a table with the K
answers. The algorithm can be the following:

(1) if input is I1 then output yes and stop;
(2) if input is I2 then output yes and stop;

...
(k) if input is IK then output yes and stop
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Rules of the game IV

We might not know yet which of the 2k possible algorithms is the
correct one. But it certainly exists.

Hence, a problem is interesting for the purposes of investigations on
computability only if it has an infinite set of legal inputs

And finally, is very common in the context of computability (and also of
complexity) to focus on decision problem, i.e, problems that output
only yes or no (or true or false)
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The Tilling Problem I

• The problem involves covering large areas using square tiles with
colored edges, such that adjacent edges are monochromatic.

• A tile is a 1 by 1 square, divided into four by the two diagonals, each
quarter colored with some color.

• We assume that the tiles have fixed orientation and cannot be
rotated, and that an unlimited number of tiles of each type is
available
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The Tilling Problem II

The algorithmic problem

• Input: a finite set T of tile
descriptions, and

• Output: “yes" if any finite
area, of any size, can be
covered using only tiles of types
in T, such that the colors on
any two touching edges are the
same. And “no" otherwise.

Given these 3 kinds of tiles we can easily check that it is possible to
cover rooms of any size.
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The Tilling Problem III

If we exchange the bottom colors of tiles (2) and (3) we can see quite
easily that even very small areas cannot be tiled at all.
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The Tilling Problem IV

R.Berger: Undecidability of the Domino Problem. Memoirs of the
American Mathematical Society 66, 72 pp., 1966

Inputs

Each tile type in T is a sequence t = (n, e, s,w) of four symbols, that
identify the colors at the top, right, bottom and left edges of the tile.

A problem input (T , t(0,0)) is a finite set T of tiles types along with a
specification of a distinguished corner tile type t(0,0) ∈ T .
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The Tilling Problem V

Requirements

A tiling is a function f : N×N→ T that tells which tile type is
associated to each square on the infinite quarter-plane.

The requirement of consistency of colors can be written as a pair of
conditions

f(i, j).1 = f(i, j+ 1).3 and f(i, j).2 = f(i+ 1, j).4 ∀i, j > 0

The requirement that the corner tile type t(0,0) be placed in the corner
is expressed formally as

f(0, 0) = t(0,0)
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The Tilling Problem is Undecidable

Definition (The Tilling Problem)

Input:

• 〈T , t(0,0)〉

Output:

• yes, if there is a tiling function f : N×N→ T with f(0, 0) = t(0,0)
satisfying the 2 requirements above

• no, otherwise
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The Word Correspondence Problem I

The Word Correspondence Problem, involves forming a word in two
different ways.

The inputs for the problem are two groups of words over some finite
alphabet. Call them the Xs and the Ys.

The problem asks whether it is possible to concatenate words from the
X group, forming a new word, call it Z, so that concatenating the
corresponding words from among the Ys forms the very same
compound word Z.
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The Word Correspondence Problem II

Fig. (a) has an example with 5 words in each group, where the answer
is yes. Concatenating the words in the sequence 2, 1, 1, 4, 1, 5 from
either the Xs or the Ys yields the same word, aabbabbbabaabbaba.

But the input described in (b), which is obtained from (a) by removing
the 1st letter from the 1st word of each group, does not admit any such
choice. Its answer is therefore no.

25/95



Variations

The Word Correspondence Problem is undecidable !

The cause of its undecidability seems to be the fact that there is no
bound on the size of sequence of words

But variants in which it seems that there are even more cases to check
are decidable

For instance, a variant that imposes no restriction on the way choices
are made from the Xs and Ys - even the number of words selected need
not be the same - is decidable

Problems that look very similar might have computability status very
different (the same applies to tractability status)
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The Halting Problem

The (Program) Halting Problem is undecidable

Input: program P and its input X

Output: Does P terminate when executed with input X? (yes/no?)
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Program Verification

The Problem of Program Verification is undecidable

Input: specification φ about the input, and ψ about the output, both
expressed in some logic, and a program P

Output: if the input is such that is has property given by φ, does the
output satisfies property ψ after the execution of P? (yes/no?)
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Nothing About Computing is Computable!

