
Embedded Systems Programming - PA8001
http://bit.ly/15mmqf7

Lecture 7

Mohammad Mousavi
m.r.mousavi@hh.se

Center for Research on Embedded Systems
School of Information Science, Computer and Electrical Engineering



Real Time?

In what ways can a program be related to time in the environment
(the real time)?

Salvador Dali, The Persistence of Memory.



Real Time

An external process to . . .

I Sample: reading a clock,

I React: a handler for an interrupt clock, and

I Constraint: a deadlock to respect.



Real Time

An external process to . . .

I Sample: reading a clock,

I React: a handler for an interrupt clock, and

I Constraint: a deadlock to respect.



Real Time

An external process to . . .

I Sample: reading a clock,

I React: a handler for an interrupt clock, and

I Constraint: a deadlock to respect.



Sampling the time

Requires a hardware clock (read as an external device)

Multitude of alternatives

I Units? Seconds? Milliseconds? CPU cycles?

I Since when? Program start? System boot? Jan 1, 1970?

I Real time? Time stops when: other threads are running?
when CPU sleeps? Time that cannot be set and always
increases?



Sampling the time

Requires a hardware clock (read as an external device)

Multitude of alternatives

I Units? Seconds? Milliseconds? CPU cycles?

I Since when? Program start? System boot? Jan 1, 1970?

I Real time? Time stops when: other threads are running?
when CPU sleeps? Time that cannot be set and always
increases?



Sampling the time

Requires a hardware clock (read as an external device)

Multitude of alternatives

I Units? Seconds? Milliseconds? CPU cycles?

I Since when? Program start? System boot? Jan 1, 1970?

I Real time? Time stops when: other threads are running?
when CPU sleeps? Time that cannot be set and always
increases?



Sampling the time

Requires a hardware clock (read as an external device)

Multitude of alternatives

I Units? Seconds? Milliseconds? CPU cycles?

I Since when? Program start? System boot? Jan 1, 1970?

I Real time? Time stops when: other threads are running?
when CPU sleeps? Time that cannot be set and always
increases?



Sampling the time

Requires a hardware clock (read as an external device)

Multitude of alternatives

I Units? Seconds? Milliseconds? CPU cycles?

I Since when? Program start? System boot? Jan 1, 1970?

I Real time? Time stops when: other threads are running?
when CPU sleeps? Time that cannot be set and always
increases?



Timer/Counter1 on the AVR

What about the 16-bit counter (accessible through register
TCNT1)?

Units
CPU clock (8Mhz) divided by a programmable prescaling value (1,
8, 64, 256, 1024).

Since when
System reset, timer reset or timer overflow (whichever was last).

Real time
Shows real time although can be stopped.

Aligning TCNT1 with calendar time: calculations and extra storage
(for counting overflows).



Timer/Counter1 on the AVR

What about the 16-bit counter (accessible through register
TCNT1)?

Units
CPU clock (8Mhz) divided by a programmable prescaling value (1,
8, 64, 256, 1024).

Since when
System reset, timer reset or timer overflow (whichever was last).

Real time
Shows real time although can be stopped.

Aligning TCNT1 with calendar time: calculations and extra storage
(for counting overflows).



Timer/Counter1 on the AVR

What about the 16-bit counter (accessible through register
TCNT1)?

Units
CPU clock (8Mhz) divided by a programmable prescaling value (1,
8, 64, 256, 1024).

Since when
System reset, timer reset or timer overflow (whichever was last).

Real time
Shows real time although can be stopped.

Aligning TCNT1 with calendar time: calculations and extra storage
(for counting overflows).



Timer/Counter1 on the AVR

What about the 16-bit counter (accessible through register
TCNT1)?

Units
CPU clock (8Mhz) divided by a programmable prescaling value (1,
8, 64, 256, 1024).

Since when
System reset, timer reset or timer overflow (whichever was last).

Real time
Shows real time although can be stopped.

