
A Case Study in Formal Verification using
Multiple Explicit Heaps

Wojciech Mostowski

Formal Methods and Tools, University of Twente, The Netherlands
w.mostowski@utwente.nl

Abstract. In the context of the KeY program verifier and the associ-
ated Dynamic Logic for Java we discuss the first instance of applying a
generalised approach to the treatment of memory heaps in verification.
Namely, we allow verified programs to simultaneously modify several dif-
ferent, but possibly location sharing, heaps. In this paper we detail this
approach using the Java Card atomic transactions mechanism, the mod-
elling of which requires two heaps to be considered simultaneously – the
basic and the transaction backup heap. Other scenarios where multiple
heaps emerge are verification of real-time Java programs, verification of
distributed systems, modelling of multi-core systems, or modelling of per-
missions in concurrent reasoning that we currently investigate for KeY.
On the implementation side, we modified the KeY verifier to provide a
general framework for dealing with multiple heaps, and we used that
framework to implement the formalisation of Java Card atomic trans-
actions. Commonly, a formal specification language, such as JML, hides
the notion of the heap from the user. In our approach the heap becomes
a first class parameter (yet transparent in the default verification scenar-
ios) also on the level of specifications.

1 Introduction

In the formal verification of object-oriented programs the verification tools and
associated logics are constantly improved and developed to handle new verifi-
cation challenges and to deal with larger and more complex programs. Some
of these challenges are efficient reasoning about linked data structures [7, 14]
or concurrent programs [11, 15, 1]. Central in all these efforts is the notion of
the object heap that is used in respective logics to represent the memory that
programs operate on and to handle possible object aliasing. In particular, Sep-
aration Logic [22], that some of the verification systems utilise, is strictly built
around the notion of the heap, rather than the program that operates on it.

In a similar spirit, the KeY system1 [2], an interactive verifier for Java pro-
grams, was recently redesigned and reimplemented to introduce explicit heap
representation to the Java Dynamic Logic [23]. Previously, the heap was rep-
resented in the KeY logic implicitly through special semantics of object field
1 http://www.key-project.org.

c© IFIP

2 W. Mostowski

updates with complex built-in rewrite rules [2, Chap. 3]. In the new version
the heap is explicit, directly accessible through a dedicated program variable
heap. In particular, this change in heap treatment enables reasoning with dy-
namic frames [12] in KeY. To accommodate dynamic frames style of specifica-
tions KeY uses an extended version of the Java Modelling Language (JML) [4],
named JML*. In the proof obligation generation process the framing conditions
expressed in JML* are translated to Java Dynamic Logic by constructing ap-
propriate formulae over the heap program variable.

In the default scenario a Java program operates on just one main heap and
so does the reasoning system when such programs are verified. Any specifica-
tion elements, like the JML assignable clauses that express framing conditions,
implicitly refer to this one heap. For example, “assignable o.f, o.g;” states that
fields f and g of object o might be modified on the heap. There are, however,
scenarios with computation models that refer to more than one heap. The first
and the simplest example is in distributed programs, where some method may
modify a set of locations locally as well as remotely through a remote call. For
example, such a method could have this framing specification:

assignable_local o.f, o.g;
assignable_remote o.g, o.h;

stating that an object o that is stored both locally and remotely (by holding a
copy) is modified partly here and partly there. Note that this notion of multiple
heaps is different from Separation Logic, which also talks about several heaps.
In Separation Logic a heap can be split into two or more separate heaps with
disjoint locations. Here we consider heaps that may (but do not have to) share
common locations, i.e., one heap may be a (partial) copy of another. In particu-
lar, one location can be changed simultaneously on two or more heaps. Generally,
different heaps represent different memory sites, either real physical ones or ones
introduced to the reasoning system for modelling certain properties.

Our particular use case for considering more than one heap emerged during
the rework of the support for Java Card atomic transactions [25, Chap. 7] in KeY
to follow the new explicit heap model. The Java Card technology [6] provides a
platform to program smart cards with a considerably stripped off version of Java
with no concurrency, floating point numbers, or dynamic class loading. The lack
of these features along with the security sensitive application areas of smart cards
in the financial sector (bank cards), telecommunications (SIM cards), or identity
(e.g., electronic passports), used to make Java Card an ideal verification target
for many verification tools [24, 16, 5]. However, one complicating factor in Java
Card that was initially overseen by researchers is the said atomic transaction
mechanism. The KeY system was the first verification tool to fully formalise the
details of Java Card transactions and provide a working implementation [3, 18].