There is a remarkable result, called Rice’s theorem, which shows that
not only we cannot verify programs or determine their halting status,
but ...

Nothing interesting about programs is computable!!

Interesting is a property of what the program does and not of the
particular form that solution takes.

H. G. Rice, Classes of Recursively Enumerable Sets and Their Decision
Problems, Trans. Amer. Math. Soc. 74 (1953), pp. 358–66.
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How to prove that a problem is non-computable? I

Investigation on (non-)computability started a long time ago in the
context of Logics and Mathematics when there were no computers!

It was necessary, of course, to have an agreement of what effectively
computable was and how to express a computation

Alan Turing, in 1936, proposed a computer machine and proved that
no machine could be built to solve the Validity Problem for FOL (a
decision problem)

Turing, A.M. On Computable Numbers, with an Application to the
Entscheidungs problem. Proceedings of the London Mathematical
Society. 2 (published 1937). 42: 230–265
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How to prove that a problem is non-computable? II

The Church-Turing Thesis equates the intuitive notion of effectively
computable with the formal notion of computable with a Turing
Machine (or any other equivalent computational model)
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Church-Turing Thesis

The Church-Turing Thesis cannot be proved (Why?)

The Thesis stands firm because:

• Any other computational model invented has been proved to be
equivalent to all the others already invented

• So far the thesis has not been disproved (what would be necessary to
prove it false?)

The Theory of Computability (and of Complexity) has been built around
Turing Machines
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Proving the Undecidability of the Halting Problem I

We have to show that it is impossible to write a program in a given
programming language L that solves the halting problem

After we have proved that one might still think that result depends on
the specific language L ...

....and that if we change the programming language we can eventually
come up with a program to decide the halting problem

But since programming languages are equivalent to Turing Machines,
by the Church Turing Thesis we can conclude that the Halting
problem is undecidable
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Reading

Chapter 2 - Sometimes We Can’t Do It from the book
Computers Ltd - What they really can’t do, by David Harel

Chapter 8 - Noncomputability and Undecidability from the book
Algorithmics: the Spirit of Computing, by David Harel

Solving the Unsolvable, by Moshe Y. Vardi. Communications of the
ACM, Vol. 54 No. 7, Page 5. July 2011
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Solving the Unsolvable

From “Solving the Unsolvable", by Moshe Vardi:

I believe this noteworthy progress in proving program
termination ought to force us to reconsider the meaning of
unsolvability .... In theory, unsolvabilty does impose a rigid
barrier on computability, but it is less clear how significant
this barrier is in practice .... most real-life programs, if they
terminate, do so for rather simple reasons, because programmers
almost never conceive of very deep and sophisticated reasons for
termination. Therefore, it should not be shocking that a tool
such as Terminator can prove termination for such
programs.
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Tractability x Intractability
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Hanoi Towers I

• Suppose we are given three towers A, B, and C.

• On the first tower, A, there are three rings in descending size order,
while the others are empty

• We have to move the rings from A to B, using tower C in the
process when necessary.

• Rings have to be moved one at a time, and a larger ring can never
be placed on top of a smaller one.
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Hanoi Towers II

• This puzzle with 3 rings can be solved as follows (with 7 moves):

move A to B;
move A to C;
move B to C;
move A to B;
move C to A;
move C to B;
move A to B.

• With 4 rings on tower A the problem can be solved with 15 move
actions
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Hanoi Towers III

• We are interested in an algorithm to solve the general algorithmic
problem associated with the Towers of Hanoi:

◦ The input is a positive integer N (the number of rings),

◦ The output is a list of “move X to Y” actions, that solve the puzzle
for N rings.

