
Using Aspect-GAMMA in the Design of Embedded Systems
(Extended Abstract)

MohammadReza Mousavi, Giovanni Russello,
Michel Chaudron, Michel Reniers, Twan Basten

Technische Universiteit Eindhoven (TU/e)
P.O. Box 513, 5600 MB

Eindhoven, The Netherlands

Angelo Corsaro, Sandeep Shukla,
Rajesh Gupta, Douglas C. Schmidt

University of California at Irvine
Irvine, CA 9269, USA

Abstract

This paper proposes a design framework that takes ad-
vantage of the aspect-orientation paradigm. The proposed
framework is based on the multi-set transformation lan-
guage called GAMMA, used for the functional aspect, to-
gether with a set of modelling notations for other aspects of
system design, namely coordination, timing, and distribu-
tion.

1 Introduction

Separation of concerns is one of the concepts at the core
of modern system design and evolution. It has been advo-
cated as a key principle for reducing the complexity of de-
veloping large-scale systems [10, 7]. In particular, in [7],
orthogonalization of concerns has been illustrated in the
context of embedded system design. It advocates capturing
the design intent at the highest possible level of abstraction,
and separating the timing, concurrency, and communication
concerns. However, since the methodology is couched in
the platform-based design methodology, the highest level
of abstraction in most cases is some form of finite state ma-
chines. From our perspective, finite state machines already
mix control and data-flow concerns in the system. There-
fore, we propose raising the level of abstraction, and sepa-
rating concerns from the very inception of the ideas of the
system under design.

Separation of concerns (especially the cross-cutting ones
such as timing) brings about the following benefits in the
design, verification and implementation phases:

1. More focused design and lighter verification. One of
the main difficulties in the design of some concerns
is that they usually crosscut the responsibility of sev-
eral encapsulation units (components, modules, or ob-
jects). Thus a design time separation of concerns al-

lows for a more focused design method that gathers
cross-cutting concerns in one dedicated place. Further-
more, properties related to a concern (set of concerns)
can be verified by looking at the particular concern
(combination of concerns) instead of the entire design.

2. Localized change. In this paradigm making and track-
ing changes is localized to the involved aspects. Sub-
sequently, a (possibly automated) composition process
(also referred to as weaving process) spreads the con-
sequences of change to the composed behavior of a
system.

3. Abstractness from other modeling methods. By using
separate modeling techniques for different aspects, one
may decide to change the modeling formalism of one
aspect and still be able to use the other aspect models.

This paper combines a formal design framework, which
is based on a multi-set transformation language called
GAMMA [1, 2], with aspect-oriented development con-
cepts from software engineering [4, 8]. We refer to design
concerns as aspects following the software terminology. We
illustrate how having a tailor-made formalism for each as-
pect, that is abstracted from other aspects, is a key benefit
of such a design framework. To clarify our discussions, we
sketch an architecture specification and design method for
distributed real-time embedded systems. We propose sep-
arating the concerns of computation, coordination, timing,
and distribution, through different simple and abstract nota-
tions for these aspects. We also propose a weaving process
that maps combinations of these different aspects to a for-
mal semantics domain.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses computation, coordination, timing, and dis-
tribution as different aspects of a design and suggests lan-
guages/notations to specify them. Section 3 proposes a sim-
ple model of weaving the functional and non-functional as-
pects in a single semantic model. Section 4 presents a small

���������	��
 ��� ����	��������
�����
���������������!
���"����� ��� #�������%$&�������&'(���������
���"��� ��� #������������
��)�*+��� ,.-/�0��,2143�5768

*+��� ,.-/�0��,2193�5;:=<4��>@?�-A,.-B��>
C�"� ,.-A�D��,2143�5E��� GF)$�HI����-BJ�143�5K$&HI����-BJ�143�5L'�+��� ,.-/�0��,2143�5
HM����-BJ�193�5 ��� ONP����
Q$�RSNP����
;'TNP���(
VU

Figure 1. Basic GAMMA Syntax

case study that we work on using our design method. Sec-
tion 5 provides concluding remarks and research directions.
For sake of brevity, we do not present detailed formalities
of aspect-modeling languages in this abstract and sketch the
overall design criteria.

2 Exploring Aspects

This section focuses on the specification of computa-
tion (the functional aspect) and the three non-functional as-
pects coordination, timing, and distribution. Computation is
somehow in the center of our design method in that other as-
pects build their semantic model on top of functionality. We
use a subset of GAMMA for specifying basic component
functionalities (computations) and present its distinguish-
ing features. We then present some ideas about specifying
other aspects.