In short, the transaction mechanism provides a way to group assignments
into atomic blocks to preserve the consistency of heap data, which by default in
Java Card physically resides in the permanent EEPROM memory. Furthermore,
it provides mechanisms to make exceptions to the transaction data roll-back
rules as well as to change the default target memory for heap data to reside in

A Case Study in Formal Verification using Multiple Explicit Heaps 3

the volatile RAM instead. The core of our formalisation of this in Java Dynamic
Logic is the simultaneous use of two heap variables in the computation model.
The first represents the regular heap. The second one is used to store the backup
copy of the heap for the case when the transaction needs to be aborted and the
contents of the heap restored. The assignment rules in the logic operate on both
heaps at the same time, raising the need to specify framing conditions for these
two heaps in JML*. In effect, the heap becomes a specification parameter, a
simple example for heap-parametric frame specification would be:

assignable[heap] o.f, o.g;
assignable[backupHeap] o.f;

In the remainder of the paper we explain these ideas using the formalisation
of the Java Card transaction mechanism in KeY as a case study. This consists
of the core formalisation discussed in Sect. 2 and the extensions necessary for
modular reasoning discussed in Sect. 3. The use of two heaps is not the only
possible way to formalise Java Card transactions. However, the solution with two
heaps provides a very clean formalisation with little implementation overhead
(discussed in Sect. 4), especially compared to our previous work [3], and gives a
uniform framework to apply our ideas in other verification domains. We discuss
this in Sect. 5. Finally, we conclude the paper in Sect. 6. The rest of this section
is the relevant background information about Java Card [6, 25] and the Java
Dynamic Logic [2, 23].

Java Card. The Java Card technology provides means to program smart cards
with Java. The technology consists of a language specification, which defines the
subset of permissible Java in the context of smart cards, a Virtual Machine spec-
ification, which defines the semantics of the Java byte-code when run on a smart
card, and finally the API, which provides access to the specific routines usually
found on smart cards. The complicating feature of Java Card is that programs
directly operate on two memories built into the card chip. Any data allocated
in the EEPROM memory is persistent and kept between card sessions, the data
that resides in RAM is transient and always lost on card power-down. The mem-
ory allocation rules are: (i) all local variables are transient, (ii) all newly created
objects and arrays are by default persistent, and (iii) when allocated with a ded-
icated API call any array (but not an object) can be made transient. Note the
important difference between a reference to an object and the actual object con-
tents. While the object fields are stored in the persistent memory, the reference to
that object can be kept in a local variable and be transient itself.2 Any Java vari-
able, once allocated in its target memory, is transparent to the programmer from
the syntax point of view, and it is only the underlying Java Card VM that takes
appropriate actions according to the memory type associated with the object.

Objects allocated in EEPROM provide the only permanent storage to an
application. To maintain consistency of data in EEPROM, Java Card offers the
2 A garbage collector is not obligatory in Java Card either. Careless handling of ref-
erences actually leads to memory leaks, something that is often addressed in Java
Card programming guidelines [21].

4 W. Mostowski

atomic transaction mechanism accessed through the API. The following is a brief,
but complete summary of the transaction rules. Updating a single object field or
array element is always atomic. Updates can be grouped into transaction blocks,
a static API call to beginTransaction opens such a block, which is ended by a
commitTransaction call, an explicit abortTransaction call, or an implicit abort
caused by an unexpected program termination (e.g., card power loss). A commit
guarantees that all the updates in the block are executed in one atomic step.
An abort reverts the contents of the persistent memory to the state before the
transaction was entered. Note that an explicit abort does not terminate the whole
application, only cancels out persistent updates from within the transaction and
the program continues its execution. Finally, the API provides so-called non-
atomic methods to bypass the transaction mechanism. A non-atomic update
of a persistent array element is never cancelled out by an abort, provided the
same array was not manipulated with regular assignments earlier in the same
transaction. We provide illustrative examples for these rules later in Sect. 2.

Java Dynamic Logic with Explicit Heap. The Java Dynamic Logic (JDL)
[2, 23] of the KeY system is an instance of Dynamic Logic [8] tailored to Java.
Modalities 〈p〉φ and [p]φ represent the notion of total and partial correctness, re-
spectively, of program p w.r.t. property φ. Java programs are deterministic, hence
total correctness requires p’s termination, including the absence of top-level ex-
ceptions, for partial correctness termination is not required. Formula φ is built
from logic terms using the usual connectives. Terms contain references to logic
variables – rigid symbols whose valuation is independent of the program state,
and program variables – non-rigid symbols that are program state dependent.

The verification of Java programs in the KeY system is based on symbolic
execution realised through a sequent calculus. Program p in the modality is
transformed by dedicated calculus rules to progressively reduce the program p
into a description of the resulting program state. This description, denoted by
U , is called an update, and is essentially a set of canonical assignments of terms
to program variables. The following two rules are characteristic for JDL:

Γ,Ub |= U〈π pω〉φ Γ,U !b |= U〈π q ω〉φ
Γ |= U〈π if(b){p}else{q}ω〉φ if Γ |= U{v := se}〈π ω〉φ

Γ |= U〈π v=se;ω〉φ
assign

In these rules π denotes an inactive prefix of the program, e.g., a try{ block
opening, a label, or a logic-only description of the current method call stack.
The remaining statements of the verified program that the current rule does not
operate on are denoted with ω. The if rule unfolds the if-statement, which is
removed from the modality, and two proof branches are created, where the exe-
cution of the two if branches, resp. p and q, can continue. The branch condition
b is evaluated in the current state by applying the state update U to it. The
assign rule transforms an assignment of a simple expression se to a local variable
v into the update U .

