
OCL 2.0 - UML 2003 Preliminary Version

Specifying JAVA CARD API in OCL

Daniel Larsson 1 Wojciech Mostowski 2

Computing Science Department
Chalmers University of Technology

Göteborg, Sweden

Abstract

We discuss the development of an OCL specification for the JAVA CARD API. The
main purpose of this specification is to support and aid the verification of JAVA

CARD programs in the KeY system. The main goal of the KeY system is to inte-
grate object oriented design and formal methods. The already existing specification
written in JML (JAVA Modelling Language) has been used as a starting point for
the development of the OCL specification. In this paper we report on the problems
that we encountered when writing the specification and their solutions, we present
the most interesting parts of the specification, we report on successful verification
attempts and finally we evaluate OCL and compare it to JML in the context of
JAVA CARD program specification and verification.

Key words: OCL, JML, JAVA CARD, Formal Specification, Formal
Verification, Object-Oriented Design

1 Introduction

This paper reports on the development of an OCL specification for the JAVA

CARD API [19]. JAVA CARD [9] is a subset of the JAVA programming language
and is used to program smart cards. The JAVA CARD API (Application Pro-
gramming Interface) is a set of library classes used in JAVA CARD programs.
JAVA CARD API is a much smaller version of the standard JAVA API and is
specifically designed for smart card programming. The OCL specification is
necessary to perform formal verification of such programs when the implemen-
tation of the API classes is not available. Even if the API implementation is
available, having the OCL specification helps to avoid repetitive work of prov-
ing the API implementation each time API method is used in a JAVA CARD

program. The secondary purpose of writing the specification is to document

1 Email: it3lada@ituniv.se
2 Email: woj@cs.chalmers.se

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Larsson, Mostowski

the behaviour of the JAVA CARD API in a formal way. We discuss the problems
we encountered when writing the specification in OCL and their solutions. We
present some of the most interesting parts of the specification and report on
successful verification attempts of the reference implementation of JAVA CARD

API w.r.t. our specification. Finally, we evaluate OCL and compare it to JML
in the context of this work. This paper summarises results from [11].

In the following section we give more details about the background and
motivation of this work. In Section 3 we give a detailed report on the devel-
opment of the specification, in Section 4 we present some interesting parts of
our specification, in Section 5 we evaluate OCL in the context of the presented
work and finally we conclude in Section 6.

2 Background

2.1 The KeY Project

The work presented in this paper has been carried out as part of the KeY
project [1,2,10]. The main goal of the KeY project is to enhance a commer-
cial CASE (Computer Aided Software Engineering) tool with functionality for
formal specification and deductive verification and, thus, to integrate formal
methods into real-world software development processes. Accordingly, the de-
sign principles for the software verification component of the KeY system are:

(i) The specification language should be usable by people who do not have
years of training in formal methods. The Object Constraint Language
(OCL) [14], which is incorporated into the current version of the Unified
Modelling Language (UML), is the specification language of our choice.

(ii) The programs that are verified should be written in a “real” object-
oriented programming language. We decided to use JAVA CARD. This
choice is motivated by the following reasons. First of all, many JAVA

CARD applications are subject to formal verification, because they are
usually security critical (e.g. authentication) and difficult to update in
case a fault is discovered. At the same time the JAVA CARD language is
easier to handle than full JAVA (for example, there is no concurrency and
no GUI—see Section 2.2). Also, JAVA CARD programs are smaller than
normal JAVA programs and thus easier to verify.

The architecture of the KeY system is shown in Figure 1. It is built on top of
a commercial CASE tool (Borland Together Control Center [7]) and extends
it with facilities for formal specification and verification of JAVA programs in
the following ways:

• It supports creation and manipulation of OCL constraints, e.g. the KeY
system can automatically create a partial OCL specification by instantiat-
ing an OCL template (commonly used OCL specification schema) or use a
syntax based editor to create OCL expressions.