2.1 Modeling Computation with GAMMA

GAMMA is an abstract language, based on chaotic
rewriting of a multi-set, designed to support scalable par-
allel execution of a program on parallel and/or distributed
architectures [2, 1]. The basic and atomic piece of func-
tionality in GAMMA is the rule.

In this paper, we focus on a subset of GAMMA involving
the specification of basic rules. We thus factor out structur-
ing decisions (present in the calculus of GAMMA [5]) and
make them a separate aspect model, namely the coordina-
tion model.

The syntax of a simple GAMMA program is given in
Figure 1. A GAMMA program consists of a non-empty set
of rules, each rewriting the content of the shared multi-set
of data items. Execution of a program consists of apply-
ing rules to the multi-set in arbitrary orders (sequential or
parallel). Each rule consists of a set of terms valuated by
multi-set content values (this replacement is not necessarily
unique for a specific rule and multi-set). If a certain valua-
tion of variables satisfies the condition in a rule, applying
the rule results in removing the left-hand side valuations
from the multi-set and replacing them by the valuation of
the right-hand side expression. We use predicate logic for-
mulas for the condition part throughout this paper. In [9],

a formal operational semantics for GAMMA is given in the
style of Plotkin [11].

Henceforth, the GAMMA model is only concerned
with basic functionalities in the form of a simple input-
computation-output pattern that abstracts from the follow-
ing details:

1. Relative ordering of actions (coordination). Basic
functionalities (rules) are specified independently of
each other. Hence, no special ordering of actions (con-
trol structure) is imposed on this particular specifica-
tion.

2. Timing. The basic GAMMA model does not include
any information about timing. Since it abstracts from
ordering of actions, even a qualitative (causal) notion
of time is not present in the GAMMA model.

3. Distribution. For any distributed system, the shared
data-space is an abstraction that eases the program-
ming, yet must be distributed in the implementation.

4. Hardware resources. Chaotic behavior of GAMMA
programs includes all possible levels of true concur-
rency. This means that the semantic model of a
GAMMA program is general enough to be adopted to
any particular hardware architecture that allows a cer-
tain level of true concurrency. In other words, adding
information about hardware resources as an aspect will
refine the GAMMA model to a particular platform-
dependent program.

5. Fault tolerance. The GAMMA execution model re-
quires programs to be designed in such a way that
duplicated execution of atomic actions of a program
cannot affect the functionality. Hence, replication of
actions can be added transparently to the functional
model.

This abstraction is the key issue in our approach since it
allows several ways of restriction (refinement) of the basic
functionality model by adding different (combinations of)
aspects.

2.2 Coordination

The goal of our coordination language is to restrict be-
havior of GAMMA programs to certain execution orders.
Hence, the language should provide composition operators
to structure execution and restrict behavior of GAMMA
rules.

The syntax of our coordination language is given in Fig-
ure 2. A coordination expression is basically composed of
GAMMA rules. Also, simpler schedules can be composed
using rule-conditional (WYX Z meaning that if W can be

� J�� ��?������ ��� �����������
 � $�����	��
��������������������	� $�������������	�����������������	� $�������������	�%$�$������ �������	� $
! �"������#%$�&('*),+-��#*.*�������������	� $�"������#%$�&/'0),+��1#

Figure 2. Coordination Language Syntax

scheduled then Z is selected for execution, otherwise the
schedule terminates), sequential composition (2), parallel
composition (343), or recursion (57698 Z). The recursion oper-
ator 57:;8 bounds the recursion variable 6 in the expression
Z .

Our coordination language is a process-algebraic formal-
ism that provides a formal framework for different compo-
sition models on top of a functionality specification. In [3],
the relationship between the composition models and com-
putational complexity is studied in detail.

2.3 Timing

Timing constraints can be associated with the function-
ality specification to provide assertions regarding the exe-
cution time of GAMMA rules. This time is relative to the
point from which the rule is selected for execution. Hence,
there is an inter-dependency between overall end-to-end
timing behavior of the design and both timing and coordi-
nation aspects. We return to these inter-dependencies in the
weaving section.

We propose to add the timing aspect to a GAMMA spec-
ification by associating an interval to each rule name (de-
noted by <>=@?*ACBED>F�G"B"HJI�K@LNM�O�P�Q�R). This timing represen-
tation keeps the syntactic specification of timing separate
from rule definitions, and hence allows independent change
of both aspects. This method also allows a rule to have no
timing assertion, which will be replaced by a default inter-
val (S TVU�WYX) in the weaving process.

Since GAMMA rules assume a shared access to data,
the timing aspect does not specify any assumptions about
the cost of accessing the data items in a distributed setting.
The above estimation is therefore only related to the com-
putation time for each computation.