A complete symbolic execution of a program results in an empty modality
and a set of updates that can be applied to the formula φ to check the validity

A Case Study in Formal Verification using Multiple Explicit Heaps 5

of the initial claim 〈p〉φ. If we consider U to be an operator on φ then it actually
is another modality, one that only accepts sequences of canonical assignments as
valid programs with the important property that the valuation of the formula φ
can be quickly performed with a sequence of one-way update simplification and
application rules, i.e., an equivalent of the weakest precondition calculus.

So far this covers only local Java variables, the need to reason about objects
and arrays introduces the notion of a heap into the logic. The heap is represented
as a dedicated program variable of a logic sort Heap and treated on equal grounds
with other program variables. In particular, references and updates to the heap
variable can directly appear in the set of updates U . The immutable terms of
the sort Heap are built using rigid function symbols select and store, that allow,
respectively, querying the heap for a value of a given location, and constructing
a new heap with some location updated to a new value w.r.t. some old heap.
In particular, the assignment rule for updating an object field f is the following
(fields are also first class citizens in JDL):

Γ |= U{heap := store(heap, o, f, se)}〈π ω〉φ
Γ |= U〈π o.f=se;ω〉φ

assignField

For a specification language the KeY system employs JML*, an extension of
JML [4] to accommodate dynamic frames [12]. This extension introduces the
primitive type of location sets into JML and allows the assignable clauses to refer
to variables of such a type instead of static locations. Since dynamic frames are an
orthogonal issue to our formalisation of transactions, JML* is synonymous with
JML for the work we present here. Moreover, only very basic JML constructs,
that we assume the reader is familiar with, are discussed in the paper. In the
verification process the KeY system translates a single Java method to be verified
and the associated JML* specification into a JDL formula. In this process the
heap variable is treated in a special way – it is the properties over this variable
that need to be expressed to reflect any framing conditions specified in JML*.
A very similar process is applied with similar implications on the heap variable
when JML* specifications are used as axioms to replace method calls following
the modular verification principles.

The JDL offers other strong facilities for reasoning about Java programs,
e.g., the modelling of static initialisation, or comprehensive treatment of Java
arithmetic including overflow. However, the work we present in this paper neither
affects nor is affected by these other features of the logic. The KeY system itself
is a GUI based user-friendly interactive verifier for JDL with a high degree of
automation to minimise unnecessary interaction, often leading to fully automatic
proofs even for considerably complex programs and properties.

2 Java Card Transactions on Explicit Heaps

In the following, driven by examples, we gradually present the complete formal-
isation of the Java Card transaction semantics in the KeY JDL and show how
multiple heap variables are used. To start with, we introduce native transaction

6 W. Mostowski

statements to the Java syntax handled by the logic. That is, the logic should
allow for the symbolic execution of #beginTr, #commitTr, and #abortTr that
define the transaction boundaries in the verified program. Bridging the actual
transaction calls from the API to these statements is a straightforward extension

int newBalance = 0;
#beginTr;
this.opCount++;
newBalance =
this.balance + change;

if(newBalance < 0) {
#abortTr;

}else{
this.balance = newBalance;
#commitTr;

}

of the verification system. Then, consider the
snapshot (slightly artificial on purpose) of a
Java Card program on the right, where the
fields balance and opCount of object this
are persistent, permanently storing the cur-
rent balance and operation count of some pay-
ment application. The local variables change
and newBalance are transient. Ignoring the
transaction statements for the moment, the
symbolic execution of this program results in
the following state updates:

newBalance := 0,
heap := store(heap, this, opCount, select(heap, this, opCount) + 1),
newBalance := select(heap, this, balance) + change,
heap := store(heap, this, balance, newBalance) (when newBalance ≥ 0)

The symbolic execution of the if statement splits the proof, so the last update
only appears on the else proof branch where newBalance ≥ 0 is assumed.

After further simplification, this set of state updates can be applied to eval-
uate a property querying e.g., the value of operation count, which in the logic
would be the term select(heap, this, opCount). The result would indicate a one
unit increase w.r.t. the value stored on the heap before this code is executed.

