
A Symbolic Approach to Permission Accounting for Concurrent Reasoning

Marieke Huisman and Wojciech Mostowski
Formal Methods and Tools, University of Twente, Enschede, The Netherlands

Email: {m.huisman,w.mostowski}@utwente.nl

Abstract—Permission accounting is fundamental to modular,
thread-local reasoning about concurrent programs. This paper
presents a new, symbolic system for permission accounting.
In existing systems, permissions are numeric value-based and
refer to the current thread only. Our system is based on
symbolic expressions that provide a view of permissions for
all relevant threads in the scope of the permission originator –
current thread or a lock. This enables: (a) better understanding
of permission tracking for the specifier, (b) more natural
specification of complex permission transfer scenarios, and
(c) more efficient reasoning for verification tools (in particular,
no reasoning about rational numbers is required). Our system
is based on symbolic permission slicing to divide permissions
between multiple owners, and on tracking the history of per-
mission transfers by means of “I-owe-you” chains of permission
owners. We axiomatised our permission system in the KeY
verifier as well as in PVS, and proved correct with both
tools a list of vital properties about our permissions. KeY
is an interactive verification tool for Java and our primary
target to employ our permission system. First results with the
verification of concurrent Java programs using our permission
system in KeY are also reported.

Keywords-permission accounting; fractional permissions; in-
teractive verification; formal specification; Java

I. INTRODUCTION

Permission accounting [1] is the essential factor in thread-
local reasoning about concurrent programs. In permission-
based verification, programs are annotated with permission
expressions specifying a thread’s access rights to each
memory location. Verification ensures that all memory ac-
cesses are protected by a corresponding permission: full
permissions grant a write access, partial permissions grant
only a read access, no permission prohibits access entirely.
Soundness of the verification technique ensures that multiple
threads are not allowed to collectively hold more than a
full permission to one memory location at all times. This
ensures that verified programs are free of data races, and
that program specifications are stable, i.e., they cannot be
invalidated by other threads. The main complication for this
approach are synchronisation points, like locks or forked
threads, where permissions are transferred between threads.
The most commonly used approach [1] is to represent a
permission as a rational fraction in the range (0, 1] (or a
related structure [2]), where 0 (resp. lack of permission spec-
ification) denotes no access, 1 denotes full access, and any
fraction denotes read access. Upon synchronisation points,
permissions can be split (by division) and recombined (by

addition). The main challenge with fractions is to be able to
combine read permissions back to a write (and only a write)
permission where necessary, as this requires high-precision
specifications and reasoning.

The main contribution of this paper is an alternative and
more flexible permission model, which is fully symbolic and
can be used to specify complex synchronisation scenarios.
In essence, symbolic treatment of permissions is achieved
by specifying what kind of transfer is applied to a per-
mission and between what parties, instead of specifying
how much of the permission is transferred. This relieves
both the specifier and the verification tool of the need to,
respectively, specify and reason about concrete fractions,
which requires dedicated complex decision procedures in
first-order reasoning [3]. To specify complex synchronisation
scenarios such as Java threads with multi-join possibilities,
and latches [4], the system tracks the permission originators
in the permission expressions, which can be used to deter-
mine the permission return path. To handle all scenarios,
under certain conditions, it is allowed to modify this return
path. Section II provides two examples that illustrate these
main characteristics of our permission system. The formal
description of our permission system is provided in Sects. III
and IV.

The context of our work is the VerCors project1 [5],
targeting the functional verification of concurrent data struc-
tures. The base for VerCors is our own version of separation
logic with permissions [6]; we specify programs with Java
Modeling Language (JML) [7]; and we provide tool support
for this combination. For automated tool support we encode
verification problems to the Silver language and use the Sili-
con verifier [8]. For interactive verification, we are currently
adopting the KeY tool2 [9], a user-friendly interactive verifier
for Java, based on dynamic logic. This entails extending the
KeY verifier with permission accounting, thus we formalised
our new permission system in the KeY logic. We also proved
some permission properties with KeY, but as KeY does not
support induction over data types, we could not prove the
properties in their most general form. Therefore, we also
formalised our permissions in PVS [10] and proved the most
general properties correct with PVS. These properties and
their formalisation are described in Sects. V and VI.

1http://fmt.cs.utwente.nl/research/projects/VerCors/.
2http://www.key-project.org/.

1

http://fmt.cs.utwente.nl/research/projects/VerCors/
http://www.key-project.org/

Note that our permission model itself is language-inde-
pendent, it can be used for any concurrent programming
language with some means of synchronisation. It has to
be, however, appropriately integrated into the corresponding
program logic. In Sect. VII we very briefly show how this
is done for the dynamic logic used by KeY to verify Java
programs and we discuss another example that also attempts
to show the relationship between our permission system and
the classical fractional approach. The theories and examples
from this paper are available on-line [11].

II. SYMBOLIC PERMISSIONS IN A NUTSHELL

Some of the shortcomings associated with using fractions
for permissions have been already described in the context
of the Chalice verifier for an idealised concurrent lan-
guage [12]. In essence, the problematic points are reasoning
about rational fractions [3] and the necessity to provide
concrete fractions (or relative amounts [13]) in specifica-
tions. Real programming languages bring further challenges,
such as re-entrant locks and other complex synchronisation
methods, like count-down latches [4] in Java. To provide an
intuition how permissions can be treated symbolically, this
section discusses two examples. The first one describes the
most basic case of a permission transfer between a thread
and a lock. The second one is a verification scenario with
multi-joined threads. Although fractions can still be used to
provide a sufficient specification for this second example, it
suffers from two drawbacks that we demonstrate with this
example. In both examples, we keep the specifications and
programs down to a bare minimum to only show the essen-
tials of symbolic permissions; realistic specifications have to
account for many other aspects of concurrent verification,
this is discussed more in Sect. VII.