2

Larsson, Mostowski

Verification Middleware

automated interactive

Deduction Component

CASE Tool

extension

for formal

specification

UML OCL Java

Dynamic Logic

Fig. 1. The architecture of the KeY system

• The deduction component is used to actually construct proofs for JAVA Dy-
namic Logic proof obligations generated from the UML model, OCL con-
straints and JAVA implementation. The deduction component is an interac-
tive verification system based on JAVA Dynamic Logic, a logic specifically
designed for formal verification of JAVA programs [3].

2.2 JAVACARD and JAVACARD API

JAVA CARD is a technology that provides means to program smart cards with (a
subset of) the JAVA programming language. Due to limited resources of smart
cards, the JAVA CARD language is limited in a number of ways as compared to
full JAVA. The following is the list of features that are not supported in JAVA

CARD: large primitive data types (int, long, double, float), characters and
strings, multidimensional arrays, dynamic class loading, threads and garbage
collection. Most of the remaining JAVA features, in particular object-oriented
ones like interfaces, inheritance, virtual methods, overloading, dynamic object
creation are supported by the JAVA CARD language.

The JAVA CARD API is a library that handles smart card specific features,
like Application Protocol Data Units (APDUs—used for communication be-
tween the card and the rest of the world), Application IDentifiers (AIDs), JAVA

CARD specific system routines, PIN codes, etc. [19]. Some of the packages in-
cluded in the JAVA CARD API 2.2 are the following:

• java.lang—provides classes that are fundamental to the design of the JAVA

CARD technology subset of the JAVA programming language. The classes in
this package are derived from java.lang in the standard JAVA programming

3

Larsson, Mostowski

language and represent the core functionality required by the JAVA CARD

Virtual Machine.

• javacard.framework—provides a framework of classes and interfaces for
building, communicating and working with JAVA CARD applets. These classes
and interfaces provide the minimum required functionality for a JAVA CARD

environment. The key classes and interfaces in this package are:
· AID—encapsulates the Application IDentifier (AID) associated with an

applet.
· APDU—provides methods for controlling card input and output.
· Applet—the base class for all JAVA CARD applets on the card. It provides

methods for working with applets to be loaded onto, installed into and
executed on a JAVA CARD compliant smart card.

· JCSystem—provides methods for controlling system functions such as
transaction management, transient objects, object deletion mechanism,
resource management, and inter-applet object sharing.

· Util—provides convenience methods for working with arrays and array
data.

The whole JAVA CARD API consists of 57 classes and interfaces, many of which
are very simple (e.g. exception classes).

2.3 Use Cases for OCL Specification of the JAVACARD API

One of the purposes of the KeY system is the possibility to formally verify
JAVA CARD applications. To successfully verify a program that uses the JAVA

CARD API one has to have access to either the implementation of the API or
its formal specification. Since the implementation of the API is usually not
available (especially when the methods are native), the latter is the solution
we are aiming for. Let us look at an example to illustrate how the JAVA

CARD API specification is used in the verification process. Suppose we have
implemented a method aMethod in our JAVA CARD program. We now want to
verify that the implementation satisfies the formal specification (the pair of
pre- and postconditions) of method aMethod:

/**

* @preconditions <pre>

* @postconditions <post>

*/

public void aMethod(...) {

...

APIClass.apiMethod(...);

...

}

Our method invokes a method from the JAVA CARD API, which we assume has
been already specified. The specification of aMethod and its implementation

4

Larsson, Mostowski

is translated into a proof obligation, which in turn is passed to the KeY de-
duction component (prover). When trying to construct a proof for this proof
obligation, we sooner or later have to apply a rule that takes care of the in-
vocation of the API method apiMethod. If we had no specification of this
method we would have to replace the method call with the actual method
body. In case the specification of apiMethod is available it is enough to verify
that the precondition of apiMethod is satisfied in the state before apiMethod

is executed and then we can simply “replace” the method call to apiMethod

with its postcondition. This however is not as straightforward as it sounds,
there is ongoing work in the KeY project which investigates when and under
what conditions such a replacement can be safely done [6].

In addition to this, having an OCL specification of the API saves a lot of
work during verification of JAVA CARD programs in the long run. When there
is no specification available, the same API method call has to be replaced by
the method’s implementation and proved each time the method in question is
used. In practice it can happen that the same piece of API implementation is
going to be placed in the proof more than one time in one program.