Basic Transaction Roll-back Assuming a simplified Java Card definition, up-
dates to local variables should be kept, while the updates to persistent locations
should be rolled back to the state before the transaction was started. The persis-
tent locations in the actual program are synonymous with the data stored on the
heap in the logic. Hence, in the first attempt it should be sufficient to roll back
the value of the whole heap. This can be done by introducing two simple rules
for transaction statements#beginTr and#abortTr that, respectively, store and
restore the value of the heap to and from a backup heap variable bHeap:
Γ |= U{bHeap := heap}〈π ω〉φ
Γ |= U〈π#beginTr;ω〉φ

begin Γ |= U{heap := bHeap}〈π ω〉φ
Γ |= U〈π#abortTr;ω〉φ

abort

This can be done and works as expected because the heap variable as modelled
in KeY JDL has call by value characteristics. Now the set of state updates (on
the negative newBalance branch) of our example program is the following:

newBalance := 0,
bHeap := heap,
heap := store(heap, this, opCount, select(heap, this, opCount) + 1),
newBalance := select(heap, this, balance) + change,
heap := bHeap (when newBalance < 0)

A Case Study in Formal Verification using Multiple Explicit Heaps 7

Whatever terms referring to heap contents should be evaluated with this set of
updates, the result would be the values on the heap at the point where it was
saved in the bHeap variable. The commit statement needs no special handling
apart from silent stepping over this statement. In this case the saved value of
the heap in the bHeap variable is simply forgotten until a possible subsequent
new transaction where bHeap is freshly overwritten with a more recent heap.

For the very superficial treatment of transaction semantics this is enough to
model transactions in JDL. Note that, so far, no new or assignment rules of any
kind were introduced and the new heap variable bHeap is not modified in any
way apart from being initialised to hold a complete copy of the regular heap.

Transaction Marking and Balancing The two rules we just introduced do
not enforce any order on the transaction statements, they allow to success-
fully verify malformed programs like “#abortTr; #beginTr;” or “#commitTr;
#commitTr;”. Furthermore, by Java Card specification, transactions cannot be
nested, i.e., the maximum allowed transaction depth is 1, attempts to exceed
this limit cause a run-time exception. On the other hand, the scope of a single
transaction is very liberal according to the specification – a transaction can be in
progress for as long as the card session is active, regardless of the stack of method
calls. To simplify our formalisation, we opt for enforcing a stronger requirement
– a transaction should be contained in one single Java method. That is, any
method that opens a transaction has to close it before the method terminates.
This does not exclude complete methods to be called during a transaction, but
it does exclude a transaction opening in one method, and closing in another one
that is eventually called later on. Our requirement is justified by Java Card se-
curity guidelines [21] that ban programs with transaction blocks spanning over
several methods (to prevent transaction buffer overruns).3 In practice, our for-
malisation not only relies on this requirement, but also enforces it, i.e., programs
not adhering to this requirement do not verify.

Consequently, our formalisation restricts the transaction scope in the follow-
ing way. A transaction marker TR attached to a modality indicates that the
current execution context of the verified program is an open transaction. Rules
for handling transaction opening and closing statements are now sensitive to
this marker and automatically enforce correct transaction balancing. Similarly,
rules for discharging empty modalities prevent closing proofs with a remaining
transaction marker. In turn, any transaction block has to appear in a single
verification context (modality), i.e., one method. Furthermore, the dedicated
rule for array assignments can be singled out for transaction contexts only. This
keeps verification of regular Java programs clear of any unnecessary transaction
3 Following a similar security rationale we disallow object allocation inside transac-
tions. Real Java Card programs cause serious security risks when objects are allo-
cated in transactions [20], while the formalisation to deal with the “shady” semantics
of object deallocation mandated by the Java Card specification [25] would require
modelling of explicit garbage collection, something that Java verification systems in
principle are not designed for.

8 W. Mostowski

artefacts in the proofs. Finally, knowing that the current point in the symbolic
execution is a transaction context is important in modular verification for the
local interpretation of heap parametric specifications as explained later in Sect. 3.

The rules for transaction statements are the following. An explicit rule for
the commit statement is added, in which nothing happens to the heap variable,
but the transaction context is cancelled out by removing the TR marker:

Γ |= U{bHeap := heap}〈TRπ ω〉φ
Γ |= U〈π#beginTr;ω〉φ

begin

Γ |= U{heap := bHeap}〈π ω〉φ
Γ |= U〈TRπ#abortTr;ω〉φ

abort Γ |= U〈π ω〉φ
Γ |= U〈TRπ#commitTr;ω〉φ

commit

Persistent and Transient Arrays So far in our formalisation we roll back
the whole contents of the backup heap, i.e., we operate the bHeap variable as a
whole without changing single object locations on it. The separate transaction
treatment for the persistent and transient arrays in Java Card now requires also
selectively modifying the backup heap, as we describe in the following.4

The Java Card transaction rules require that the contents of transient arrays,
allocated by dedicated API methods, are never rolled back. Since in JDL all
arrays are stored on the heap, we somehow need to introduce a selective roll-back
mechanism. We achieve this with the following. Whenever an array element is
updated in a transaction we check for the persistency type of the array. The check
itself is done by introducing an additional implicit boolean field to all objects,
called <transient>, that maintains the information about the object’s persistency
type. Standard allocation rules set this field to false, while the dedicated API
methods for creating transient arrays specify this field to be true.