Simple Read and Write Resource Locking: A basic sce-
nario where permission-based reasoning is used to prove
a program correct is when a resource (access to a memory
location, in Java an object field o.f) is guarded by a lock. Ac-
quiring the lock transfers either a partial or a full permission
from the lock to the locking thread and allows that thread to,
respectively, read or write the location. Releasing the lock
transfers the permission back to the lock. In Fig. 1 the lock
l provides a write access to o.x and a read access to o.y. For
the specification of fractional permissions we use Perm(l, p)
propositions that state the amount of permission p assigned
to a location l. As in concurrent separation logic [6], only
locations that are provided by the specification can be used
by the method. Otherwise, we use JML syntax [7] for
specifications.

Symbolic Permissions: To avoid fractions, we keep track
of permission owners given by thread identifiers. In the con-
text of Java, these are object references, but other identifiers
could be used, e.g., integers. Just for this first example,
consider our permissions to be lists of permission owners
– threads or locks. New owners receive their permissions

class Client { . . .
l.lock(); // produces Perm(o.x, 1) and Perm(o.y, 1

2)
o.x = o.y; // write o.x, read o.y
l.unlock(); // consumes Perm(o.x, 1) and Perm(o.y, 1

2)
// back into the lock

. . . }

class Lock {
//@ requires !locked; ensures locked;
//@ ensures Perm(o.x,1) && Perm(o.y, 1

2);
void lock();

//@ requires Perm(o.x,1) && Perm(o.y, 1
2);

//@ requires locked; ensures !locked;
void unlock(); }

Figure 1. The use of a simple lock and its fractional-style specification.

by either being added to this list (to gain shared access),
or replacing existing owners (to fully take over access of
another owner). When permissions are returned a reverse
operation is applied. Each element in the list is a permission
slice. Each permission slice gives partial access right to one
owner and if all slices in the permission refer to the same
owner, that owner has a full access right (i.e., identical
permissions slices can be merged). Thus, in our approach
the permission keeps a view of which other owners (threads)
have potential rights associated with the permission.

For our example in Fig. 1, before the lock is acquired,
the view on the permissions to both o.x and o.y is that
they completely belong to the lock object l. We denote
this with the list [l]. Upon locking, the permission to o.x
is completely transferred to the currently running thread ct,
i.e., l is replaced by ct and the permission becomes [ct]
meaning that the current thread fully owns this permission.
The permission to o.y is transferred to ct only partially by
first slicing the permission [l] into [l, l] and then transferring
one of the slices to ct. This permission becomes [ct, l]
meaning that the current thread owns one slice of this
permission and that further permission transfers from the
lock are still possible based on the l slice that the lock still
owns. Upon unlocking, the permissions are returned to the
lock by replacing the current thread object ct in the list with
the lock object l, leaving the permission to o.x at [l] again,
and the permission to o.y at [l, l], which is equivalent and
can be merged into [l].

For the specification, using functional style expressions
rather than separation logic style, through the respective
postconditions we state how the permissions to o.x and o.y
change when lock and unlock are called. We use one return
function retPerm and two transfer functions transPerm
and transPermSplit for a complete and slicing transfer,
respectively. We define these functions formally in Sect. IV.
They all take two (from and to) owners and the permission as
arguments, and return a new permission. Figure 2 shows this.

2

class Client {
. . . // Perm(o.x), Perm(o.y) are [l]
l.lock(); // Perm(o.x) becomes [ct], Perm(o.y) becomes [ct, l]
o.x = o.y; // [ct]→ write access, [ct, ·]→ read access
l.unlock(); // Perm(o.x) becomes [l], Perm(o.y) becomes [l, l]
. . . }

class Lock {
//@ ensures Perm(o.x) ==

transPerm(this, ct, \old(Perm(o.x)));
//@ ensures Perm(o.y) ==

transPermSplit(this, ct, \old(Perm(o.y)));
void lock();

//@ ensures Perm(o.x)==retPerm(ct, this, \old(Perm(o.x)));
//@ ensures Perm(o.y)==retPerm(ct, this, \old(Perm(o.y)));
void unlock(); }

Figure 2. Simple lock specified with symbolic permissions.

Thread Multi-joining with Fractions: The second example
illustrates the need to additionally keep track of to whom
each permission slice is owed, i.e., the permission origina-
tors. Consider the two threads and the client code in Fig. 3.
Here permissions are transferred upon thread forking (the
start method in Java) and thread joining. The code that is
executed asynchronously by the forked thread is contained
in the run method. In this example the Client class passes
on a partial permission granting a read access for this.a to
thread t1. The client itself maintains a read permission. It
also allows thread t2 to get a read permission to this.a, but
only transitively by allowing thread t2 to join thread t1 (by
passing a special join permission) and effectively get the
permission to read this.a from t1. After all the threads are
joined (thread t1 twice, by the client and by t2) the client
code is again allowed to write this.a by holding a complete
permission to it.

This scenario is specifiable with fractional permissions as
shown in the annotations in Fig. 3. The essential part here
is a so-called join token [14] – a fractional permission to
join a thread that captures what part of the initially acquired
permission should be returned to the joining thread. Splitting
the join token between different threads allows these threads
to join the same resource and acquire a corresponding
partial permission to the resource depending on how much
permission to the join token the joining thread has left. For
instance, the specification of Thread1.start (lines 2–3 on the
left in Fig. 3) states that upon forking, the thread transfers
half of the permission to c.a. When the thread is joined
(specification at lines 6–7) the corresponding part of this half
is returned based on the current amount of the permission
p to the join token. In particular, if the join token is not
split (p is 1), the complete 1

2 permission to c.a acquired on
start is returned on join. The consistency of this permission
flow is checked by verifying the run method with the start’s
precondition and join’s postcondition.

When verifying the client code given the specifications
of Thread1 and Thread2, all parametric permissions are
assigned concrete values and the permission flow is traced
from the point of view of the client as follows (after the
threads are initialised):

Perm → this.a t1.join t2.join
thread initialisation 1 — —
t1.start(); 1

2 1 —
t2.start(); 1

2
1
2 1

read this.a (OK) 1
2

1
2 1

t1.join(); (p = 1
2) 1

2 + 1
4 — 1

t2.join(); (p = 1) 1
2 + 1

4 + 1
4 — —

write this.a (OK) 1 — —

The run method of Thread2 that also joins t1 is verified in
a similar way.