The secondary purpose of writing the OCL specification for JAVA CARD

API is for documentation purposes—an OCL specification can serve as formal
documentation of the JAVA CARD API. This is very useful, because the informal
specification does not always contain all the necessary information about the
behaviour of the API.

2.4 Related Work

As already mentioned the starting point for this work was the formal spec-
ification of the JAVA CARD API written in JAVA Modelling Language (JML)
[12,13,16]. That work has been done for similar reasons as stated above, the
main difference is the specification language used. The LOOP tool presented
in [20] uses JML and PVS as the means to formally verify JAVA CARD pro-
grams, thus the necessity for the API specification written in JML. As we use
the industry standard OCL as a specification language in the KeY project we
need to have the JAVA CARD API specification formulated in OCL. We also
made an effort to have more complete coverage of the JAVA CARD API in our
specification.

3 The Development of OCL Specification

As stated above, we based our specification on the JML specification of the
JAVA CARD API. We then extended it based on the informal specification (API
documentation) and we tried to make use of OCL’s expressiveness wherever
possible. Later on we tested parts of our specification by formally verifying
(using the KeY system) part of the reference implementation of the JAVA CARD

API w.r.t. our specification.

5

Larsson, Mostowski

We start by giving an overall description of JML and the JML specification
of the JAVA CARD API. Based on that we will describe the main problems to
be tackled when writing OCL specification for the API.

3.1 JML vs. OCL

As in OCL, the specifications in JML are expressed as class invariants and
method pre-/postconditions. Class invariants are assertions that should hold
for all instances of the class at any time. Pre- and postconditions are contracts
between the provider and the user of the method. The user has to fulfil
the precondition when he or she calls the method. The provider guarantees
that if the precondition holds at the beginning of the method call, then the
corresponding postcondition will hold after the method call. In addition, JML
allows one to express when a method throws an exception and which attributes
of the class can be modified by the method. All the JML specifications are
only valid in the context of their JAVA source code and are presented in the
form of JAVA comments. Below is the general syntax of JML used to express
the method’s behaviour:

/**

@public behavior

@requires <precondition>;

@assignable <list of attributes>;

@ensures <postcondition>;

@signals (Exception_1 e1) <ex1postcondition>;

@signals (Exception_2 e2) <ex2postcondition>;

*/

public void aMethod() throws Exception { ... }

The @requires clause defines the method’s precondition, the @assignable

clause tells which attributes the method can modify. The meaning of the rest
of the specification is the following: if the precondition is satisfied then either
the method terminates normally (i.e. does not throw any exception) and the
postcondition (@ensures) holds or one of the listed exceptions is thrown and
then the corresponding postcondition holds.

JML also allows to use a simpler syntax in case the method is not supposed
to throw any exceptions, as the example below shows. The example gives a
general impression of what the JAVA CARD API specification in JML looks like.
The following is a part of the OwnerPIN class:

public class OwnerPIN implements PIN {

private byte[] pin;

private byte maxTries;

private byte triesRemaining;

public boolean check(byte[] thePin, short offset, byte length)

6

Larsson, Mostowski

throws ArrayIndexOutOfBoundsException, NullPointerException {

...

}

...

}

The pin array contains the PIN number, maxTries is the maximal number
of attempts allowed to present the correct PIN before the card is locked, and
triesRemaining the number of attempts left to present the correct PIN. A
JML invariant for this class is the following:

/**

@invariant triesRemaining >= 0 && triesRemaining <= maxTries;

*/

A JML specification of the method check is given below. The arrayCompare

method compares length elements of array this.pin starting at element
indexed by 0 with length elements of array thePin starting at element indexed
by offset:

/**

@public normal_behavior

@requires triesRemaining > 0 &&

@ Util.arrayCompare(this.pin, (short)0,

@ thePin, offset, length) == 0;

@ensures result == true && triesRemaining == maxTries;

*/

At this point we are ready to define the main differences between JML
and OCL that caused us some problems when writing the JAVA CARD API
specification in OCL. The KeY system provides extensions to OCL to overcome
most of those problems.