Then, when handling assignments, for persistent arrays we take no additional
action, for transient arrays we update the value on the heap and simultaneously
update the value on the backup heap bHeap. During an abort, the regular heap
is restored to the contents of the backup heap that now also includes updates
to transient arrays that were not supposed to be rolled back. The core of the
resulting assignment rule for arrays is the following:

Γ,U !a.<transient> |= U{heap := store(heap, a, i, se)}〈TRπ ω〉φ
Γ,Ua.<transient> |= U{heap := store(heap, a, i, se),

bHeap := store(bHeap, a, i, se)}〈TRπ ω〉φ
Γ |= U〈TRπ a[i] = se;ω〉φ arrayAssign

Assuming that arrays tr and ps are, respectively, transient and persistent, the
symbolic execution of this program:

tr[0] = ps[0] = 0; #beginTr; tr[0] = 1; ps[0] = 1; #abortTr;

results in the following sequence of state updates:
4 Only arrays can be made persistent or transient in Java Card, regular objects are
always persistent. Thus, we only discuss arrays in this context, but our formalisation
works for regular objects, too.

A Case Study in Formal Verification using Multiple Explicit Heaps 9

heap := store(heap, tr, 0, 0), heap := store(heap, ps, 0, 0),
bHeap := heap,
heap := store(heap, tr, 0, 1), bHeap := store(bHeap, tr, 0, 1),
heap := store(heap, ps, 0, 1),
heap := bHeap

With these updates, the valuation of select(heap, ps, 0) and select(heap, tr, 0)
results in resp. 0 and 1 as required by the Java Card transaction semantics.

Non-atomic Updates The last complication in the transaction rules are the
so-called non-atomic updates of persistent array elements. Such updates by-
pass transaction handling, i.e., no roll-back of data updated non-atomically is
performed. Updates to transient arrays as defined by Java Card are in fact non-
atomic, as they are never rolled back either. We have just introduced a mecha-
nism that prevents the roll-back of transient arrays, by checking the <transient>
field of the array and providing corresponding state updates. To extend this
behaviour to persistent arrays, we allow for the implicit <transient> field of an
array to be mutable in our logic. In turn, we can temporarily change the assign-
ment semantics for an array by manipulating the <transient> field. Concretely,
a non-atomic assignment to a persistent array element can be modelled by first
setting the <transient> field to true, then performing the actual assignment,
and then changing the value of <transient> back to false. Hence, a non-atomic
assignment “a[i] = se;” to a persistent array a, is simply modelled as:

a.<transient> = true; a[i] = se; a.<transient> = false;
Then, the array assignment rule we provided above introduces the necessary
updates to the regular and backup heaps to achieve transaction bypass.

In Java Card the non-atomic updates are delegated to dedicated API meth-
ods, i.e., they are not part of the language syntax. Hence, the manipulation of
the <transient> field is delegated to the reference implementation of these API
methods, and this emulation of non-atomic assignments is easily achieved in the
actual Java Card programs to be verified by KeY.

a[0] = 0;
#beginTr;
a[0] #= 1; a[0] = 2;
#abortTr;

a[0] = 0;
#beginTr;
a[0] = 2; a[0] #= 1;
#abortTr;

Unfortunately, there is one more condition for non-
atomic updates that we need to check. A request for
a non-atomic update becomes effective only if the per-
sistent array in question has not been already updated
atomically (i.e., with a regular assignment) within the
same transaction. If such an update has been per-
formed, any subsequent updates to the array are al-
ways atomic within the same transaction and rolled
back upon transaction abort. We illustrate this with
two simple programs operating on a persistent array a above on the right, for
simplicity we mark non-atomic assignments with #= instead of quoting the
actual API call that does that. The top program results in a[0] equal to 1 (a
non-atomic update is in effect), the bottom program rolls a[0] back to 0, as the
regular assignment “a[0] = 2;” disables any subsequent non-atomic assignments,
and hence all transaction updates are reverted.

10 W. Mostowski

To introduce this additional check in the logic, we employ one more implicit
field for array objects, <trUpdated>, that maintains information about atomic
updates. Set to true, it indicates that the array was already updated with a
regular assignment, false indicates no such updates and allows for non-atomic
updates in the same transaction still to be effective. The new assignment rule
for arrays needs to be altered to handle all these conditions and also to record
the changes to the <trUpdated> field itself. The saturated state updates to be
introduced under different conditions in the assignment rule for “a[i] = se;” are
the following:

Condition State update
Always heap := store(heap, a, i, se)
!a.<transient> bHeap := store(bHeap, a, <trUpdated>,TRUE)
a.<transient> and

!a.<trUpdated> bHeap := store(bHeap, a, i, se)

The updates to the <trUpdated> field are purposely stored on the backup heap
to ease the resetting of this field with each new transaction, because the backup
heap is freshly assigned with each new transaction while the regular heap is not.
Now, on transaction abort, the heap reverting update filters out any updates to
this field on the backup heap using the anonymisation function of the JDL:

heap := anon(bHeap, allObjects(<trUpdated>), heap)

Intuitively, this expresses the operation of copying the contents of heap bHeap to
heap, but retaining the value of the <trUpdated> field in all objects in heap. This
way all manipulations of <trUpdated> in proofs are local to a single transaction.