Although fractional permissions still work for this exam-
ple there are two limitations. The first problem is the need to
specify concrete values. In the specification of Thread2.join
one has to calculate the permissions to come up with p

4 . This
specification is not modular, in the sense that extending the
client code might (in principle) invalidate this specification,
and in fact, locally this value seems arbitrary. At this point,
one would really like to specify the transfer of all eligible
permissions. The second problem is the use of the join
token to implicitly store and track the permission amounts to
c.a. We only specified one actual memory location using a
permission, and we used two entire join tokens of threads t1
and t2 to track this permission in our program. In effect, the
information about one memory location is implicitly tracked
in three different permissions, and the join tokens cannot be
used to track other locations, unless they would have the
same permission flow as c.a. If we wanted to include another
memory location, say, c.b that would be first written by t1,
then be written by t2, and then be written by the client again,
we would have to start adding new join tokens for each new
location.

Symbolic Permission Transfers and Debts: In our sym-
bolic permissions we store all the information required
to transfer and reconstruct a single permission within the
permission expression itself, so that each memory location
can use a fully independent permission, i.e., permission flow
is specified separately for each location and independently
of other permissions. Compared to the simple lock in our
first example, to allow for more general permission transfers
like in our second example we need to record the transfer
history and introduce the notion of a debt transfer, as we
explain in the following.

On initialisation, a new permission Perm(this.a) (let us
abbreviate it by p) now becomes a two-dimensional list that
contains only ct, denoted [[ct]]. It states that the permission
contains only one slice and this slice belongs to the dis-
tinguished current thread ct only, the first originator of the
permission, without any history of permission transfers. The

3

class Thread1 { Client c;
2 //@ requires Perm(c.a, 1

2);
//@ ensures Perm(this.join, 1);

4 void start();

6 //@ requires Perm(this.join, p);
//@ ensures Perm(c.a, p

2);
8 void join();

10 void run() {
. . . = c.a; // read c.a

12 } }

class Thread2 { Client c; Thread1 t1;
2 //@ requires Perm(t1.join, 1

2);
//@ ensures Perm(this.join, 1);

4 void start();

6 //@ requires Perm(this.join, p);
//@ ensures Perm(c.a, p

4);
8 void join();

10 void run() {
t1.join(); // get read access from t1

12 . . . = c.a; // read c.a
} }

class Client { int a;
2 void main() {

Thread t1 = new Thread1(this);
4 Thread t2 = new Thread2(this, t1);

t1.start();
6 t2.start();

. . . = this.a; // read this.a
8 t1.join();

t2.join();
10 this.a = . . .; // write this.a

} }

Figure 3. Multiply joined thread annotated with fractional-style permissions.

inner list is used to keep track of the transfer history of each
slice, i.e., an “I-owe-you” dependency chain. After executing
our client program from Fig. 3, the permission p takes the
following forms after each permission transferring call:

init t1.start(); t2.start();

p : [ct] [t1
ct

ct] [t1
t2
ct

t1
ct

ct]

t1.join(); t2.join();

p : [t1
t2
ct

ct ct︸ ︷︷ ︸
ct

] [ct ct︸ ︷︷ ︸
ct

]

The inner lists, showed vertically, are single permission
slices. After initialisation the originator ct is the most recent
owner of the only slice in this permission, meaning that
ct has a full permission to the location. After t1.start,
the permission is split and one of the resulting slices is
transferred from ct to t1. At this point, both threads hold
only a read permission, i.e., they each own one slice and
none of them owns all slices. Additionally we know that
thread t1 owes its share to ct in case the return is requested.
This debt replaces the join token from Fig. 3. The most
interesting transformation of p happens when thread t2 is
forked (t2.start). Instead of transferring any current share
of p directly to t2, part of the debt that t1 has to ct is
transferred from ct to t2. The current thread can do that
because it is the holder of the debt. This transfer of debt
effectively means, from the point of view of the originating
current thread, that t2 now also has the potential right to
join t1 to obtain a part of permission p from t1. This
corresponds to the splitting of the join token specified in
Fig. 3 (line 2 in the middle). Because the debt was split
before this transfer, ct still maintains its right to join t1.
This happens in the next step (t1.join) after which t1 is
removed from the top of the middle slice – the permission
is returned from t1 to ct. Permission p now has two identical
ct slices, which can be merged into one, depicted with

an under-brace above. Finally, the specification of t2.join()
should capture that thread t2 joins t1, and then returns its
permission to ct. Consequently, the current thread regains
full write permission p it started with in the first place,
and can write to the associated memory location. Note that
the current thread has also the right to read this location
in between the t2.start()–t1.join() and t1.join()–t2.join() calls,
because it owns one of the permission slices, ct , at these
points, but not all of the slices.

As before, we can specify how p is changed upon thread
forking and joining by applying permission transfer func-
tions to p specifying the from and to threads of the transfer.
Using these functions the start and join postconditions of
threads t1 and t2 are specified as follows, where p is
Perm(c.a):

t1.start(): p == transPermSplit(ct, t1, \old(p));
t2.start(): p == transPermDebtSplit(ct, t2, \old(p));
t1.join(): p == retPerm(t1, ct, \old(p));
t2.join(): p == retPerm(t2, ct, retPerm(t1, t2, \old(p)));

The specification for t1.start states that p is transferred from
the current thread to t1 after first being split, like for o.y per-
mission in the first example. Function transPermDebtSplit
specifies the transfer of the debt as explained above, after
also splitting the permission into two slices first. Again, we
define this function formally in Sect. IV.

The correctness of this reasoning is of course subject to
also verifying the behaviour of both threads t1 and t2. In
particular, for thread t1 we need to show that it does not
modify permission p, and for thread t2 we need to show that
it does indeed join thread t1. In the following we describe
our permission data type more formally.

III. THE PERMISSION DATA TYPE

We assume that all threads can be uniquely identified with
values of some data type. In Java these are instances of the
Thread class. We also assume that the distinguished current
thread is uniquely identifiable in the set of all threads with ct
as above. Furthermore, not only threads can hold ownership
of memory locations, so we generally assume objects to be

4

permission owners. In particular, locks (see first example)
and other synchronisation objects can also hold permissions.
Thus, the owners are simply Object references.

