
Real-Time Embedded Systems

DT8025, Fall 2016

http://goo.gl/AZfc9l

Lecture 3

Masoumeh Taromirad
m.taromirad@hh.se

Center for Research on Embedded Systems
School of Information Technology



A simple embedded system revisited!
Need for Concurrency

Follow an object using sonar echoes.
Control parameters sent over wireless.
The servo controls wheels.

data signals
Servo

Radio
packets

Input Output

Input

Object

Distance

Sonar

Params

Controller

Decoder

Control

1 / 52



The view from the processor

Servo output portSensor input port

read write

read

Radio input port

Program

2 / 52



The program: a first attempt

main(){

struct Params params;

struct Packet packet;

int dist, signal;

while(1){

dist = sonar_read();

control(dist, &signal, &params);

servo_write(signal);

radio_read(&packet);

decode(&packet,&params);

}

}

3 / 52



The program: input

int sonar_read(){

while(SONAR_STATUS & READY == 0);

return SONAR_DATA;

}

void radio_read(struct Packet *pkt){

while(RADIO_STATUS & READY == 0);

pkt->v1 = RADIO_DATA1;

...

pkt->vn = RADIO_DATAn;

}

Functions creating an
illusion to the rest of the
program!

Assuming that status is
automatically reset when
data is read.

4 / 52



The program: operations & output

Control
Calculates the servo signal.

void control(int dist, int *sig, struct Params *p);

Decode
Decodes a packet and calculates new control parameters

void decode(struct Packet *pkt, struct Params *p)

Output

Writes to the servo controls

void servo_write(int sig){

SERVO_DATA = sig;

}

5 / 52



The program: busy waiting input

int sonar_read(){

while(SONAR_STATUS & READY == 0);

return SONAR_DATA;

}

void radio_read(struct Packet *pkt){

while(RADIO_STATUS & READY == 0);

pkt->v1 = RADIO_DATA1;

...

pkt->vn = RADIO_DATAn;

}

6 / 52



Problems?

radio

echoes
sonar

packets

Problem: Unknown and unrelated frequencies of events

Ignoring the other event while busy waiting!

7 / 52



Why busy waiting

I Data is not already in place (. . . radio packets are not!)

I Even if there might be reasons for waiting, sensors may
provide no (useful) content!

I They produce data only because they are asked to (. . . remote
transmitters act autonomously!)

I RAM and files vs. external input

I Memory-mapped I/O may give the wrong illusion!

8 / 52



The program: a second attempt

while(1){

if(SONAR_STATUS & READY){

dist = SONAR_DATA;

control(dist,&signal,&params);

servo_write(signal);

}

if(RADIO_STATUS & READY){

packet->v1 = RADIO_DATA1;

...;

packet->vn = RADIO_DATAn;

decode(&packet,&params);

}

}

Destroy the functions for
reading and have only
one busy waiting loop!

9 / 52



Centralized busy waiting

Breaking modularity:

I Checking both events in one big busy-waiting loop

I Complicating the simple read operations

100% CPU usage, no matter how frequent input data arrives.

Try to make the main loop run less often!

10 / 52



The program: a third attempt

The cyclic executive

while(1){

sleep_until_next_timer_interrupt();

if(SONAR_STATUS & READY){

dist = SONAR_DATA;

control(dist,&signal,&params);

servo_write(signal);

}

if(RADIO_STATUS & READY){

packet->v1 = RADIO_DATA1;

...;

packet->vn = RADIO_DATAn;

decode(&packet,&params);

}

}

Compromise: power
consumption vs.
response time

11 / 52



Problems?

echoes

radio
packets

sonar

Issue: different duration (processing time) of tasks

12 / 52



Concurrency
What we need

Different parts of a program conceptually execute simultaneously.

Why concurrent execution?

I improve responsiveness

I improve performance

I directly control the timing of external interactions

13 / 52



Concurrency
Why...

I Improve responsiveness
by avoiding situations where long-running programs can block
a program that responds to external stimuli (e.g. sensor data
or a user request).
Improved responsiveness reduces latency.

I Improve performance

I Directly control the timing of external interactions.
at that time.

14 / 52



Concurrency
Why...

I Improve responsiveness

I Improve performance
by allowing a program to run simultaneously on multiple
processors or cores.

I Directly control the timing of external interactions.
at that time.

15 / 52



Concurrency
Why...

I Improve responsiveness

I Improve performance

I Directly control the timing of external interactions.
A program may need to perform some action, such as
updating a display, at particular times, regardless of what
other tasks might be executing at that time.

Concurrency addresses timing issues.

16 / 52



Concurrency
Layers of Abstraction

Multitasking

I mid-level techniques

I implemented using the
low-level mechanisms

I supporting concurrent
execution of multiple
tasks.

17 / 52



Concurrency

concurrent execution of sequential code

Possible solution: task interleaving

Seizing control and allowing for other tasks to take over:
interleaving task fragments.