• There is an algorithm that solves the problem with 2N − 1

• It has been proved that it is not possible to solve the problem with
less than 2N − 1 moves. So we cannot do any better than this
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Hanoi Towers IV

• If we could move a million rings per second, with 64 rings it
would take more than half a million years to finish!!

• If we could move only one ring every 10 seconds, it would takes us
more than five trillion years to finish.

• One may think the difficulty is because the output is a long sequence
of moves and it would take too long to find and exhibit it

• To convince that this is not the case let’s take a look at some
decision problems
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Decision Problems

• Optimization version of the Shortest Path problem: Given data
about direct buses between cities (a graph), and given the name of
two cities u and v (nodes of the graph), finds the most direct
path (shortest in terms of bus changes) between them

• Decision version of the Shortest Path problem: Given data about
direct buses between cities (a graph), given the name of two cities, u
and v (nodes of the graph), and a non-negative integer k, does a
path exist between u and v whose length is at most k?

• If an optimization problem is easy, its related decision problem
is also easy.

• If a decision problem is hard, its related optimization problem
is hard too
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Monkeys Puzzle I

• Given (descriptions of) N cards, where N is some square number,
say, N is M2, the (original) problem asks for exhibiting, if possible,
an M by M square arrangement of the N cards, s.t. touching parts
match.

The cards have a fixed direction and they cannot be rotated.
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Monkeys Puzzle II

• We concentrate on the decision version of the problem, without
asking for one arrangement to be exhibited.

• A naive algorithm proceeds trying all possible arrangements

◦ it stops with “yes" as soon as it gets a legal arrangement, and

◦ it stops with “no" if all arrangements have been tried, and they are all
illegal

OBS.: It is possible to be less brute-force, by not checking extensions of
a partial arrangement that have already been shown to be illegal.
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Monkeys Puzzle III

• With a 5x5 grid, there are 25 possibilities for the first card

• Having placed the first card, there are still 24 cards to choose from
for the second location, 23 for the third, and so on

• The total number of arrangements to try, can therefore reach...

25× 24× 23× . . .× 3× 2× 1 = 25! (a 26 digits number!!!)

• How long will the algorithm take in the worst case, i.e., when there
is no legal arrangement, so that all possible arrangements have to be
checked?
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Monkeys Puzzle IV

• Suppose a computer can try a billion arrangements per second.
To try all 25! arrangements it will take well over 490 million years

• In a 6x6, the time to try all 36! arrangements it will take FAR
longer than the time that has elapsed since the Big Bang!!

• And note that, in this context, the worst-case is the most
probable to happen if the puzzle is well-designed.

• Is there some better solution to the Monkey Puzzle problem practical
for a reasonable number of cards?

Probably not, but no one knows for sure.
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Function values

This table shows some numbers for some functions. As a reference:
- the number of (known) protons in the universe has 79 digits.
- the number of microseconds since the Big Bang has 24 digits.
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Function growth I

• If N is 300 the number 2N is billions of times larger than the
number of protons in the entire known universe!!.

• NN grows faster that N! which grows faster than 2N

• 2N grows MUCH faster than any other functions of the form NK,
for any fixed K.

◦ OK that for all N up to 1165, N1000 is larger than N!, but after that
number, N! grows much faster

• 2N, N!, and NN are all example of “bad” functions because they all
grow MUCH faster than (“good") NK functions.
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Function growth II
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Polynomial (good) x Exponential (bad) I

• These facts lead to a fundamental classification of functions into
“good” and “bad” ones.

◦ The good ones are the polynomial functions

◦ The bad ones are the super-polynomial functions

• A polynomial function of N is any function which is no greater in
value than NK for all values of N, from some point on.