Our permission data type is a two-dimensional list. One of
these dimensions is a list of owners that represent the current
view of the history of ownership (subsequent originators)
of a particular permission slice. A singleton list represents
the initial owner, and a current new owner is added at the
head of the list (or on top when viewed vertically as in
our second example in Sect. II). No owner list should in
principle be empty, the permissions are always initialised
with at least one owner, the first originator. The data type
defining permission owner lists is the following:

OwnerList ::= emptyOwner | owner(Object ,OwnerList).

The other dimension of our permission data type stores
complete permission slices. We use lists again; initially a
permission consists of only one slice, meaning the complete
permission belongs to the owner on the top of the owners list
for that slice. In terms of access rights to some associated
resource, such one slice means a full (write) access. When
there are two or more slices of a permission, this indicates
two or more read rights assigned to, possibly different,
owners. If there are multiple slices, but the owner of all
the slices is the same object, the permission is still a full
permission. The exact definition of predicates establishing
the read and the write permission is given shortly in the
next section. The permission data type is defined as:

Perm ::= emptyPerm | slice(OwnerList ,Perm).

To avoid notational confusion between owner’s lists and
slices we purposely use distinctive names for the two lists’
constructors, i.e., emptyOwner and owner for owner lists,
and emptyPerm and slice for permission slices. Further-
more, using dedicated list structures instead of generic ones
also allows us to provide optimised all-in-one permission
transfer functions, see next. However, generic lists could be
also used to define our permissions, this is what we partly
did in the PVS formalisation discussed later in Sect. VI.

An initial permission assigned to a freshly allocated
memory location is a one-owner one-slice permission that
belongs to the current thread: initFull := slice(owner(ct,
emptyOwner), emptyPerm). From this point on, the per-
mission can be subjected to permission checks to establish
access rights and permission transfers upon entering syn-
chronisation points. Structure-wise, initFull is the minimal
expression that our permissions should take, i.e., there is
always at least one slice and at least one owner of this slice.

IV. QUERIES AND COMMANDS ON PERMISSIONS

Our first query function checks that a given object is an
owner in the owners list. We do this for an arbitrary owner
deep in the list, not only the current owner on the top of
the list. This is to allow operating on the owner list below

the top element to provide the ability to transfer debts as
exemplified in Sect. II. The owner list can be changed only
by the object that is the owner at the given depth. Thus, we
define the predicate checkOwner :

checkOwner : Object × nat ×OwnerList → Bool
checkOwner(o, d, l) :=
l = emptyOwner → false
l = owner(o′, t)→

if d = 0 then o = o′ else checkOwner(o, d− 1, t)

that checks the owner at a given index of the owner list. The
definition is straightforward; the list is traversed to find the d
position at which the element should be equal to the element
o being looked for, while the empty list has no owner.

The readPerm and writePerm predicates check the type
of access the given permission grants. The parameters for
both predicates are the object that we check the access for
and the permission expression. The checking is analogous
to existential and universal quantification, respectively. For
the read access we need to find at least one permission slice
with the current owner equal to the object in question, for
write access all slices need to belong to this object:

readPerm : Object × Perm → Bool
readPerm(o, p) :=
p = emptyPerm → false

p = slice(l, p′)→ checkOwner(o, 0, l)
∨ readPerm(o, p′)

writePerm : Object × Perm → Bool
writePerm(o, p) :=
p = emptyPerm → true

p = slice(l, p′)→ checkOwner(o, 0, l)
∧ writePerm(o, p′)

To define the actual permission transfer functions we first
define operations to add a new owner to a single permission
slice and to return permission slices to their previous owners.
As permission slices can be only mutated by the associated
owners, these two functions are partial, i.e., guarded by the
checkOwner predicate. An owner o present anywhere in
the list can insert a new owner o′ above itself to redirect
ownership returning to this other object o′, i.e., o can transfer
its ownership (d = 0) or debt (d > 0) to o′. When owners
return their permissions, the current rightful owner is simply
removed from the top of the owner list:

insertOwner :
Object ×Object × nat ×OwnerList → OwnerList

insertOwner(o, o′, d, l) := [when checkOwner(o, d, l)]
d = 0→ owner(o′, l)
d > 0 ∧ l = owner(h, t)→

owner(h, insertOwner(o, o′, d− 1, t))

returnOwner : Object ×OwnerList → OwnerList
returnOwner(o, l) := [when checkOwner(o, 0, l)]

l = owner(h, t)→ t

5

The two quoted functions are used in the top-level permis-
sion slicing and recombining functions used for permission
transfer. Their signatures are the following:

transferPerm :
Bool ×Object ×Object × nat × Perm → Perm

returnPerm : Object ×Object × Perm → Perm

and they are formally defined in Fig. 4. The first parameter
to transfer a permission specifies whether a permission slice
should be first split into two before the transfer. This splitting
differentiates between a complete or a partial transfer, as
discussed in Sect. II. In the first case, the ownership of
all slices is transferred – the current owner gives up its
whole access right, whatever it is, to another object. In the
second case one slice is split into two, and then only one
is transferred to another object – the current owner retains
a partial right and grants a partial right to another object.
The two object parameters to transferPerm are the from
and to objects of the transfer. The integer parameter is the
depth at which the transfer happens to allow for transferring
debts as described above and in Sect. II. Finally, the function
takes a permission and returns an accordingly modified one.
The transfer function is an identity in two cases: when the
object that requests the transfer does not have any rights in
the permission, and when the from and to parameters are
identical.

The returnPerm function also only allows the current
slice owners to return their rights. However, contrary to
transferPerm , permissions are always returned completely,
if possible; the current owner is obliged to give up rights
to all currently owned slices to their originators. This is
to ensure that no permissions are unnecessarily lost during
returns. Upon return identical slices are merged together as
in the examples in Sect. II.