Aligning TCNT1 with calendar time: calculations and extra storage
(for counting overflows).



Timer/Counter1 on the AVR

What about the 16-bit counter (accessible through register
TCNT1)?

Units
CPU clock (8Mhz) divided by a programmable prescaling value (1,
8, 64, 256, 1024).

Since when
System reset, timer reset or timer overflow (whichever was last).

Real time
Shows real time although can be stopped.

Aligning TCNT1 with calendar time: calculations and extra storage
(for counting overflows).



Timestamps

Relative timing: prevalent in reactive systems, reactions are
relative to events

Example

Teacher left 15 min. after the start of the lecture.

In embedded programming,
time-stamping an event: reading
performed around the event
detection.



Timestamps

Relative timing: prevalent in reactive systems, reactions are
relative to events

Example

Teacher left 15 min. after the start of the lecture.

In embedded programming,
time-stamping an event: reading
performed around the event
detection.



Timestamps

Relative timing: prevalent in reactive systems, reactions are
relative to events

Example

Teacher left 15 min. after the start of the lecture.

In embedded programming,
time-stamping an event: reading
performed around the event
detection.



Time spans

The difference between two time-stamps: a time span independent
of the nominal clock values (modulo clock resolution).

The meaning of time-stamp

I The time of some arbitrary program instruction?

I The beginning or end of a function call?

I The time of sending or receiving an asynchronous message?

Too much program dependent!



Time spans

The difference between two time-stamps: a time span independent
of the nominal clock values (modulo clock resolution).

The meaning of time-stamp

I The time of some arbitrary program instruction?

I The beginning or end of a function call?

I The time of sending or receiving an asynchronous message?

Too much program dependent!



Time spans

The difference between two time-stamps: a time span independent
of the nominal clock values (modulo clock resolution).

The meaning of time-stamp

I The time of some arbitrary program instruction?

I The beginning or end of a function call?

I The time of sending or receiving an asynchronous message?

Too much program dependent!



Time spans

The difference between two time-stamps: a time span independent
of the nominal clock values (modulo clock resolution).

The meaning of time-stamp

I The time of some arbitrary program instruction?

I The beginning or end of a function call?

I The time of sending or receiving an asynchronous message?

Too much program dependent!



Time spans

The difference between two time-stamps: a time span independent
of the nominal clock values (modulo clock resolution).

The meaning of time-stamp

I The time of some arbitrary program instruction?

I The beginning or end of a function call?

I The time of sending or receiving an asynchronous message?

Too much program dependent!



Time spans

The difference between two time-stamps: a time span independent
of the nominal clock values (modulo clock resolution).

The meaning of time-stamp

I The time of some arbitrary program instruction?

I The beginning or end of a function call?

I The time of sending or receiving an asynchronous message?

Too much program dependent!



In a scheduled system

What looks like . . .

Event detected

Subsequent statements

Clock read

might very well be . . .

Event detected

Other threads running

Clock read

Close proximity is not the same as subsequent statements!



In a scheduled system

What looks like . . .

Event detected

Subsequent statements

Clock read

might very well be . . .

Event detected

Other threads running

Clock read

Close proximity is not the same as subsequent statements!



Time-stamping events

Our goal: to time-stamp events that drive a system

Idea!
Read the clock in the interrupt handler detecting the event

I Disable other interrupts, hence no threads might interfere

I Tight predictable upper bound on the time-stamp error



Time-stamping events

Our goal: to time-stamp events that drive a system

Idea!
Read the clock in the interrupt handler detecting the event

I Disable other interrupts, hence no threads might interfere

I Tight predictable upper bound on the time-stamp error



Time-stamping events

Our goal: to time-stamp events that drive a system

Idea!
Read the clock in the interrupt handler detecting the event

I Disable other interrupts, hence no threads might interfere

I Tight predictable upper bound on the time-stamp error



Time-stamping events

Our goal: to time-stamp events that drive a system

Idea!
Read the clock in the interrupt handler detecting the event

I Disable other interrupts, hence no threads might interfere

I Tight predictable upper bound on the time-stamp error



Example

Calculate the speed

For a rotating wheel, measuring the time between two subsequent
detections of a passing tap.