• A super-polynomial function of N is any function which is
greater in value than NK for all values of N, from some point on.
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Polynomial (good) x Exponential (bad) II

• Logarithmic (log2N), linear (N), and quadratic (N2) functions, for
example, are polynomial

• 1.001N, 5N, NN, and N!, for instance, are super-polynomial

OBS.: To call super-polynomial functions as exponential is an abuse
because:

• super-polynomials functions, like Nlog2 N for example, are not quite
exponential,

• and functions like NN, for instance, are super-exponential
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Tractable x Intractable problems

• An algorithm that has its time performance bounded from above by
Nk, where N is the size of it input, is a polynomial-time algorithm

• An algorithm that, in the worst case, requires super-polynomial, or
exponential time, is an exponential-time algorithm

• A problem is tractable if it has a polynomial-time solution

• A problem is intractable if it requires an exponential-time solution

Obs.: off course that an N1000 polynomial algorithm is worse than a N!
exponential algorithm for N 6 1165. But, most of the polynomial-time
algorithms have exponent of N that is no more than 5 or 6.
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Lower x Upper Bounds I

• Any algorithmic problem has an inherent optimal solution.

• Suppose someone gives an O(N3) algorithm for problem X

◦ We then know that the optimal solution of X cannot be worse than
O(N3)

• Later on, someone discovers a better algorithm, say one that is
O(N2)

◦ We then know that the problem X cannot be inherently worse than
O(N2) and the previous O(N3) algorithm becomes obsolete.
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Lower x Upper Bounds II

• With better algorithms we get closer the inherent complexity of the
problem.

• But is it possible to know how far can improvements go?

• Yes, that requires a proof of a lower bound.

• If, for instance, we prove that the problem X cannot be solved in
less than O(N2), then people can stop looking for better algorithms
for it since it already has a O(N2) algorithm.
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Lower x Upper Bounds III

• With a better algorithm we show that the problem’s inherent time
performance is no worse than some upper bound

• With a lower bound proof we show that the problem’s inherent
time performance is no better than some lower bound

• When the upper and lower bounds meet (except for the possibly
different constant factors) the algorithmic problem is closed.
Otherwise we say that there is an algorithmic gap

• If a problem is closed as tractable that is good news. If it is
closed as intractable, that’s bad news, but at least we know
something for sure
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Examples I

Towers of Hanoi
• the best algorithm proposed is exponential - upper bound is O(2N)
• we cannot do any better - lower bound is also O(2N)
• the algorithmic problem is closed
• and the problem is classified as intractable

Monkey Puzzle
• current best algorithm is exponential - upper bound is O(N!)
• current best-known (proved) lower bound is O(N)
• there is an algorithm gap
• even though the best known algorithm is exponential the problem
cannot be classified as intractable
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Examples II

Linear programming

• Input: a list of m linear inequalities with rational coefficients over n
variables x1, . . . xn (a linear inequality has the form
a1x1+ a2x2 + . . .+ anxn 6 b for some coefficients a1, . . .an,b),

• Output: is there an assignment of rational numbers to the variables
x1, . . . xn that satisfies all the inequalities?

• This problem is closed with a polynomial time and it is classified as a
tractable problem

59/95



Examples III

Linear Programming is an important problem with several
applications in real-life problems. It also has a very interesting history.

• For many years the best algorithm for it was an exponential-time
procedure known as the simplex method

• However when the method was used for real problems, even of
nontrivial size, it usually performed very well.

• In 1979, a polynomial-time algorithm was found, but the simplex
method had a better performance in many of the practical cases

• In 1984 the Indian mathematician Karmarkar discovered a very
efficient polynomial-time algorithm outperforming the simplex
method
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Complexity Theory and Complexity Classes

• Complexity Theory studies the intrinsic complexity of computational
problems

• Its goals are:

◦ (i) to determine the concrete complexity of problem, and

◦ (ii) to identify the connections among the complexity of problems

• This 2nd goal has lead to discovery of several complexity classes
(take a look at the website The Complexity Zoo)

• Among these complexity classes, the NPC class, for NP-Complete
(decision) problems, is probably the most well-known
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NP-Complete problems I