2.4 Distribution

Distribution as a separate concern contains information
about mapping sorts of data objects and rules to different
locations. Adding the distribution aspect introduces inter-
connections with the timing aspect in that a cost of access
is associated for remote data access. Thus, timing of in-
dividual component execution is changed when taking the
distribution aspect into account.

The distribution aspect is modelled as a mapping be-
tween multi-set terms (present in the GAMMA rules) to the
physical locations. To specify distribution, we assume a setZ

containing rule names and a set < containing data types.
Data types are used to categorize data items used/produced
by different rules. We do not specify how to assign this typ-
ing to terms but assume that there is a function from the sets
of terms (structures over variables and constants) to types.
The set of locations is denoted by [. Static distribution is
defined as a function \]L^Q�L`_(a�bc_	d�Lfe>g ZJh <ji-kmlng([oi , rep-
resenting the locations of the data objects and rules of each
type. Note that we do not restrict locations to contain both
data and processing (rules) and hence, a location may rep-
resent a storage node or a processing unit, or both.

This general specification of distribution can be used to
model more specific distribution policies, such as push and
pull models. For example in a push model, the distribution
mapping should map any data type to its consumer side. In a
pull model, however, the data type remains on the producer
side and should be accessed (fetched) from the producer by
the consumer.

3 Weaving Aspects

Weaving refers to the merging of different aspects of de-
sign into a complete system model. In our case, we want to
relate functionality, coordination, timing, and distribution,
and present them in one semantic model. The orthogonality
of non-functional aspects allows the designer of each aspect
to abstract from the others. Consequently, the weaving pro-
cess should allow change or even absence of one aspect in
the whole semantics. Hence, an ideal weaving process pro-
vides formal semantics for any (meaningful) combination
of aspects.

Our proposal for a formal semantics of weaving con-
sists of a timed transition system [6] with transitions of a
GAMMA program and timing consisting of computation
time plus communication time.

We denote the computation time of a rule W by p*q�rts>gBW�i .
This function induces a by-name weaving method to relate
GAMMA rules and their respective timing estimations. In
this paper, we assume that p�q�rsugBW�i works as a function
returning the execution time estimation of a rule, if avail-
able (< =V?0AvB^D>F�G"B), or otherwise S TVU�WwX . Nevertheless, this
assumption could be relaxed by allowing several intervals
associated to a rule, and hence letting p�q�rts>gBW�i return one
of the intervals non-deterministically (or a set of intervals).
This could be used to model the situation where a rule has
multiple possible execution times, depending e.g. on vary-
ing implementation environments.

To represent communication costs resulting from the dis-
tribution policy, we use the function p*q�rxrwgBW�i , which re-
turns the time cost for making local copies of the data items

needed for the execution of rule W . For a rule W , p�q�r r g W�i is
computed by taking the maximum of communication costs
for all variables (of data items) � present in rule W , that re-
side in a different location than the location of W . If all the
data needed for the execution of a rule is available at the lo-
cation of the rule itself, we assume the communication cost
to be 0.

The simple time weaving function presented here can be
extended by adding estimations for failed attempts to exe-
cute a rule, or by defining the timing estimation as a func-
tion of multi-set size or contents. In GAMMA, rule imple-
mentations, computation time and failure time may depend
on the time for searching the multi-set to find the appropri-
ate valuation. These two extensions thus add to the practical
value of the proposed method. Such extensions can illus-
trate the profit of the separation of concerns in the method
outlined in this paper.

4 Case Study: Designing the Control of an
Elevator System

We design the control software of an elevator system us-
ing our method and show how design concerns and correct-
ness criteria can be localized using this method.

The elevator system consists of an elevator moving up
and down between floors (numbered from 0 to

� Q�����R��	��O)
of a building to service requests. On each floor there is
a push button to announce a request for an elevator when
turned ��K . When an elevator arrives on a floor, the request
flag is turned ��
 automatically. The same setting works
for the push buttons inside the elevator, which indicate the
requested stops for passengers inside.

To model this system we propose a multi-set con-
taining events requesting an elevator stop represented by
g�g _ K@\,L��� U�� i�U Z��������LZ%i and g�g M�� L(\]L���>U��Ni�U0Z�������� Z�i that show
the status of the request button for the � ’th floor, inside and
outside the elevator, respectively. The tuple g a��>U�� i , shows
where the elevator currently resides. The GAMMA pro-
gram presented in Figure 3, represents the functionality as-
pect of the elevator system.