3.2 Exceptions

The current version of OCL in its standard form does not provide a straight-
forward way to specify that an exception is thrown by a method. A possible
solution is to have an association link thrownExceptions in our class, which
represents the set of exceptions thrown by methods of that class. Then it is
possible to specify that a method aMethod of class MyClass throws an excep-
tion of type MyException this way:

context MyClass::aMethod():

pre: true

post: self.thrownExceptions->exists(e : Exception |

e.oclIsKindOf(MyException) and e.oclIsNew())

The KeY system has a unified solution for this—one can use an excThrown(My-

Exception) clause in the postcondition, which has a very similar meaning.

7

Larsson, Mostowski

Later on, when the OCL specification is transformed to a JAVA Dynamic Logic
proof obligation for the prover, the excThrown clauses are properly translated
to corresponding JAVA Dynamic Logic formulas.

Having that, we can now give the general representation of JML’s @be-

havior clause in OCL:

context MyClass::aMethod()

pre: <precondition>

post: (not excThrown(java::lang::Exception)

and <postcondition>)

or (excThrown(Exception_1) and <ex1postcondition>)

or ...

or (excThrown(Exception_n) and <exnpostcondition>)

3.3 The null value

Another thing that is commonly used in JAVA, but which is not supported in
the current version of OCL is the null value. This can be handled in OCL in
two ways:

• When one wants to compare a class attribute to a null value, then it is
possible to treat the attribute as an association end, which in OCL can
be treated as a set. In that case one can simple say attr->isEmpty() to
express the fact that attr has a null value.

• When comparing objects other than class attributes (e.g. method argu-
ments) to the null value things are a bit more difficult. If such an object is
an array or a collection type, one can use the same technique as described
above. Otherwise there is no way to specify that an object should (or should
not) have the null value.

Fortunately, the KeY system provides a workaround for this problem as well.
One can use the null value directly as if it were defined in OCL, and then
during the translation to JAVA Dynamic Logic the null values are handled
appropriately.

3.4 Integer Arithmetics

The main data types that JAVA CARD programs deal with are JAVA shorts,
bytes and arrays. Arrays don’t cause much of a problem, in OCL they can
be represented as the Sequence type. The JAVA arithmetic types short and
byte however don’t have a corresponding type in OCL. The only integer type
in OCL is Integer. The most important aspect of JAVA shorts and bytes is
that they can overflow (i.e. they are finite types), while the OCL Integer is
an infinite type and never overflows. Since the overflow behaviour is a very
important aspect of JAVA programs, we have to be able to distinguish between
different integer types in OCL. For this purpose we used dummy “wrapper”
classes JByte and JShort to represent corresponding JAVA types. They can

8

Larsson, Mostowski

be used like this:

context PIN::check(pin: Sequence(JByte), offset: JShort,

length: JByte): Boolean

...

This still does not solve the problem of proper interpretation of overflow be-
haviour in OCL. Luckily, the KeY system comes to the rescue again. When
the OCL specification is translated to a JAVA Dynamic Logic formula, the user
can choose how the integer types are interpreted by the prover: either as finite
JAVA types short and byte, or as infinite arithmetic types arithShort and
arithByte. In both cases the issue of overflow is treated appropriately. More
about handling arithmetics in the KeY system can be found in [5,17]. Also,
[8] gives insights into problems associated with integer arithmetics in JML.

3.5 JML assignable clause

As mentioned before, JML offers a possibility to express (with the @assign-

able clause) that a given method is allowed to change a limited set of at-
tributes during its execution. OCL does not offer any mechanism or language
construct to specify this in a nice way. One can of course state in the post-
condition that the value of a given attribute is not changed by the method by
saying:

post: self.attr = self.attr@pre

This is not a good solution, though. Suppose we have a class with 20 attributes
and we want to express the fact that only one attribute is assignable. That
means we have to write 19 expressions like the one above for all the remaining
attributes. There is ongoing work that aims at solving this problem in the KeY
system [6]. The work is about how to properly specify attribute modification
behaviour and how such specification can be used in proofs. In the current
version of our work we left out the parts of the specification corresponding to
the @assignable clause in JML.