• The class NPC of NP-Complete (decision) problems contains a
great diversity of algorithmic problems, in areas such as operations
research, economics, circuits, communication, bioinformatics, game
theory, logic, etc, etc

• They all of exhibit the same phenomena:

• The best algorithms that solve them are exponential-time. But no
one has been able to prove that any of these problems really
require exponential time

• And the best-known lower bounds of most of the problems in
this class are O(N). Hence it is possible (though unlikely) that they
admit very efficient algorithms
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NP-Complete problems II

• They share a remarkable property

either they are all tractable!! or...

none of them is!!

• This property explains the nane "complete" in the name of the class
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NP-Complete problems III

• This property of problems in the class NPC means that, if someone
ever finds a polynomial-time algorithm for any NP-complete
problem....

....there would be polynomial-time algorithms for all
NP-complete problems.

• And if someone ever proves an exponential-time lower bound for
any NP-complete problem....,

...it would follow that no NP-complete problem can be solved in
polynomial time

• This is not a conjecture, it has been proved!
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Examples of NP-Complete problems I

Independent set: is a general problem that encodes a situation
where you have to choose a subset of some set of objects but there
might be pairwise restrictions. For instance: you want to invite a group
of friends for dinner but some pairs of them don’t get along well, and
you want to invite the largest non-conflicting group of friends

• nodes are people, and edges
between every two people mean
they don’t like each other

• for this example the largest
group you can invite is

{1, 4, 5, 6}
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Examples of NP-Complete problems II

Another use of Independent Set: there is one resource to be used
by many people one at a time. Those interested, inform beforehand
their requests with the period of the day the want to use the resource.
Nodes represent the requests, and edge connecting two requests mean
that they overlap in time. The resource administrator wants to attend
the largest number of requests.

Independent set (decision version):

• Input: a graph G and a number k

• Output: is there a k-size independent subset of G’s nodes? (y/n?)
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Examples of NP-Complete problems III

Traveling salesperson: A traveling salesperson has to visit all the
cities in a given network before returning to his base. The algorithmic
problem asks for the shortest route that passes through all the cities.

In the left is the graph with the networks of cities. In the right is the
shortest route passing through all cities in the network (with lenght 28)
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Examples of NP-Complete problems IV

Traveling salesperson (decision version):

• Input: a set of n nodes, the distances between each two of these n
nodes, and a number k,

• Output: is there a tour that visits every node exactly once and has
total length at most k?

Subset sum:

• Input: a multiset of n numbers A1, . . .An and a number T

• Output: is there a subset of the numbers that sums up to T?
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Examples of NP-Complete problems V

Knapsack problem (from Wikipedia) Given a set of items, each with
a weight and a value, determine the number of each item to include in
a collection so that the total weight is less than or equal to a given limit
W and the total value is as large as possible.

Its decision version, which asks if a total value of at least V can be
achieved without exceeding the weight W, is an NPC problem

Knapsack problems appear in real-world decision-making processes in a
wide variety of fields, such as finding the least wasteful way to cut raw
materials, selection of investments and portfolios, etc
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Examples of NP-Complete problems VI

Computers and Intractability -
A guide to the theory of
NP-Completeness
by M. Garey, and D. Johnson

One of the most cited Computer
Science books

Has an appendix with more
than 300 NP-Complete
problems
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NP Problems - Short Certificates

• Before defining the class of NPC problems let’s take a step back and
start with the class of NP problems

• A decision problem is an NP problem if, given a possible solution
for it, there is an algorithm that verify/certify,
in polynomial time, that it is indeed a correct solution

• Monkey Puzzle, for instance, is an NP problem:

◦ when given a supposed solution, i.e. the pieces arranged in a grid, an
algorithm can go through all the pieces once, and verify whether the
cards match up correctly or not - and this can be done in polynomial
time.
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More Examples of NP Problems I

Independent set:
• Input: a graph G and a number k
• Output: is there a k-size independent subset of G’s nodes? (y/n?)
• Certificate: a list of k nodes forming an independent set

Traveling salesperson:
• Input: a set of n nodes, the distances between each two of these n
nodes, and a number k,

• Output: is there a tour that visits every node exactly once and has
total length at most k?