Challenges

I concurrent execution of sequential code

I a solution for different frequencies (and the waiting time)

18 / 52



Interleaving by hand

void decode(struct Packet *pkt, struct Params p){

phase1(pkt,p);

try_sonar_task();

phase2(pkt,p);

try_sonar_task();

phase3(pkt,p);

}

void try_sonar_task(){

if(SONAR_STATUS & READY){

dist = SONAR_DATA;

control(dist,&signal,&params);

servo_write(signal);

}

}

Again, breaking
modularity in an ad-hoc
way. How many phases
of decode are sufficient?

19 / 52



Interleaving by hand

More fine breaking up might be needed . . .

void phase2(struct Packet *pkt, struct Params *p){

while(expr){

try_sonar_task();

phase21(pkt,p);

}

}

20 / 52



Interleaving by hand

More fine breaking up might be needed . . .

void phase2(struct Packet *pkt, struct Params *p){

int i = 0;

while(expr){

if(i%800==0)try_sonar_task();

i++;

phase21(pkt,p);

}

}

Unstructured and ad-hoc; any better alternative?

21 / 52



About Practical 1

In lab 1 you will program 3 functions

I Test-Driven Development of an algorithm to calculate the
exponential function ex ,

I porting the function to write on the display (PiFace Display),

I interleaving the blinker with the function, and

I modify the interleaving to keep the blinking period intact.

22 / 52



Automatic interleaving?
low-level concurrency

There are 2 tasks, driven by independent input sources.

Handle sonar echoes running the
control algorithm and updating
the servo.

Handle radio packets by running
the decoder.

Had we had access to 2 CPUs we could place one task in each. We
can imagine some construct that allows us to express this in our
program.

23 / 52



Two CPUs

Servo output portSensor input port

Radio input port

parameters

read write

read

CPU1
Controller

RAM

CPU2
Controller

24 / 52



Two CPU’s program

struct Params params;

void controller_main(){

int dist, signal;

while(1){

dist = sonar_read();

control(dist,

&signal,

&params);

servo_write(signal);

}

}

void decoder_main(){

struct Packet packet;

while(1){

radio_read(&packet);

decode(&packet,&params);

}

}

We need some way of making one program of this!

25 / 52



Concurrent Programming
Mid-level concurrency

Concurrent programming is the name given to programming
notation and techniques for expressing potential parallelism and
solving the resulting synchronization and communication problems.

A thread is a unique execution of a sequence of machine
instructions, that can be interleaved with other threads executing
on the same machine.

Threads run concurrently and share a memory space and can
access each others’ variables.

A system supporting seemingly concurrent execution is called
multi-threaded.

26 / 52



Where should threads belong?

A programming language?

As in Java or Ada. Programs are well organized and are
independent of the OS.

Libs and OS?
Like C with POSIX threads? Good for multilanguage composition
given that OS standards are followed.

27 / 52



Our first multi-threaded program

struct Params params;

void controller_main(){

int dist, signal;

while(1){

dist = sonar_read();

control(dist,

&signal,

&params);

servo_write(signal);

}

}

void decoder_main(){

struct Packet packet;

while(1){

radio_read(&packet);

decode(&packet,&params);

}

}

main(){

decoder_main;

controller_main();

}

28 / 52



Our first multi-threaded program

struct Params params;

void controller_main(){

int dist, signal;

while(1){

dist = sonar_read();

control(dist,

&signal,

&params);

servo_write(signal);

}

}

void decoder_main(){

struct Packet packet;

while(1){

radio_read(&packet);

decode(&packet,&params);

}

}

main(){

cearte_thread(decoder_main);

controller_main();

}

29 / 52



Threads
Main issues and challenges

Mutual Exclusion
It is required that one thread of execution never enters its critical
section at the same time that another, concurrent thread of
execution enters its own critical section; preventing race condition
(i.e., two concurrent pieces of code race to access the same
resource).

30 / 52



Threads
Main issues and challenges

Mutual Exclusion

Scheduling

The core of an implementation of threads is a scheduler that
decides which thread to execute next when a processor is available
to execute a thread.

31 / 52



Threads
Main issues and challenges

Mutual Exclusion

Scheduling

Context Switch
The process of storing and restoring the state (more specifically,
the execution context) of a process or thread so that execution can
be resumed from the same point at a later time.

32 / 52



Threads
Main issues and challenges

Mutual Exclusion
It is required that one thread of execution never enters its critical
section at the same time that another, concurrent thread of
execution enters its own critical section; preventing race
condition.

Scheduling

Context Switch

33 / 52



Our first multi-threaded program

struct Params params;

void controller_main(){

int dist, signal;

while(1){

dist = sonar_read();

control(dist,

&signal,

&params);

servo_write(signal);

}

}

void decoder_main(){

struct Packet packet;

while(1){

radio_read(&packet);

decode(&packet,&params);

}

}

main(){

cearte_thread(decoder_main);

controller_main();

}

34 / 52



The critical section problem

What will happen if the params struct is read (by the controller)
at the same time it is written (by the decoder)?