The transfer functions from the examples in Sect. II
correspond to the transferPerm function as follows:
transPermSplit(f, t, p) ≡ transferPerm(true, f, t, 0, p)
and transPermDebtSplit(f, t, p) ≡ transferPerm(true, f,
t, 1, p). The retPerm function from Sect. II has a direct
correspondence to returnPerm . Moreover, our definition of
returnPerm ensures that adjacent identical slices likely to
appear after an earlier split transfer are merged into one,
exactly as we showed in Sect. II where [[ct], [ct]] was merged
into [[ct]]. This allows to keep the permission expressions
short, which should improve reasoning. However, in gen-
eral our functions are not guaranteed to always produce
a completely simplified permission. This does not destroy
the correctness of the system, unreduced expressions can
still be queried to establish the associated access rights
and can be subjected to further transfer operations. Hence,
unreduced expressions may only hinder reasoning efficiency.
In practice, however, most verification scenarios shall only
involve a very limited number of threads or synchronisation
objects, keeping the permission expression limited in size

transferPerm(s, f, t, d, p) :=
p = emptyPerm → emptyPerm
p = slice(l, p′)→
f = t→ p
otherwise→
checkOwner(f, d, l)→
s = true→ slice(insertOwner(f, t, d, l), p)
s = false→ slice(insertOwner(f, t, d, l),

transferPerm(s, f, t, d, p′))
otherwise→ slice(l, transferPerm(s, f, t, d, p′))

returnPerm(f, t, p) :=
p = emptyPerm → p
p = slice(l, p′)→
f = t→ p
otherwise→
checkOwner(f, 0, l) ∧ checkOwner(t, 1, l)→
l = owner(f, l′) ∧ p′ = slice(l′, p′′)→

slice(returnOwner(f, l),
returnPerm(f, t, p′′))

otherwise→ slice(returnOwner(f, l),
returnPerm(f, t, p′))

otherwise→ slice(l, returnPerm(f, t, p′))

Figure 4. Complete definitions of transferPerm and returnPerm .

anyhow and maintaining efficiency in reasoning. For exam-
ple, a typical synchronisation pattern with a simple write
lock would involve one complete permission transfer over a
full permission [[l]] and a subsequent permission return, as
shown in our first example in Sect. II.

V. PERMISSION PROPERTIES

The importance of permission accounting in concurrent
reasoning is that threads verified with respect to permission
specifications are guaranteed to be data-race free. But this
only holds if the permissions themselves and their operations
preserve certain properties. For instance, in fractional style
permissions one has to ensure that no permissions greater
than 1 in value are ever created, or that no two threads hold
more than a full permission to one location. More generally,
one has to ensure that no deficit (less than a read permission)
or surplus (more than a write permission) rights are created
when permissions are transferred.

The second vital aspect of permission properties is to sup-
port efficient reasoning and enable abstraction. All proved
permission properties can be turned into lemmas and subse-
quently used for efficient verification. For abstraction, one
can use facts like “transferring and returning a permission
gives the original permission” in which case the actual per-
mission can be left underspecified by only stating predicates
that hold for it.

Our permission expressions are self-contained. In partic-
ular, objects involved in each permission transfer are stated
and stored in the permission expression. Consequently, many

6

of the properties we are interested in are easy to establish
independently from a particular verification logic or context.
In fact, some of the properties that we list below seem
trivial. We only list the very crucial properties necessary
to guarantee sound reasoning to establish data-race freedom
and support basic abstraction from concrete expressions, but
other auxiliary properties can be added, especially ones that
can support more efficient reasoning. Hence, the properties
that we concentrate on are the following:

1) Initial permission is a full access permission,
2) A write permission is also a read permission,
3) A write permission for one object grants no access for

other objects,
4) A split-transfer of any permission to another object

leaves the permission in a read access state for the
original object, but not in a write access state,

5) Similarly, such a transfer gives the receiver a read, but
not a write access,

6) A complete transfer of permissions strips the original
owner of all rights,

7) Similarly, the receiver gets all the rights that the
original object had,

8) Any debt transfer (d > 0) retains all access for all
current permission owners,

9) Objects not involved in the transfer or return retain all
their access rights,

10) Any transfer followed by a corresponding return re-
tains all original rights.

VI. TOOL FORMALISATION AND PROPERTY PROOFS

We formalised both our permission theory and properties
in a formal language of two theorem provers and used the
associated tools to prove the properties correct. The first
prover is the KeY verification system for Java programs. The
formalisation of the permission system in KeY is necessary
anyhow, as KeY is the primary target to implement our
permissions for verification of concurrent Java programs,
see next section. We used the automated mode of KeY
to show the correctness of parts of properties that can be
established with pure first-order reasoning. However, full
properties require structural induction proofs, which KeY
cannot do in a methodological way. Thus, we also employed
a prover more suited for this task, the Prototype Verification
System (PVS) [10].

The KeY system is based on a first-order dynamic
logic [15] tailored to Java [9], but for our permission theory
itself the first-order base of the logic is sufficient. The
sequent calculus of the KeY logic is defined in external
files, that declare the logical sorts, function and predicate
symbols that apply to the corresponding sorts, and rewrite
rules that give the functions and predicates their meaning.
The rules are essentially elaborate pattern-matching-based
find and add/replace schemas for changing proof sequents.

\sorts{ Perm; OwnerList; } \functions { . . . }

\predicates {
readPerm(Object, Perm); writePerm(Object, Perm); }

\schemaVariables {
\term Object o; \term Perm p; \term OwnerList ol; }

\rules {
writePermSlice {

\find(writePerm(o, slice(ol, p)))
\replacewith(checkOwner(o, 0, ol) & writePerm(o, p)) };

writePermEmpty {
\find(writePerm(o, emptyPerm)) \replacewith(true) }; }

Figure 5. Snapshot of the KeY formalisation of symbolic permissions.

The KeY prover implements a very efficient proof engine to
apply these rules in the effort to close proofs automatically.

Fig. 5 gives a snapshot of the KeY formalisation of our
permissions. Only two rewrite rules that define the full
access permission check are given, it should be clear how
they use pattern-matching to modify the associated formulae.
We also stated our permission properties (to a limited extent,
see below) directly as first-order logic formulae and we used
the core permission rules to prove the properties correct.
Some of our properties have been already defined as lemma
rules for verification of programs with KeY, however, the set
of these lemma rules is not yet complete and we introduce
them as required when working with new examples.