4 The Specification

The present work resulted in an OCL specification for all classes and interfaces
of the JAVA CARD API 2.2. This specification expresses, with a few exceptions
(some of the signals clauses and the assignable clauses were not possible
to be fully expressed in OCL), as much as the JML specification for JAVA

CARD API 2.1.1. In some cases the OCL specification expresses more than the
JML specification. In the following we illustrate by example how our OCL
specification was created and how it was improved (compared to JML).

First, let us look at the PIN interface (which OwnerPIN implements). The
informal specification of method check in the PIN interface is the following:

9

Larsson, Mostowski

public boolean check(byte[] pin, short offset, byte length)

Compares pin against the PIN value. If they match and the PIN is not blocked,
it sets the validated flag and resets the try counter to its maximum. If it does
not match, it decrements the try counter and, if the counter has reached zero,
blocks the PIN. Even if a transaction is in progress, the internal state such as the
try counter, the validated flag and the blocking state must not be conditionally
updated.

Notes:
• If NullPointerException or ArrayIndexOutOfBoundsException is thrown,

the validated flag must be set to false, the try counter must be decremented,
and the PIN blocked if the counter reaches zero.

• If offset or length parameter is negative an ArrayIndexOutOfBoundsExcep-

tion is thrown.
• If offset+length is greater than pin.length, the length of the pin array, an
ArrayIndexOutOfBoundsException is thrown.

• If pin parameter is null a NullPointerException is thrown.

Parameters:
pin the byte array containing the PIN value being checked
offset the starting offset in the pin array
length the length of pin

Returns:
true if the PIN value matches; false otherwise

Throws:
ArrayIndexOutOfBoundsException if the check operation would cause access

of data outside array bounds.
NullPointerException if pin is null.

The JML specification for this method found in [15] is the following (the \old
construct corresponds to OCL’s @pre):

/**

@ public normal_behavior

@ requires triesRemaining == 0;

@ assignable \nothing;

@ ensures result == false;

@ also

@ public normal_behavior

@ requires triesRemaining > 0 && pin != null && offset >= 0

@ && length>=0 && offset+length == pin.length &&

@ Util.arrayCompare(this.pin, (short)0, pin,

@ offset, length) == 0;

@ assignable isValidated, triesRemaining;

10

Larsson, Mostowski

@ ensures result == true && isValidated &&

@ triesRemaining == maxTries;

@ also

@ public behavior

@ requires triesRemaining > 0 && !(pin != null &&

@ offset >= 0 && length >= 0 &&

@ offset+length == pin.length &&

@ Util.arrayCompare(this.pin, (short)0, pin,

@ offset, length) == 0);

@ assignable isValidated, triesRemaining;

@ ensures result == false &&

@ !isValidated && triesRemaining ==

@ \old(triesRemaining) - 1;

@ signals (NullPointerException)

@ !isValidated &&

@ triesRemaining == \old(triesRemaining) - 1;

@ signals (ArrayIndexOutOfBoundsException)

@ !isValidated &&

@ triesRemaining == \old(triesRemaining) - 1;

@

*/

public boolean check(byte[] pin, short offset, byte length)

throws ArrayIndexOutOfBoundsException, NullPointerException;

It seems that the JML specification mainly agrees with the informal specifi-
cation. One subject that is not touched upon in the JML specification is the
following sentence from the informal specification: Even if a transaction is
in progress, the internal state such as the try counter, the validated flag and
the blocking state must not be conditionally updated. This is not possible to
specify in either JML or OCL, as it has to do with the internal transaction
mechanism of the JAVA CARD Runtime Environment. The issue of specifying
and verifying the programs involving JAVA CARD’s transaction mechanism has
been investigated thoroughly in the KeY project [4]. For now, however, we
decided to leave this issue out in our OCL specification. Another thing to
notice is that the informal specification and the JML specification disagree
on the subject of whether offset+length must be equal to pin.length or
if offset+length might be less than or equal to pin.length. It seems that
a mistake has been made in the JML specification, since it clearly disagrees
with the informal specification and since there seems to be no good reason to
demand that there must be no free elements in the pin array following the
actual PIN value. Therefore our resulting OCL specification agrees with the
informal specification in this case:

context PIN::check(pin: Sequence(JByte), offset: JShort,

length: JByte): Boolean

pre: true

11

Larsson, Mostowski

post: if self.triesRemaining = 0 then result = false endif

and if(self.triesRemaining > 0 and pin <> null

and offset >= 0 and length >= 0 and

offset+length <= pin->size()

and self.pin->subSequence(1, length) =

pin->subSequence(offset+1, offset+length))

then (

result = true and self.isValidated

and self.triesRemaining = self.maxTries)

endif

and if(self.triesRemaining > 0 and

not(pin <> null and offset >= 0 and length >= 0

and offset+length <= pin->size() and

self.pin->subSequence(1, length) =

pin->subSequence(offset+1, offset+length)))

then (

not self.isValidated and

self.triesRemaining = self.triesRemaining@pre-1 and (

(not excThrown(java::lang::Exception) and

result = false)

or excThrown(NullPointerException)

or excThrown(ArrayIndexOutOfBoundsException)))

endif

In the next example we show how the specification of method setKey in
class DESKey has been enriched compared to JML specification. The method
setKey copies the data (an array of bytes) that is passed as an argument
and constitutes the actual key to the internal attribute data. Under certain
circumstances, this data is not passed to the method in plain text but as a
cipher and the method must then decrypt the data before it is copied into the
internal representation. Here is the JML specification for this method:

/**

@public behavior

@ requires keyData != null && kOff >= 0 &&

@ kOff < keyData.length;

@ assignable CryptoException.systemInstance.reason;

@ ensures isInitialized();

@ signals (CryptoException e)

@ e.getReason() == CryptoException.ILLEGAL_VALUE;

*/

void setKey(byte[] keyData, short kOff) throws CryptoException;

This specification does not give much information about what this method
actually accomplishes. In the OCL specification though, we try to give an
idea about this:

12

Larsson, Mostowski

context DESKey::setKey(keyData: Sequence(JByte), kOff: JShort)

pre: not (keyData = null) and kOff >= 0 and

kOff < keyData->size()

post: (not excThrown(java::lang::Exception)

and self.isInitialized() and (

not self.oclIsKindOf(javacardx::crypto::KeyEncryption)

or self.getKeyCipher() = null implies

self.data->subSequence(1, self.getSize()/8) =

keyData->subSequence(kOff+1, kOff+self.getSize()/8)

)

) or (

excThrown(CryptoException) and

CryptoException.systemInstance.reason

= CryptoException.ILLEGAL_VALUE

and (

not self.oclIsKindOf(javacardx::crypto::KeyEncryption)

or self.getKeyCipher() = null implies

kOff+self.getSize()/8 > keyData->size()

)

)

What we added in this specification is the following. If this particular instance
of DESKey is not an instance of javacardx.crypto.KeyEncryption or if this
instance is not associated with a Cipher object (the circumstances under
which the input keyData have to be decrypted), then the input data is to be
copied directly into the internal attribute data.

While studying the JML specification we found a small number of mi-
nor inconsistencies. In the class OwnerPIN for example, the invariant states
that the internal class attribute pin should not be null at any point, which
requires the constructor of that class to set pin (which is initially null) to
a non null value. In that case the constructor should be able to modify
the pin attribute, but a corresponding @assignable clause is missing in the
specification of the OwnerPIN constructor. The informal specification of that
constructor also says that two exceptions can be thrown—PINException and
SystemException. The condition for throwing the PINException is clearly
defined, but this information is not included in the constructor’s specification.

We tried to fix all those small deficiencies in our OCL specification and
express as much as possible, but, as we mentioned before, giving the full
specification of the JAVA CARD API in OCL is not possible at the moment.