I.e., what if the scheduler happens to insert some decoder
instructions while some, but not all, of the controller’s reads have
been done?

This problem is central to concurrent programming where there is
any ammount of sharing!

35 / 52



Critical sections in real life

Car dealer Car buyer
Displays used car
Puts up price tag

Displays luxury car
Becomes interested,sells her old
car

Updates price tag
Gets angry!

36 / 52



Critical sections in real life

Car dealer Car buyer
Displays used car
Puts up price tag

Displays luxury car
Updates price tag

Chooses to keep her old car
All good!

37 / 52



Critical sections in programs

Imagine uppdating the same bank account from two places at
approximately the same time (e.g. your employer deposits your
salary at more or less the same time as you are making a small
deposit).

int account = 0;

account = account + 500; account = account + 10000;

When this is compiled there might be several instructions for each
update!

38 / 52



Critical sections in programs

load account,r1

add 500,r1

store r1, account

load account, r2

add 10000, r2

store r2, account

Final balance is 10500

39 / 52



Critical sections in programs

load account, r2

add 10000, r2

store r2, account

load account,r1

add 500,r1

store r1, account

Final balance is 10500

40 / 52



Critical sections in programs

load account,r1

load account, r2

add 10000, r2

add 500,r1

store r2, account

store r1, account

Final balance is 500

41 / 52



Critical sections in programs

Testing and setting

int shopper;

if(shopper == NONE) if(shopper==NONE)

shopper = HUSBAND shopper = WIFE

Possible interleaving

if(shopper == NONE)

if(shopper==NONE)

shopper = HUSBAND

shopper = WIFE

42 / 52



Our embedded system

Exchanging parameters

struct Params p;

while(1){ while(1){

... local_minD = p.minDistance;

p.minDistance = e1; local_maxS = p.maxSpeed;

p.maxSpeed = e2; ...

} }

Possible interleaving

p.minDistance = 1;

p.maxSpeed = 1;

local_minD = 1;

p.minDistance = 200;

p.maxSpeed = 150;

local_maxS = 150
43 / 52



The classical solution

Apply an access protocol to the critical sections that ensures
mutual exclusion.

Require that all parties follow the protocol.

Access protocols are realized by means of a shared datastructure
known as a mutex or a lock.

44 / 52



The classical solution

A mutual exclusion lock prevents any two threads from
simultaneously accessing or modifying a shared resource.

The code between the lock and unlock is a critical section.

At any one time, only one thread can be executing code in such a
critical section.

45 / 52



Mutual exclusion

Exchanging parameters

struct Params p;

mutex m;

while(1){ while(1){

... lock (&m)

lock (&m); local_minD = p.minDistance;

p.minDistance = e1; local_maxS = p.maxSpeed;

p.maxSpeed = e2; unlock (&m)

unlock (&m); ...

}

}

46 / 52



Bonus Question

Bonus Question
Explain briefly the Peterson’s algorithm and describe how it
achieves mutual exclusion.

Deadline
Thursday 15/09/2016 at 12:00.

Format
A simple document (e.g. PDF). Don’t forget your name!

Email your answers to m.taromirad@hh.se. Beware of plagiarism!

47 / 52



Mutual exclusion
A Challenge

Deadlock
A deadlock occurs when some threads become permanently
blocked trying to acquire locks.

48 / 52



Mutual exclusion
A Challenge: Deadlock

mutex m1 , m2 ;

while(1){

...

lock (&m1);

...

lock (&m2);

...

unlock (&m2)

unlock (&m1);

}

while(1){

lock (&m2);

...

lock (&m1);

...

unlock (&m1)

unlock (&m2);

...

}

49 / 52



Mutual exclusion
A Challenge: Deadlock

Such deadly embraces have alertno escape. The program needs to
be aborted!

Avoid deadlock?

I Deadlock can be difficult to avoid.

I Luckily, there are necessary conditions for deadlock to occur;
any of which can be removed to avoid deadlock.

Example: use only one lock throughout an entire
multi-threaded program.

50 / 52



Bonus Question

Bonus Question
Explain briefly (at least three) existing techniques to avoid
deadlock in multi-threaded programs.

Deadline
Thursday 15/09/2016 at 12:00.

Format
A simple document (e.g. PDF). Don’t forget your name!

Email your answers to m.taromirad@hh.se. Beware of plagiarism!

51 / 52



Threads
Even more problems!

Threads are hard!

I very difficult to understand,

I difficult to build confidence and reason about, and

I yield insidious errors, race conditions, deadlock
(very important concerns in embedded systems; safety and
livelihood of humans)

It is possible but not easy, to construct reliable and correct
multi-threaded programs; expert programmers have to be very
cautious!

52 / 52


	 
	Concurrency
	Threads
	Mutual exclusion