• Certificate: the sequence of nodes in the tour.
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More Examples of NP Problems II

Subset sum:
• Input: a multiset of n numbers A1, . . .An and a number T
• Output: is there a subset of the numbers that sums up to T?
• Certificate: the members in this multiset that sums up to T .

Linear programming:
• Input: a list of m linear inequalities with rational coefficients over n
variables x1, . . . xn

• Output: is there an assignment of rational numbers to the variables
x1, . . . xn that satisfies all the inequalities?

• Certificate: the assignment of values to variables

Observe that all decision problems which are tractable, i.e. that have
polynomial solutions, belong to the class NP, .i.e P ⊆ NP) !! Why?
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NP Problems - Magical Nondetermism

Another way of describing NP problems (that explains the name "NP")

• Whenever it is possible to extend a partial solution, we have a
(nondeterministic) machine that can always make a correct choice
among the alternatives

• The machine always guess a possibility that leads to a complete
solution, if there is a complete solution.

• And if all this "guessing" leading to a complete solution is performed
in polynomial time, we say that we the problem has a
Non-deterministic Polynomial-time algorithm for the problem

• Hence, the name NP
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NPC problems are the hardest NP problems

• One of the requirements for a problem to be classified as NP
complete is that it should be an NP problem

• That means that, although we don’t know how to solve an NPC
problem in time less than exponential, if we are presented with a
solution for it we can verify, in polynomial time, that it is indeed a
solution

• Another requirement for problems to be classified as NPC is
that they should be the hardest problems among all problems
in NP

• Before we see how to prove that a problem is an NP complete
problem, let’s take a look to a very important question in Computer
Science....
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Is P = NP? I

• We saw that the class P, of all problems solvable in polynomial time,
is contained in the class of NP problems, i.e. P ⊆ NP

• Recall that for the NPC problems there are two possibilities:
◦ If someone ever finds a polynomial solution for an NPC problem,

since the NPC problems are the hardest problems in NP, that would
mean that all problems in NP would also have a polynomial solution. In
other words that would mean that NP ⊆ P. And we will be able to say
that P = NP

◦ If someone ever proves that it is impossible to have polynomial
solution for NPC problems, then, of course, it is not the case that
NP ⊆ P. And then we could say that P 6= NP
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Is P = NP? II

• The P = NP? problem, as it is called, has been posed in 1971, and is
one of the most difficult unresolved problems in computer
science.

• Most people believe that P 6= NP, meaning that the NP-complete
problems are inherently intractable, but no one knows for sure.

• In any case, showing that an algorithmic problem is NP-complete is
an evidence of its probable intractability.

• But how can we prove that a problem is NP-complete? For
understanding how such a proof can be done, we still need need to
learn about polynomial-time reduction of a problem to another.
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Polynomial Time Reduction I

A polynomial time reduction is a polynomial time algorithm that
reduces one problem to the other in the following sense:

• If someone comes with an input X to the first problem and wants a
“yes” or “no” answer, the reduction algorithm transforms X into an
input Y to the second problem,

• The reduction algorithm does that in such a way that the second
problem’s answer to Y is precisely the first problem’s answer to X.

• We write Q 6P R to say that problem Q can be reduced in
polynomial time to problem R
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Polynomial Time Reduction II

• On intuitive way to remember what does it mean for a problem Q to
be reducible to a problem R, is to think that, if that is the case, it
means that the best algorithm known for problem R, besides solving
R, has a logic capable of solving problem Q as well.

• Problem R just needs the inputs of Q to be transformed/translated
to the "format" it understands.