4.1 Formal Verification

To give our specification a test we looked into the source of the implemen-
tation of the JAVA CARD API distributed with SUN’s JAVA CARD Development
Kit version 2.1.1 [18]. We tried to verify this implementation w.r.t. the spec-

13

Larsson, Mostowski

ification we have written. Due to current limitations of the KeY system
this was not done to the extent one might wish for. One of the technical
reasons for this is the fact that the KeY system does not handle arrays in
the version we used. Since the arrays are present almost everywhere in the
JAVA CARD API this was a major obstacle. We can however report that a
number of simple getReason/setReason methods in the exception classes of
javacard.framework package have been verified. A more complicated suc-
cessful proof attempt was the verification of the reset method in the OwnerPIN
class. The specification is the following:

context OwnerPIN inv:

self.maxPINSize > 0 and self.maxTries > 0 and

self.triesRemaining >= 0 and

self.triesRemaining <= self.maxTries

context OwnerPIN::reset()

pre: true

post: not excThrown(java::lang::Exception)

and

not self.isValidated

and

if self.isValidated@pre then

self.triesRemaining = self.maxTries

else

self.triesRemaining = self.triesRemaining@pre

endif

A proof obligation generated by the KeY system states the following: the
execution of the reset method preserves the invariant and if the precondition
is satisfied before reset is executed then the postcondition is satisfied after
reset is executed. Explaining what this proof obligation looks like would
require introducing the JAVA Dynamic Logic used in the KeY system in more
detail. This would go beyond the scope of this paper. One thing we should say
though, is that the proof to verify this specification is performed automatically
by the KeY prover, reducing the user interaction to absolute minimum.

5 Short Evaluation of OCL

There are a few things that we found very useful about OCL. First of all,
it is practically an industry standard and is (partially) supported by some
CASE tools (e.g. Borland Together Control Center that we use in the KeY
project). Second, it seems that the OCL language is richer than JML in some
respects, e.g. the whole library of collection type operations makes expressing
properties about Sequence (array) type much easier than in JML. Also, for
the same reason, we find OCL much easier to read and understand.

14

Larsson, Mostowski

When it comes to JAVA specific features, OCL turns out to be not as good
as JML. Just to recapitulate the most important findings from Section 3.1:
there is no standard way in OCL to express the fact that a method throws
an exception, there is only one (infinite) integer type in OCL as compared
to the whole set of JAVA integer types and there is no JML’s @assignable

counterpart in OCL. In this respect JML is a much stronger language than
OCL. Of course, this is because JML was designed specifically for JAVA, while
OCL was mainly designed for UML.

6 Conclusions

In this paper we presented our experience from the development of an OCL
specification for the JAVA CARD API 2.2. Despite the mentioned problems with
OCL we managed to specify the whole JAVA CARD API to a reasonable extent.
The specification is available on-line at:

http://i12www.ira.uka.de/~key/doc/2003/exjob.html

The two main purposes of this work were to aid and support formal verification
of JAVA CARD programs in the KeY system and to document the JAVA CARD API
in a formal way. We tested our specification by formally verifying the reference
implementation of the JAVA CARD API with the KeY system, however, due to
technical limitations, this was not done to the desirable extent. Still, the
proofs we attempted were successful and were performed automatically by
the KeY system. In the near future the KeY system will cover the full JAVA

CARD standard. Then we plan to continue in this direction and also, based
on our specification, perform formal verification of real life JAVA CARD case
studies.

References

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin
Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth,
Steffen Schlager, and Peter H. Schmitt. The KeY tool. Technical report in
computing science no. 2003-5, Department of Computing Science, Chalmers
University and Göteborg University, Göteborg, Sweden, February 2003.

[2] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese, Reiner
Hähnle, Wolfram Menzel, Wojciech Mostowski, and Peter H. Schmitt. The KeY
system: Integrating object-oriented design and formal methods. In Ralf-Detlef
Kutsche and Herbert Weber, editors, Proceedings, Fundamental Approaches to
Software Engineering (FASE), Grenoble, France, LNCS 2306, pages 327–330.
Springer, 2002.