As an example, a property that states “a split transfer of
an initial full permission from the current thread to another
object revokes the write permission from the current thread”
is formalised as the following KeY formula:

\forall Object o; (o != ct −>
!writePerm(ct, transferPerm(TRUE, ct, o, 0, initFull)))

This is proved fully automatically with KeY. This property
is a concrete instance of the more general property 4 above
stated for any permission that is at least a read permission of
the current thread. This general property requires a structural
induction proof that is not possible with KeY, hence we
turned to PVS, an interactive theorem prover for higher-order
logic, to prove the properties in their most general form.

Similarly to KeY, special purpose data types have been
defined in PVS to represent permissions and the properties
as PVS lemmas. Due to space restrictions we do not quote
these definitions, however, the complete PVS formalisation
and all property proofs are available on-line [11]. Generally,
all the properties are proven correct by structural induction
on the form of the permission and subsequent unfolding
of appropriate definitions. Noteworthy, properties 9 and 10
required well-founded induction to tackle the on-the-fly
merging of slices when applying the returnPerm function.

7

VII. APPLICATION IN REASONING ABOUT CONCURRENT
PROGRAMS

So far we only discussed the permission expressions in
isolation and stated that each such expression refers to some
memory location of the program to be verified. To reason
about actual programs we need to establish a connection
between permission expressions and the memory model of
the verification logic. Below we sketch how this is done for
the KeY verifier and what needs to be considered in general.
We then use this connection to verify another example that
compares symbolic permissions with the fractional ones.

In the KeY logic, memory is represented as an explicit
heap variable that maps objects’ fields (i.e., memory loca-
tions) to their values. The heap program variable is special
in the sense that it is subject to all matters associated
with program memory change and framing. In particular,
when proof obligations for establishing the correctness of
a method contract are generated they include formulae
ensuring that the framing conditions are satisfied. These
formulae are quantifications over the memory locations on
the heap following the dynamic frames approach [16].

The essence of adding support for permissions in KeY
is to add a second permission heap that, instead of the
program memory values, keeps the permissions to all mem-
ory locations that the program operates on. All the existing
machinery of KeY for operating on the regular heap variable
scales to the operation on an arbitrary, but fixed number
of heaps simultaneously [17]. What remains is to lift this
extension to the specification language JML∗, KeY’s version
of JML [7]. Essentially, we do this by allowing one to state
the heap variable that a given expression refers to explicitly
in JML∗ specifications, with convenience expressions on top
of it. A very simple example of this is the following:

//@ requires \writePerm(\perm(this.o));
//@ ensures this.o == p;
//@ assignable<heap> this.o;
//@ assignable<permissions> \nothing;
public void method(Object p) { this.o = p; }

The value for this.o on the permission heap (accessed with
the \perm operator) has to be a write permission for the
current thread (\writePerm). The assignable clauses state
how the two heaps change. On the memory heap this.o is
changed. The permission heap is unchanged as the program
only uses the permission to this.o, but does not make
any permission transfers for this location. Note that both
assignable clauses are necessary as KeY, with or without
the permission extension, always requires explicit dynamic
frames, i.e., permissions are employed only to specify data
non-interference and not implicit framing. Finally, no per-
missions for the object reference p are necessary as it is not
a location. This example verifies automatically with KeY.

For the overall soundness of our reasoning we also
have to show self-framing of specifications with respect to
permissions, i.e., specifications should refer only to locations

they have at least a read permission to. Conceptually this
is rather straightforward in our approach and uses the same
principle as showing data dependency contracts in KeY [16].
Shortly, one shows that a formula does not change its val-
uation when locations outside of the set of the dependency
frame are anonymised. Here the dependency frame are the
locations that we can show at least a read access for in a
given context. In the short example above the dependency
frame is this.o defined by the write permission in the
precondition and none of the formulas in the specification
mention other locations. The permission expression itself
over this.o is self-framed by definition. We are in progress
of working out the fine details of permission self-framing
and related matters, completing the implementation in KeY,
and writing a follow-up paper on this subject.

Apart from that, our implementation in KeY is fully
functional, our second example from Sect. II can also be
specified and verified with KeY. We have also specified and
verified a more complex version of this example, a plotter
with two filter threads from [18]. Both of these examples
are available on-line [11]. Here we take the opportunity to
describe yet another example, our version of the motivating
read-write lock example from [13] where constraints are
used to combine fractions with counting permissions and to
mitigate the need to use concrete rational numbers (though
reasoning about symbolic rational numbers is still required).
This example shows some fine points of specifying with
our permissions and the conceptual difference between our
approach and the classical fractions approach.

The code and our specification for the read-write lock
example from [13] is shown in Fig. 6. We slightly refactored
the original code and in-lined the shared variable read and
writing statements to save space, however, it preserves the
crucial difficulty of the original example (the full example
that uses delegated and specified read and write methods is
available at [11]). The lock and unlock methods are assumed
to have an implementation providing a simple exclusive
access lock. Through the use of the rds field this is turned
into a counting read-write lock to access or change the
shared val field. When rds is strictly positive only reading
is possible, when it is 0 writing can occur. The difficulty in
the example comes from the fact that the lock essentially
only protects the rds field itself, while val is read when the
lock is actually not acquired but when rds is guaranteed to
be positive (l. 21 in Fig. 6). Writing of val is done within
the scope of the lock when rds is equal to 0 (l. 14).

In [13] the access to val is guarded by a lock with a
1 − rds ∗ ε fraction which by reference to rds provides
sufficient permissions when reading and writing occurs. In
our specification we provide the information on how the
permissions are flowing depending on the value of rds when
the lock is used. Upon acquiring the lock all currently
available permissions to val and the complete permission
to rds (also ords, see below) are transferred to the currently

8

running thread (ls. 32–37). Upon release all permissions are
returned to the lock (ls. 44–49), however, when the value of
rds is noticed to have been strictly increased since the call
to lock, a spliced part of the permission to val is transferred
again to the current thread to enable reading (l. 51).