3 Heaps as Parameters in JML*

The previous section spelled out the details of formalising Java Card transactions
in JDL. The key point in this formalisation is the modified assignment rule in
the sequent calculus that now operates on two heap variables. In some sense,
assignment rules are always the core of the program logic – they give semantics
of state changes for the verified program. A specification language that describes
the program behaviour also deals in a large part with the corresponding state
changes (or lack thereof). Hence, one can say there is a special correspondence
between the assignment rules and the specification language.

This means that specifications for methods called in transactions should ad-
ditionally express properties about data on the backup heap together with the
framing conditions. To this end we introduced the following extensions. To redi-
rect any object field access o.f to a different heap one can use the \at operator,
e.g., accessing data on the backup heap is expressed with \at(backupHeap,o.f).
In this context, the plain field access o.f in fact means \at(heap,o.f). Then, for
framing specifications, the assignable clauses also take a heap parameter to bind
locations with a corresponding heap:

assignable[heap] o.f;
assignable[backupHeap] o.g;

A Case Study in Formal Verification using Multiple Explicit Heaps 11

/*@ public normal_behavior
requires len >= 0 && off >= 0 && off + len <= a.length;
ensures \result == off + len;
ensures (\forall int i; i>=0 && i<len; a[off + i] == v);
requires[backupHeap] JCSystem.getTransactionDepth() == 1;
requires[backupHeap] a.<transient> ==> !a.<trUpdated>;
ensures[backupHeap] (\forall int i; i>=0 && i<len;
\at(backupHeap, a[off + i]) ==
((!a.<transient> && \at(backupHeap, a.<trUpdated>) ?
\old(\at(backupHeap, a[off + i])) : v));

assignable[heap,backupHeap] a[off..off+len-1]; @*/
public static int arrayFillNonAtomic(byte[] a, int off, int len, byte v);

Fig. 1. Complete JML* specification for one of the Java Card API methods.

Now it is possible to generate separate proof obligations for the framing condi-
tions for the two heaps and correctly apply method contracts in the presence of
two heaps.

We generalise this further. Any specification element in JML*, like a pre-
condition specified with the requires clause, receives a heap parameter. This
parameter specifies the applicability context of the given specification element.
In particular, specification elements defined for the backup heap are only con-
sidered in verification contexts of an open transaction, i.e., within the marked
〈TR·〉 modality. Specification elements not annotated with any heap apply to the
default heap that is always active. This way we achieve transparency – old style
specifications refer to the regular heap by default and retain their previous se-
mantics. An illustration for this is given in Fig. 1, where a complete specification
for the Java Card API method for updating chunks of arrays in a non-atomic
way is given for both the transaction and non-transaction contexts.

4 Implementation in KeY

Implementing the support for Java Card transactions in KeY was done in two
steps. The first step was to generalise the JML* interface to accept multiple
heaps and convey the information about them to the proof obligation generation
component and the modular reasoning component. This was simply done by
considering an arbitrary list of heaps in the corresponding modules rather than
referring to the one predefined heap. Until this point the extensions were fully
generic, i.e., not specific to the Java Card transaction mechanism in any way. In
particular, the generation of concrete formulae for framing conditions remained
the same, only now several ones for different heaps are created.

In the second step we added the core formalisation of Java Card transactions
to the KeY system. In KeY the logic rules are defined externally, using the so-
called taclet language [2, Chap. 4] for defining the corresponding rewrites. The
TR marker was added by simply declaring a new modality. Then a handful of

12 W. Mostowski

new rules we discussed in Sect. 2 were added to the rule base. As an example, a
self-explanatory taclet for the #beginTr statement is the following in KeY:

beginJavaCardTransaction {
\find (==> \diamond{.. #beginTr; ...}\endmodality phi)
\replacewith(==> {backupHeap := heap}
\diamond_transaction{.. ...}\endmodality phi) };

Apart from this rule and the transaction specific rule for array assignments the
addition of the second heap variable backupHeap required only declaring it.
This declaration automatically tells the other components of the KeY system
to include it (considering the current verification context) in the correspond-
ing verification tasks, like proof obligation generation or modular application of
contracts.

To evaluate our work we revisited our earlier work on the fully verified ref-
erence implementation of the Java Card API [19]. We specified the Java Card
API methods following the extended JML* syntax (see again Fig. 1) and verified
both the reference implementation of the API as well as a handful of other Java
Card examples that make calls to the Java Card API.