[3] Bernhard Beckert. A dynamic logic for the formal verification of JAVA CARD

programs. In I. Attali and T. Jensen, editors, Revised Papers, JAVA on Smart

15

http://i12www.ira.uka.de/~key/doc/2003/exjob.html

Larsson, Mostowski

Cards: Programming and Security, Cannes, France, LNCS 2041, pages 6–24.
Springer, 2001.

[4] Bernhard Beckert and Wojciech Mostowski. A program logic for handling
JAVA CARD’s transaction mechanism. In Mauro Pezzè, editor, Proceedings,
Fundamental Approaches to Software Engineering (FASE) Conference, LNCS
2621, pages 246–260, Warsaw, Poland, April 2003. Springer.

[5] Bernhard Beckert and Steffen Schlager. Integer arithmetic in the specification
and verification of JAVA programs. In Proceedings, Workshop on Tools for
System Design and Verification (FM-TOOLS), Reisensburg, Germany, pages
7–14, 2002.

[6] Bernhard Beckert and Peter H. Schmitt. Program verification using change
information. In International Conference on Software Engineering and Formal
Methods, Proceedings, September 2003. To appear.

[7] Borland Together homepage.
http://www.borland.com/together/index.html.

[8] Patrice Chalin. Improving JML: For a safer and more effective language.
In Stefania Gnesi, Keijiro Araki, and Dino Mandrioli, editors, International
Symposium of Formal Methods Europe, Proceedings, LNCS 2805, pages 440–
461, Pisa, Italy, September 2003. Springer.

[9] Zhiqun Chen. JAVACARD Technology for Smart Cards. Addison Wesley, 2000.

[10] KeY project homepage. http://www.key-project.org.

[11] Daniel Larsson. OCL specifications for the JAVA CARD API. Master’s
thesis, Chalmers University of Technology, Department of Computing Science,
Göteborg, Sweden, 2003.

[12] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A Notation for
Detailed Design. Kluwer Academic Publishers, 1999.

[13] Hans Meijer and Erik Poll. Towards a full formal specification of the JAVA

CARD API. In Smart Card Programming and Security, International Conference
on Research in Smart Cards, e-Smart 2001, Cannes, France. Springer-Verlag,
September 2001.

[14] The Object Managment Group. Unified Modelling Language Specification,
version 1.4, September 2001.

[15] Erik Poll. Formal interface JAVA specifications for the JAVA CARD API 2.1.1.
http://www.cs.kun.nl/~erikpoll/publications/jc211 specs.html.

[16] Erik Poll, Joachim van den Berg, and Bart Jacobs. Specification of the JAVA

CARD API in JML. CSI Report CSI-R0005, Computing Science Department,
Nijmegen, March 2000.

16

http://www.borland.com/together/index.html
http://www.key-project.org
http://www.cs.kun.nl/~erikpoll/publications/jc211_specs.html

Larsson, Mostowski

[17] Steffen Schlager. Handling of integer arithmetic in the verification of JAVA

programs. Diploma thesis, Department of Computer Science, Institute for
Logic, Complexity and Deduction Systems, University of Karlsruhe, Germany,
May 2002.

[18] Sun JAVA CARD developement kit 2.1.1. http://java.sun.com/products/
javacard/dev kit.html#211.

[19] Sun Microsystems, Inc. JAVACARD 2.2 Application Programming Interface,
2002. http://java.sun.com/products/javacard/specs.html.

[20] Joachim van den Berg and Bart Jacobs. The LOOP compiler for JAVA and JML.
In T. Margaria and W. Yi, editors, Tools and Algorithms for the Construction
and Analysis of Software (TACAS), LNCS 2031, pages 299–312. Springer, 2001.

17

http://java.sun.com/products/javacard/dev_kit.html#211
http://java.sun.com/products/javacard/dev_kit.html#211
http://java.sun.com/products/javacard/specs.html

	Introduction
	Background
	The KeY Project
	Java Card and Java Card API
	Use Cases for OCL Specification of the Java Card API
	Related Work

	The Development of OCL Specification
	JML vs. OCL
	Exceptions
	The null value
	Integer Arithmetics
	JML assignable clause

	The Specification
	Formal Verification

	Short Evaluation of OCL
	Conclusions
	References