The remaining parts of the lock and unlock specification
is additional book-keeping and consistency checks. In par-
ticular, the ords ghost field records the value of rds when
the lock is acquired to establish the lock usage scenario
as described above. We also state that when the lock is
successfully acquired, then the permission to rds and ords
completely belonged to the lock. Note that information about
fields such as rds only can be given in the postcondition of
lock (e.g., l. 30) when the lock is already acquired and a
corresponding permission is present.3 In the precondition of
lock there are not sufficient permissions to specify anything
about rds (for unlock the inverse situation occurs). In fact,
we require that the calling thread does not have any access
to rds which is expressing that the lock is not currently
acquired by the current thread. A similar specification is to
be found for methods doRead and doWrite and in particular
in the loop invariant of doWrite which states that the lock
is not acquired outside of the loop. Finally, the diverges
clause specifies that doWrite may possibly not terminate.

VIII. CONCLUSIONS AND FUTURE WORK

We discussed a symbolic permission system for concur-
rent reasoning that improves over the established fractions
approach in at least two ways. First, we mitigate the need to
reason about fractional numbers that is considered difficult in
first-order reasoning [3]. Second, we introduced mechanisms
that allow us to reason about complex permission flow
scenarios where multiple threads and synchronisation objects
are involved. This is illustrated by an example program
where two different threads simultaneously join a single
thread. With our new permissions, the KeY verifier is already
able to verify concurrent programs, including the quoted
example [11]. We attribute the relative ease of reasoning with
our new permissions to the explicit approach, i.e., not hiding
or assuming information in the verification context, like it is
commonly done in separation logic-based verification meth-
ods [19]. Our explicit approach in verification has proven
itself efficient also in our preceding work [17]. To enable
fully flexible reasoning about arbitrary multi-threaded Java
programs, we are currently working on the generation of the
complete and sound proof obligations in KeY Java dynamic
logic, and on optimising our permission system for lemma-
based reasoning in KeY. Although already functional, the
latter is particularly important to enable suitable abstractions
in specifications with permissions.

3On the more conceptual level this is actually stating that lock may block
execution – we can only talk about the lock state once lock has successfully
returned.

public class ReadWrite {
2 private int val;

private int rds; //@ private instance ghost int ords;
4

//@ requires !\readPerm(\perm(rds));
6 //@ ensures !\readPerm(\perm(rds));

//@ assignable<heap,permissions> rds, ords, val;
8 //@ diverges true;

public void doWrite() {
10 boolean done = false;

//@ loop_invariant !\readPerm(\perm(rds));
12 //@ assignable<heap,permissions> rds, ords, val;

while(!done) {
14 lock(); if(rds==0){ val++; done=true; } unlock(); } }

16 //@ requires !\readPerm(\perm(rds));
//@ ensures !\readPerm(\perm(rds));

18 //@ assignable<heap,permissions> rds, ords, val;
public int doRead() {

20 lock(); rds++; unlock(); // read "lock"
int r = val;

22 lock(); rds−−; unlock(); // read "unlock"
return r; }

24

//@ requires !\readPerm(\perm(rds));
26 //@ ensures \old(\readPerm(\perm(val))) ==> rds>0;

//@ ensures \writePermObj(this, \old(\perm(rds)));
28 //@ ensures \writePermObj(this, \old(\perm(ords)));

//@ ensures rds >= 0 && ords == rds && (rds == 0
30 ==> \writePermObj(this, \old(\perm(val))));

//@ ensures \readPermObj(this, \old(\perm(val)));
32 //@ ensures \perm(rds) ==

\transPerm(false, this, \ct, 0, \old(\perm(rds)));
34 //@ ensures \perm(ords) ==

\transPerm(false, this, \ct, 0, \old(\perm(ords)));
36 //@ ensures \perm(val) ==

\transPerm(false, this, \ct, 0, \old(\perm(val)));
38 //@ assignable<permissions> rds, ords, val;

//@ assignable ords;
40 public native void lock();

42 //@ requires rds >= 0 && \writePerm(\perm(rds));
//@ requires \writePerm(\perm(ords));

44 //@ ensures \perm(rds) ==
\retPerm(\ct, this, \old(\perm(rds)));

46 //@ ensures \perm(ords) ==
\retPerm(\ct, this, \old(\perm(ords)));

48 //@ ensures \old(rds)<=\old(ords) ==> \perm(val) ==
\retPerm(\ct, this, \old(\perm(val)));

50 //@ ensures \old(rds) > \old(ords) ==> \perm(val) ==
\transPerm(true, this, \ct, 0,

52 \retPerm(\ct, this, \old(\perm(val))));
//@ assignable<heap,permissions> rds, ords, val;

54 public native void unlock();
}

Figure 6. The read-write example specified with symbolic permissions.

Related Work: Apart from fractional style permissions
first described in [1] the literature also describes counting
permissions and tree permissions as alternatives. As de-
scribed in [20], counting permissions simply use a counter

9

instead of a fraction and are considered complementary
to fractional permissions, which are not suitable for some
synchronisation mechanism, like semaphores. We briefly
related to the work on constrained abstract fractional per-
missions [13] in the previous section. Tree permissions [2]
are also close to our work, in that they use a dedicated
data type to abstract away irrelevant information. However,
tree permissions are only a direct abstraction of fractions,
and by using only two tokens to mark the tree nodes,
they only differentiate between the current thread and all
other threads, i.e., they cannot identify each single thread
separately. Moreover, transfer histories are not recorded
causing similar problems as with rational fractions when
specifying complex permission flows.

Not many implemented verification systems that we
know of actually support permission-based reasoning. Veri-
Fast [21] does, it is based on separation logic and imple-
ments fractional style permissions. Another such tool would
be the Chalice system [22], which is based on implicit
dynamic frames, and deals with permissions also in the
fractional fashion providing strong, but limited means of
permission abstraction [12]. Finally, our own automated
VerCors toolset [5] implements our version of separation
logic with permissions for Java [6] and uses Silicon [8] as
a back-end verifier.

ACKNOWLEDGEMENT

The work presented in this paper is supported by ERC
grant 258405 for the VerCors project.