The overall result of our work shows considerable improvements compared
to our old formalisation of transactions [3, 18] back when the heap model in
JDL was not based on explicit heap access through a special program variable.
The complete set of changes to the logic and the calculus is now much smaller,
the implementation overhead of the new rules practically negligible, and finally
the resulting automatic proofs for Java Card programs much more readable. We
attribute these improvements to the use of multiple heaps, which was not possible
before. Previously, the semantics of state updates on the implicit heap had to be
heavily modified to include a notion of a forgetting update to model data roll-
back in the logic with deep implications for the calculus and the implementation.
Preliminary work in the area of concurrent verification provides another strong
case for the explicit use of multiple heaps as we briefly describe next.

5 New Applications for Multiple Heaps in Verification

In the introduction we mentioned distributed computing as an example where
multiple heaps should be considered in the computation model, with at least the
local and one remote heap. Another scenario is low level reasoning about systems
with (possibly multi-level) cache memory, where one heap would represent the
cache and one the main memory. Here the verification could concentrate on
the data dependencies and synchronisation between the cache and the main
memory. Going further, multi-core systems (like GPUs) could be also modelled
using multiple explicit heaps, each heap representing the local memory of a
single core. Finally, the real-time Java can be also considered in this context,
where programs access memories with different physical characteristics on one
embedded device [13].

A Case Study in Formal Verification using Multiple Explicit Heaps 13

In the context of the ongoing VerCors project5 [1] we currently concentrate
on extending the KeY logic to deal with permission based verification of concur-
rent programs. Permission accounting is a specification oriented methodology for
ensuring race freedom in concurrent programs that allows for efficient thread-
local reasoning. Similarly to the implementation of permissions in the Chalice
tool [15, 22] we introduce a permission mask to the JDL to keep track of per-
missions in the verified programs. From our point of view, this permission mask
is nothing more than a parallel heap-like structure that stores permission values
for each location instead of the actual values. In the first experimental attempt,
using the multiple heap framework that we discussed, we simply added a new
heap structure to the logic, represented with the program variable permissions,
to keep track of the permissions that the local Java thread owns. The location
assignment and access rules were amended to ensure, respectively, a write or
read permission to a given location. Now, using our heap-aware JML*, we can
give permission based specifications:

requires[permissions] \at(permissions, o.f) == 1;
assignable o.f;
assignable[permissions] o.f;

This states that we require a write permission to the location o.f, that this lo-
cation is changed on the actual heap (the regular assignable), and also that the
permission to the location may be modified, e.g., through permission transfer to
another thread. Disregarding any specification clauses associated with permis-
sions, in the example the first and the third line, transforms the specification into
a permission unaware specification. This can be useful for verifying permission
and functional properties separately. Very basic examples with permissions have
been already verified with an experimental version of KeY.

6 Conclusions

In this paper we discussed the use of multiple heaps in formal verification of
Java programs using the formalisation of Java Card atomic transactions fully
implemented in KeY as an example. We also took the opportunity to give full
details of this formalisation that were not yet published elsewhere. In the ongoing
work we apply the same methodology to introduce permission based reasoning
for concurrent Java programs in KeY. Few other applications in verification have
been named as possible directions for more future work.

It seems that none of the other verification systems that we are aware of try
to make heap or heap-like structures explicit on the level of the specification
language, although certainly some of them indeed use multiple heap or heap-
like structures internally. Most notably, the Chalice tool [15, 22] works with two
global variables H and P , that, respectively, represent the heap and the per-
mission mask in the Boogie proof obligations. Not exposing the heap in the

5 http://fmt.cs.utwente.nl/research/projects/VerCors/.

14 W. Mostowski

Separation Logic specifications and associated tools [11, 7] seems natural, how-
ever, applying them to new verification scenarios named in Sect. 5 becomes
significantly more difficult in our opinion.

When it comes to the formalisation of Java Card atomic transactions, only
the Krakatoa tool [17] also provides a sound formalisation and implementation of
the transaction roll-back that accounts for the specifics of non-atomic methods.
The Krakatoa formalisation relies on keeping extra copies of data to be rolled
back on the same heap as all the other data in dedicated backup fields associated
with regular fields, i.e., all data fields are backed-up separately instead of the
whole heap. This is very similar to our first formalisation of transactions [3],
which turns out to be very heavy-weight compared to our current work. We
believe that our current formalisation can be applied easily in other verification
systems, as long as such a system is capable of manipulating the heap variable as
we do in the KeY logic. A partial support for Java Card transactions has been
also recently reported for the VeriFast platform [10], however, the semantics
of the transaction roll-back has not been formalised there. Finally, Java Card
transactions have been considered to be formalised in the LOOP tool using
program transformation to explicitly model transaction recovery directly in the
Java code, but the ideas where never implemented in the tool [9].

Acknowledgements. The work of W. Mostowski is supported by ERC grant
258405 for the VerCors project. We would like to thank Richard Bubel for his
insights and invaluable help with the implementation.

References

1. A. Amighi, S. C. Blom, M. Huisman, and M. Zaharieva-Stojanovski. The VerCors
project: Setting up basecamp. In 6th Workshop Programming Languages meets
Program Verification, pages 71–82. ACM, 2012.

2. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNAI. Springer, 2007.

3. B. Beckert and W. Mostowski. A program logic for handling Java Card’s transac-
tion mechanism. In M. Pezzè, editor, Fundamental Approaches to Software Engi-
neering, volume 2621 of LNCS, pages 246–260. Springer, April 2003.

4. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K. R. M. Leino, and
E. Poll. An overview of JML tools and applications. In T. Arts and W. Fokkink,
editors, 8th Int’l Workshop on Formal Methods for Industrial Critical Systems,
volume 80 of ENTCS, pages 73–89. Elsevier, 2003.

5. L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: A developer-oriented
approach. In K. Araki, S. Gnesi, and D. Mandrioli, editors, International Sympo-
sium of Formal Methods Europe, volume 2805 of LNCS, pages 422–439. Springer,
2003.

6. Z. Chen. Java Card Technology for Smart Cards: Architecture and Programmer’s
Guide. Addison-Wesley, June 2000.

7. D. Distefano and M. J. Parkinson. jStar: towards practical verification for Java.
SIGPLAN Notes, 43:213–226, October 2008.

A Case Study in Formal Verification using Multiple Explicit Heaps 15

8. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
9. E. Hubbers and E. Poll. Reasoning about card tears and transactions in Java Card.

In M. Wermelinger and T. Margaria, editors, Fundamental Approaches to Software
Engineering, volume 2984 of LNCS, pages 114–128. Springer, 2004.

10. B. Jacobs, J. Smans, P. Philippaerts, and F. Piessens. The VeriFast program
verifier – a tutorial for Java Card developers. Technical report, Department of
Computer Science, Katholieke Universiteit Leuven, Belgium, September 2011.

11. B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens.
Verifast: A powerful, sound, predictable, fast verifier for C and Java. In NASA
Formal Methods, volume 6617 of LNCS, pages 41–55. Springer, 2011.

12. I. T. Kassios. Dynamic frames: Support for framing, dependencies and sharing
without restrictions. In J. Misra, T. Nipkow, and E. Sekerinski, editors, Formal
Methods, volume 4085 of LNCS. Springer, 2006.

13. J. Kwon and A. J. Wellings. Memory management based on method invocation
in RTSJ. In Proceedings, On the Move to Meaningful Internet Systems (OTM),
volume 3292 of LNCS, pages 333–345. Springer, 2004.

14. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness.
In E. M. Clarke and A. Voronkov, editors, LPAR (Dakar), volume 6355 of LNCS,
pages 348–370. Springer, 2010.

15. K. R. M. Leino, P. Müller, and J. Smans. Verification of concurrent programs with
Chalice. In A. Aldini, G. Barthe, and R. Gorrieri, editors, Foundations of Security
Analysis and Design, pages 195–222. Springer, 2009.

16. C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certification
of Java/Java Card programs annotated in JML. Journal of Logic and Algebraic
Programming, 58(1–2):89–106, 2004.

17. C. Marché and N. Rousset. Verification of Java Card applets behavior with respect
to transactions and card tears. In D. V. Hung and P. Pandya, editors, 4th IEEE
Conference on Software Engineering and Formal Methods. IEEE Press, 2006.

18. W. Mostowski. Formal reasoning about non-atomic Java Card methods in Dynamic
Logic. In J. Misra, T. Nipkow, and E. Sekerinski, editors, Formal Methods, volume
4085 of LNCS, pages 444–459. Springer, 2006.

19. W. Mostowski. Fully verified Java Card API reference implementation. In B. Beck-
ert, editor, 4th Int’l Verification Workshop, volume 259 of CEUR WS, 2007.

20. W. Mostowski and E. Poll. Malicious code on Java Card smartcards: Attacks and
countermeasures. In Smart Card Research and Advanced Application Conference,
volume 5189 of LNCS, pages 1–16. Springer, September 2008.

21. P. L. Pallec, A. Saif, O. Briot, M. Bensimon, J. Devisme, and M. Eznack. NFC
cardlet development guidelines v2.2. Technical report, Association Française du
Sans Contact Mobile, 2012.

22. M. J. Parkinson and A. J. Summers. The relationship between separation logic
and implicit dynamic frames. In G. Barthe, editor, European Symposium on Pro-
gramming, volume 6602 of LNCS, pages 439–458. Springer, 2011.

23. P. H. Schmitt, M. Ulbrich, and B. Weiß. Dynamic frames in Java dynamic logic. In
B. Beckert and C. Marché, editors, Formal Verification of Object-Oriented Software
Conference, volume 6528 of LNCS, pages 138–152. Springer, 2011.

24. K. Stenzel. A formally verified calculus for full Java Card. In C. Rattray, S. Ma-
haraj, and C. Shankland, editors, Algebraic Methodology and Software Technology,
volume 3116 of LNCS, 2004.

25. Sun Microsystems, Inc., http://www.oracle.com. Java Card 2.2.2 Runtime Envi-
ronment Specification, March 2006.