Detector

Tap

typedef struct{

Object super;

int previous;

Other *client;

} Speedo;

...

Speedo speedo;

int main(){

INSTALL(&speedo, detect, SIG_XX);

return TINYTIMBER(...)

}



Example

Calculate the speed

For a rotating wheel, measuring the time between two subsequent
detections of a passing tap.

Detector

Tap

typedef struct{

Object super;

int previous;

Other *client;

} Speedo;

...

Speedo speedo;

int main(){

INSTALL(&speedo, detect, SIG_XX);

return TINYTIMBER(...)

}



Example

Calculate the speed

For a rotating wheel, measuring the time between two subsequent
detections of a passing tap.

int detect(Speedo *self, int sig){

int timestamp = TCNT1;

ASYNC(self -> client,

newSpeed,

PERIMETER/DIFF(timestamp,self->previous));

self->previous=timestamp;

}

DIFF will have ot take care of timer overflows!



Example

Calculate the speed

For a rotating wheel, measuring the time between two subsequent
detections of a passing tap.

int detect(Speedo *self, int sig){

int timestamp = TCNT1;

ASYNC(self -> client,

newSpeed,

PERIMETER/DIFF(timestamp,self->previous));

self->previous=timestamp;

}

DIFF will have ot take care of timer overflows!



Real-time events to react to

So far: how to sample the real-time clock to know about time

Now: how to take action after a certain amount of time

Example

The wheel is an engine crankshaft
and we have to emit ignition
signals to each cylinder

How to postpone program execution until certain time



Real-time events to react to

So far: how to sample the real-time clock to know about time

Now: how to take action after a certain amount of time

Example

The wheel is an engine crankshaft
and we have to emit ignition
signals to each cylinder

How to postpone program execution until certain time



Reacting to real time events

Very poor man’s solution

Consume a fixed amount of CPU cycles in a (silly) loop

int i;

for(i=0;i<N;i++); // wait

do_future_action();

Problems

1. Determine N by testing!

2. N will be highly platform dependent!

3. A lot of CPU cycles will simply be wasted!



Reacting to real time events

Very poor man’s solution

Consume a fixed amount of CPU cycles in a (silly) loop

int i;

for(i=0;i<N;i++); // wait

do_future_action();

Problems

1. Determine N by testing!

2. N will be highly platform dependent!

3. A lot of CPU cycles will simply be wasted!



Reacting to real time events

Very poor man’s solution

Consume a fixed amount of CPU cycles in a (silly) loop

int i;

for(i=0;i<N;i++); // wait

do_future_action();

Problems

1. Determine N by testing!

2. N will be highly platform dependent!

3. A lot of CPU cycles will simply be wasted!



Reacting to real time events

Very poor man’s solution

Consume a fixed amount of CPU cycles in a (silly) loop

int i;

for(i=0;i<N;i++); // wait

do_future_action();

Problems

1. Determine N by testing!

2. N will be highly platform dependent!

3. A lot of CPU cycles will simply be wasted!



Reacting to real time events

Very poor man’s solution

Consume a fixed amount of CPU cycles in a (silly) loop

int i;

for(i=0;i<N;i++); // wait

do_future_action();

Problems

1. Determine N by testing!

2. N will be highly platform dependent!

3. A lot of CPU cycles will simply be wasted!



Reacting to real time events

The nearly as poor man’s solution

Configure a timer/counter with a known clock speed, and
busy-wait for a suitable time increment

unsigned int i = TCNT1+N;

while(TCNT1<i); // wait

do_future_action();

Problems

1. Determine N by calculation

2. Still a lot of wasted CPU!



Reacting to real time events

The nearly as poor man’s solution

Configure a timer/counter with a known clock speed, and
busy-wait for a suitable time increment

unsigned int i = TCNT1+N;

while(TCNT1<i); // wait

do_future_action();