• If this transformation/translation of the input of Q as an input of R
is done in polynomial time, we say that problem Q can be reduced in
polynomial time to problem R (written Q 6P R)
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Polynomial Time Reduction III

Suppose Q 6P R:

• If R can be solved in polynomial time, then ...

... Q can also be solved in polynomial time

• If Q cannot be solved in polynomial time then ...

... R cannot be solved in polynomial time
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Hamiltonian Path to Traveling Salesman I

Hamiltonian Path
• Input: a graph G with N nodes
• Output: is there a path passing exactly once by every node of the
graph G?

Such a path is called an Hamiltonian Path.

• The Hamiltonian Path (HP) problem can be polynomially
reduced to the Traveling Salesperson (TS) problem, i.e:

HP 6P TS
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Hamiltonian Path to Traveling Salesman II

Given a graph G with N nodes, the original input for problem HP,
transform it to be an input graph T for the problem TS as follows:

• The nodes of T are precisely the nodes of G

• Edges are drawn between every two nodes in T

• Assign cost 1 to an edge of T if it was present in the original graph
G, and 2 if it was not.

This transformation of the input of HP to an input to TS can be done
in polynomial time!
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Hamiltonian Path to Traveling Salesman III

• Then ask whether T has a TS tour that is no longer than N+ 1,
where N is the number of nodes in G.

• The answer to the first question on G is “yes” precisely when the
answer to the second question on T is “yes”.
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Hamiltonian Path to Traveling Salesman IV
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Hamiltonian Path to Traveling Salesman V

• This was a proof that :
HP 6P TS

• If someone ever finds a polynomial time solution to the TS problem
that would imply ....

.... a polynomial time solution to the HP problem

• If someone ever proves that HP problem cannot be solved in
polynomial time, that would imply ...

... that TS cannot be solved in polynomial time

90/95



NP Complete Problems are Inter-Reducible

Every NP-complete problem is polynomially reducible to
each other!

Hence, tractability of one implies tractability of all, and intractability of
one implies intractability of all.

91/95



How to Prove a Problem is NP-Complete? I

• To establish a problem R is NP-complete (1) reduce in polynomial
time R to a problem already known to be NP-complete, call it Q,
and (2) reduce in polynomial another problem known to be
NP-complete (possibly the same one), call it S, to R:

(1) R 6P Q (2) S 6P R

• Note that reduction (1) means that R is in NP (why?)

• So, instead of giving two reductions, show that R is in NP (short
certificate), and show reduction (2)
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How to Prove a Problem is NP-Complete? II

In summary: to show a problem R is NP-Complete:

1 show that R is NP

2 show that S 6P R , where S a problem known to be a NP-complete
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1st NP-Complete Problem - Cook’s Theorem

• For all this to work there should be a first problem proved to be
NP-complete.

• In 1971 the satisfiability problem for the propositional calculus, the
SAT problem, was shown to be NP-complete by Stephen Cook,
thus providing the anchor for NP-completeness proofs.

• The result, known as Cook’s theorem, is considered to be one of
the most important results in Computer Science:

1 SAT is NP

2 SAT is NP-Hard, i.e., S 6P SAT, for any S in NP
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Theory x Practice

Do read the following editorial of CACM, by Moshe Vardi
• On P, NP, and Computational Complexity
CACM Vol. 53, No. 11, Page 5, November, 2010

"While the P vs. NP quandary is a central problem in computer
science, we must remember that a resolution of the problem may
have limited practical impact. It is conceivable that P = NP, but
the polynomial-time algorithms yielded by a proof of the equality
are completely impractical, due to a very large degree of the
polynomial or a very large multiplicative constant; after all,
(10N)1000 is a polynomial! Similarly, it is conceivable that
P 6= NP, but NP problems can be solved by algorithms with
running time bounded by Nlog log logN — a bound that is not
polynomial but incredibly well behaved."
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