REFERENCES

[1] J. Boyland, “Checking interference with fractional permis-
sions,” in Static Analysis Symposium, ser. LNCS, R. Cousot,
Ed., vol. 2694. Springer, 2003, pp. 55–72.

[2] R. Dockins, A. Hobor, and A. W. Appel, “A fresh look
at separation algebras and share accounting,” in 7th Asian
Symposium on Programming Languages and Systems, ser.
LNCS, Z. Hu, Ed., vol. 5904. Springer, 2009, pp. 161–177.

[3] X. B. Le, C. Gherghina, and A. Hobor, “Decision procedures
over sophisticated fractional permissions,” in 10th Asian Sym-
posium on Programming Languages and Systems, ser. LNCS,
R. Jhala and A. Igarashi, Eds., vol. 7705. Springer, 2012,
pp. 368–385.

[4] A. Amighi, S. Blom, M. Huisman, W. Mostowski, and
M. Zaharieva-Stojanovski, “Formal specifications for Java’s
synchronisation classes,” in Conference on Parallel, Dis-
tributed, and Network-Based Processing, A. L. Lafuente and
E. Tuosto, Eds. IEEE Computer Society, 2014, pp. 725–733.

[5] A. Amighi, S. C. Blom, M. Huisman, and M. Zaharieva-
Stojanovski, “The VerCors project: Setting up basecamp,”
in 6th Workshop Programming Languages meets Program
Verification. ACM, 2012, pp. 71–82.

[6] C. Haack, M. Huisman, and C. Hurlin, “Reasoning about
Java’s reentrant locks,” in 6th Asian Conference on Program-
ming Languages and Systems, ser. LNCS, G. Ramalingam,
Ed., vol. 5356. Springer, 2008, pp. 171–187.

[7] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design
of JML: A behavioral interface specification language for
Java,” SIGSOFT, vol. 31, no. 3, pp. 1–38, Mar. 2006.

[8] U. Juhasz, I. T. Kassios, P. Müller, M. Novacek, M. Schwer-
hoff, and A. J. Summers, “Viper: A verification infrastructure
for permission-based reasoning,” ETH Zürich, Tech. Rep.,
2014.

[9] B. Beckert, R. Hähnle, and P. H. Schmitt, Eds., Verification
of Object-Oriented Software: The KeY Approach, ser. LNAI.
Springer, 2007, vol. 4334.

[10] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype
verification system,” in 11th International Conference on
Automated Deduction (CADE), ser. LNAI, D. Kapur, Ed., vol.
607. Springer, June 1992, pp. 748–752.

[11] Symbolic Permissions On-line. http://wwwhome.ewi.utwente.
nl/~mostowskiwi/permissions/.

[12] S. Heule, K. R. M. Leino, P. Müller, and A. J. Summers,
“Abstract read permissions: Fractional permissions without
the fractions,” in Verification, Model Checking, and Abstract
Interpretation 2013, ser. LNCS, R. Giacobazzi, J. Berdine,
and I. Mastroeni, Eds., vol. 7737. Springer, 2013, pp. 315–
334.

[13] J. Boyland, P. Müller, M. Schwerhoff, and A. J. Summers,
“Constraint semantics for abstract read permissions,” in For-
mal Techniques for Java-like Programs (FTfJP). ACM, 2014.

[14] C. Haack and C. Hurlin, “Separation logic contracts for a
Java-like language with fork/join,” in Algebraic Methodol-
ogy and Software Technology, ser. LNCS, J. Meseguer and
G. Rosu, Eds., vol. 5140. Springer, 2008, pp. 199–215.

[15] D. Harel, D. Kozen, and J. Tiuryn, Dynamic Logic. MIT
Press, 2000.

[16] P. H. Schmitt, M. Ulbrich, and B. Weiß, “Dynamic frames
in Java dynamic logic,” in Formal Verification of Object-
Oriented Software Conference, ser. LNCS, B. Beckert and
C. Marché, Eds., vol. 6528. Springer, 2011, pp. 138–152.

[17] W. Mostowski, “A case study in formal verification using mul-
tiple explicit heaps,” in IFIP Joint International Conference
on Formal Techniques for Distributed Systems, ser. LNCS,
D. Beyer and M. Boreale, Eds., vol. 7892. Springer, 2013,
pp. 20–34.

[18] A. Amighi, S. Blom, S. Darabi, M. Huisman, W. Mostowski,
and M. Zaharieva-Stojanovski, “Verification of concurrent
systems with VerCors,” in 14th International School on For-
mal Methods for the Design of Computer, Communication and
Software Systems: Executable Software Models, ser. LNCS,
M. Bernardo, F. Damiani, R. Hähnle, E. B. Johnsen, and
I. Schaefer, Eds., vol. 8483. Springer, 2014, pp. 172–216.

[19] J. C. Reynolds, “Separation logic: A logic for shared mutable
data structures,” in 17th IEEE Symposium on Logic in Com-
puter Science. IEEE Computer Society, 2002, pp. 55–74.

[20] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson,
“Permission accounting in separation logic,” in Principles
of Programming Languages, J. Palsberg and M. Abadi, Eds.
ACM, 2005, pp. 259–270.

[21] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx,
and F. Piessens, “Verifast: A powerful, sound, predictable, fast
verifier for C and Java,” in NASA Formal Methods, ser. LNCS,
vol. 6617. Springer, 2011, pp. 41–55.

[22] K. R. M. Leino, P. Müller, and J. Smans, “Verification
of concurrent programs with Chalice,” in Foundations of
Security Analysis and Design, A. Aldini, G. Barthe, and
R. Gorrieri, Eds. Springer, 2009, pp. 195–222.

10

http://wwwhome.ewi.utwente.nl/~mostowskiwi/permissions/
http://wwwhome.ewi.utwente.nl/~mostowskiwi/permissions/

	Introduction
	Symbolic Permissions in a Nutshell
	The Permission Data Type
	Queries and Commands on Permissions
	Permission Properties
	Tool Formalisation and Property Proofs
	Application in Reasoning about Concurrent Programs
	Conclusions and Future Work
	References