Problems

1. Determine N by calculation

2. Still a lot of wasted CPU!



Reacting to real time events

The nearly as poor man’s solution

Configure a timer/counter with a known clock speed, and
busy-wait for a suitable time increment

unsigned int i = TCNT1+N;

while(TCNT1<i); // wait

do_future_action();

Problems

1. Determine N by calculation

2. Still a lot of wasted CPU!



Reacting to real time events

The nearly as poor man’s solution

Configure a timer/counter with a known clock speed, and
busy-wait for a suitable time increment

unsigned int i = TCNT1+N;

while(TCNT1<i); // wait

do_future_action();

Problems

1. Determine N by calculation

2. Still a lot of wasted CPU!



Reacting to real time events

The standard solution
Use the OS to fake busy-waiting

delay(N); // wait (blocking OS call)

do_future_action();

I No platform dependency!

I No wasted CPU cycles (at the expense of a complex OS)

Still a problem . . .

. . . common to all solutions . . .



Reacting to real time events

The standard solution
Use the OS to fake busy-waiting

delay(N); // wait (blocking OS call)

do_future_action();

I No platform dependency!

I No wasted CPU cycles (at the expense of a complex OS)

Still a problem . . .

. . . common to all solutions . . .



Reacting to real time events

The standard solution
Use the OS to fake busy-waiting

delay(N); // wait (blocking OS call)

do_future_action();

I No platform dependency!

I No wasted CPU cycles (at the expense of a complex OS)

Still a problem . . .

. . . common to all solutions . . .



Reacting to real time events

The standard solution
Use the OS to fake busy-waiting

delay(N); // wait (blocking OS call)

do_future_action();

I No platform dependency!

I No wasted CPU cycles (at the expense of a complex OS)

Still a problem . . .

. . . common to all solutions . . .



Reacting to real time events

The standard solution
Use the OS to fake busy-waiting

delay(N); // wait (blocking OS call)

do_future_action();

I No platform dependency!

I No wasted CPU cycles (at the expense of a complex OS)

Still a problem . . .

. . . common to all solutions . . .



In a scheduled system

What looks like . . .

subsequent statements

call do_future_action()Event detected

delay(N)

might very well be . . .

Other threads get to run!

call do_future_action()Event detected

delay(N)

Had we known the scheduler’s choice, a smaller N had been used!



In a scheduled system

What looks like . . .

subsequent statements

call do_future_action()Event detected

delay(N)

might very well be . . .

Other threads get to run!

call do_future_action()Event detected

delay(N)

Had we known the scheduler’s choice, a smaller N had been used!



Relative delays

The problem: relative time without fixed references:

I The constructed real-time event will occur at after N units
from now.

I What is now?!

Other common OS services share this problem: sleep, usleep
and nanosleep.

We are not going to use OS services in the course.



Relative delays

The problem: relative time without fixed references:

I The constructed real-time event will occur at after N units
from now.

I What is now?!

Other common OS services share this problem: sleep, usleep
and nanosleep.

We are not going to use OS services in the course.



Relative delays

The problem: relative time without fixed references:

I The constructed real-time event will occur at after N units
from now.

I What is now?!

Other common OS services share this problem: sleep, usleep
and nanosleep.

We are not going to use OS services in the course.



Relative delays

The problem: relative time without fixed references:

I The constructed real-time event will occur at after N units
from now.

I What is now?!

Other common OS services share this problem: sleep, usleep
and nanosleep.

We are not going to use OS services in the course.



Relative delays

The problem: relative time without fixed references:

I The constructed real-time event will occur at after N units
from now.

I What is now?!

Other common OS services share this problem: sleep, usleep
and nanosleep.

We are not going to use OS services in the course.



Yet another problem

Threads and interleaving make it worse

Example

Consider a task running a CPU-heavy function do work() every
100 millisecods. The naive implementation sing delay():

while(1){

do_work();

delay(100);

}



Yet another problem

Threads and interleaving make it worse

Example

Consider a task running a CPU-heavy function do work() every
100 millisecods. The naive implementation sing delay():

while(1){

do_work();

delay(100);

}



Accumulating drift

100

XXXX
100100100

100100100100100

X is the time take to do work

Each turn takes at least 100+X milliseconds.

A drift of X milliseconds will accumulate every turn!



Accumulating drift

100

XXXX
100100100

100100100100100

X is the time take to do work

Each turn takes at least 100+X milliseconds.

A drift of X milliseconds will accumulate every turn!



Accumulating drift

100

XXXX
100100100

100100100100100

X is the time take to do work

Each turn takes at least 100+X milliseconds.

A drift of X milliseconds will accumulate every turn!



Accumulating drift

100

XXX
100100100

100100100100100

With threads and interleaving, the bad scenario gets worse!

Even with a known X, delay time is not predictable.



Accumulating drift

100

XXX
100100100

100100100100100

With threads and interleaving, the bad scenario gets worse!

Even with a known X, delay time is not predictable.



A stable reference

What we need is a stable time reference to use as a basis whenever
we specify a relative time (instead of now).

Baselines
We introduce the baseline of a message to mean the earliest time a
message is allowed to start.

Time stamps of interrupts!

The baseline of an event is its time-stamp:



A stable reference

What we need is a stable time reference to use as a basis whenever
we specify a relative time (instead of now).

Baselines
We introduce the baseline of a message to mean the earliest time a
message is allowed to start.

Time stamps of interrupts!

The baseline of an event is its time-stamp:



A stable reference

What we need is a stable time reference to use as a basis whenever
we specify a relative time (instead of now).

Baselines
We introduce the baseline of a message to mean the earliest time a
message is allowed to start.

Time stamps of interrupts!

The baseline of an event is its time-stamp:

Interrupt signal

Baseline: start after Actual method execution



A stable reference

SYNC
Calling methods with SYNC doesn’t change the baseline (the call
inherits the baseline)

same baseline: start after

B

SYNC(B,meth,arg)

Original event

A

Baseline: start after



A stable reference

ASYNC
By default ASYNC method calls will inherit the baseline

Pseudo parallel execution

ASYNC(B,meth,arg)

same baseline: start after

B

Original event

A

Baseline: start after



A stable reference

For ASYNC we may also consider adding a baseline offset N!

new baseline

N

actual time of call plays NO role in this baseline calculation!

AFTER(N,B,meth,arg)

Baseline: start after

A

Original event

B



Periodic tasks

To create a cyclic reaction, simply call self with the same method
and a new baseline:

2 seconds 2 seconds

new baseline

etc

new baseline
Baseline: start after

AFTER(SEC(2),self,meth,arg)
AFTER(SEC(2),self,meth,arg)

AFTER(SEC(2),self,meth,arg)

Original event

A

SEC is a convenient macro that makes the call independent of
current timer resolution.



Periodic tasks

To create a cyclic reaction, simply call self with the same method
and a new baseline:

2 seconds 2 seconds

new baseline

etc

new baseline
Baseline: start after

AFTER(SEC(2),self,meth,arg)
AFTER(SEC(2),self,meth,arg)

AFTER(SEC(2),self,meth,arg)

Original event

A

SEC is a convenient macro that makes the call independent of
current timer resolution.



Implementing AFTER

1. Let the baseline be stored in every message (as part of the
Msg structure)

2. AFTER is the same as ASYNC, but
I New baseline is

MAX(now, offset+current->baseline)

I If baseline > now , put message in a timerQ instead of
readyQ

I Set up a timer to generate an interrupt after earliest baseline
I At each timer interrupt, move first timerQ message to readyQ

and configure a new timer interrupt

In fact ASYNC can now be defined as
#define ASYNC(to,meth,arg) AFTER(0,to,meth,arg)



Implementing AFTER

1. Let the baseline be stored in every message (as part of the
Msg structure)

2. AFTER is the same as ASYNC, but
I New baseline is

MAX(now, offset+current->baseline)

I If baseline > now , put message in a timerQ instead of
readyQ

I Set up a timer to generate an interrupt after earliest baseline
I At each timer interrupt, move first timerQ message to readyQ

and configure a new timer interrupt

In fact ASYNC can now be defined as
#define ASYNC(to,meth,arg) AFTER(0,to,meth,arg)



Implementing AFTER

1. Let the baseline be stored in every message (as part of the
Msg structure)

2. AFTER is the same as ASYNC, but
I New baseline is

MAX(now, offset+current->baseline)

I If baseline > now , put message in a timerQ instead of
readyQ

I Set up a timer to generate an interrupt after earliest baseline
I At each timer interrupt, move first timerQ message to readyQ

and configure a new timer interrupt

In fact ASYNC can now be defined as
#define ASYNC(to,meth,arg) AFTER(0,to,meth,arg)



Implementing AFTER

1. Let the baseline be stored in every message (as part of the
Msg structure)

2. AFTER is the same as ASYNC, but
I New baseline is

MAX(now, offset+current->baseline)

I If baseline > now , put message in a timerQ instead of
readyQ

I Set up a timer to generate an interrupt after earliest baseline
I At each timer interrupt, move first timerQ message to readyQ

and configure a new timer interrupt

In fact ASYNC can now be defined as
#define ASYNC(to,meth,arg) AFTER(0,to,meth,arg)



Implementing AFTER

1. Let the baseline be stored in every message (as part of the
Msg structure)

2. AFTER is the same as ASYNC, but
I New baseline is

MAX(now, offset+current->baseline)

I If baseline > now , put message in a timerQ instead of
readyQ

I Set up a timer to generate an interrupt after earliest baseline
I At each timer interrupt, move first timerQ message to readyQ

and configure a new timer interrupt

In fact ASYNC can now be defined as
#define ASYNC(to,meth,arg) AFTER(0,to,meth,arg)



Implementing AFTER

1. Let the baseline be stored in every message (as part of the
Msg structure)

2. AFTER is the same as ASYNC, but
I New baseline is

MAX(now, offset+current->baseline)

I If baseline > now , put message in a timerQ instead of
readyQ

I Set up a timer to generate an interrupt after earliest baseline
I At each timer interrupt, move first timerQ message to readyQ

and configure a new timer interrupt

In fact ASYNC can now be defined as
#define ASYNC(to,meth,arg) AFTER(0,to,meth,arg)



Implementing AFTER

1. Let the baseline be stored in every message (as part of the
Msg structure)

2. AFTER is the same as ASYNC, but
I New baseline is

MAX(now, offset+current->baseline)

I If baseline > now , put message in a timerQ instead of
readyQ

I Set up a timer to generate an interrupt after earliest baseline
I At each timer interrupt, move first timerQ message to readyQ

and configure a new timer interrupt

In fact ASYNC can now be defined as
#define ASYNC(to,meth,arg) AFTER(0,to,meth,arg)



Implementing AFTER

1. Let the baseline be stored in every message (as part of the
Msg structure)

2. AFTER is the same as ASYNC, but
I New baseline is

MAX(now, offset+current->baseline)

I If baseline > now , put message in a timerQ instead of
readyQ

I Set up a timer to generate an interrupt after earliest baseline
I At each timer interrupt, move first timerQ message to readyQ

and configure a new timer interrupt

In fact ASYNC can now be defined as
#define ASYNC(to,meth,arg) AFTER(0,to,meth,arg)



Bonus Questions

What are the issues with time in a distributed system? Find out
what Lamport Clocks are and explain them (in your own words) in
a few lines.
(Please send your answers by email before 13:00 today.)


	 
	Time
	Sampling time
	Real-time events