The initial multi-set for this system is defined as:

���^���^�I���R�R	-/> � , ��5L'��&U�'!�� ;U�'�.�.�.D'DR�R	-/> � , ��5 '�* �D3"! ���S����U�'!�� 7U�'
R�R(��3�, � , ��5 '��&U�'S�� 7U�'�.�.�.D'SR�R(��3�, � , �(54'(* �S3"! ���S����U�'!�� ;U�'
R�J$# '��&U�%

which shows that the elevator is at the ground floor initially
and that there are no requests for the elevator. Note that
the proposed functionality model does not impose any con-
trol strategy. In other words, the execution of the GAMMA
model allows for any possible execution of rules (including,
for example, going up and down between floors without ser-
vicing the requests).

The coordination aspect defines how rules are composed
to define different control strategies. A simple strategy is
going up and down if there exists any request, and servicing
them in order.

& �4�('����E'0#%�������������	�M R !*) . &/),���(+*���*$���$�$) U�$�$
R !*) . �",��N�"�"+*���*$���$�$) UM$�$
R !*) . �7��#�'�&/����-/.t� � ��#�'�&/���(0f'�1�)7�) U

�7��#�'�&(����-/.V !*) .�R�R/�4'*�1�P$�$ ��)@�4'*����U �
R �t'�'���-/. � R �'�'��	-/. �) U�U�U�7��#�'�&(���(0f'�1�)C !*) .�R�R/�4'*�1�P$�$ ��)@�4'*����U �
R �t'�'��(0f'�1)t� R �t'�'��(0f'�1)n�) U�U�U

The informal description of the above coordination strat-
egy is as follows. Events of pushing the request button can-
not be controlled by the system and hence they happen in
an arbitrary rate in parallel with the rest of the system. The
elevator goes sequentially up and down by performing the
\�M*O�P0_(a�M323 and \7M�O�P%_(a�M b4��5 K schedules. \7M�O�P%_(a�M62* (re-
spectively, \7M�O�P%_(a�M b4��5 K) includes servicing the possible
requests at the current floor and trying to go up (or down)
if there is any request at/for the higher (lower) floors. If the
attempt to go up (down) fails, since there is no pending re-
quest there, then the direction changes and the elevator tries
to go down (up).

The timing aspect of the case study consists of perfor-
mance measures related to each basic operation in the eleva-
tor system (consisting of going up and down, and servicing
requests). Suppose that the following timing information is
given about the elevator system:

7 Pushing an internal or external button does not take
time at all:
<98;:�=]B�<E?�B>=�?nHJ< B�@"? =�B><^?�B�=�?nH S TVU�T�X .

7 Going up and down between floors takes \]L^M�BA9_$C M
for each floor:
<9GED�F�B�GIH H <9GED�F�B�J/D�K6: H Sv\]L^M�BA9_$C M U�\,LNM�BA9_$C M0X .

7 The elevator will be loaded/unloaded within� _ KV\7M�O�P%_(a�M and
� Q��1\�M*O�P%_(a�M amount of time,

depending on the number of people and goods waiting
for it:
<9A;D F"L H <9?�:%AMD�F"L H S � _ K@\�M*O�P0_(a�M U � Q��1\�M*O�P0_(a�M%X .

The timing information allows us to verify the timeli-
ness of a functional specification, possibly for a given co-
ordination, assuming the aspects are appropriately weaved
together.

Finally, we consider the distribution aspect. Suppose that
sensors for request buttons on each floor are connected to
the elevator via a field-bus network. In this case, accessing
the physically distributed locations (from the elevator) will
take some time. To specify this model of distribution, we
assume a location for the elevator and its internal buttons

1������ � , ��� ��� ��, ��
E � -/>������0� ���(,9 R�R	-/> � , ��5 'N& U�'!�� CU 68 R�R	-A> � , �(5 'N& U�'!��> U�'
��3�,A�M���0� ����, R�R(��3�, � , ��5 'N& U�'!�� CU 68#R�R(��3�, � , ��5 'N& U�'!��>PU�'

���������5; R�J$# 'N& U968#R�J$# 'N&	��
!U :&���Y� ,	���4'*'0#������ �N&����� R�R�R(��3�, � , ��5 '��TU�'!��> U�� ���^���N��� R�R	-/> � , ��5 '��TU�' ��> U�� ���^���^��U�'

������ ����! >; R�J$# ' & U 68#R�J$# 'N&#"$
!U4:&% �&�'��� ���(� &	� R�R�R(��3�, � , �(54'��TU�'!��> U�� ���E� �^��� R�R	-/> � , ��5 '��TU�' ��>PU)� ���^���N� U�'
���S�&? R�R(��3�, � , ��5 'N& U�'!��> U468 R�R(��3�, � , ��5L' & U�'!�� 7U :#R�J$# 'N& U)� ���^���N�&'
� > ���S�&? R�R	-A> � , �(5L'N& U�'!��> U 68 R�R	-/> � , ��5 'N& U�'!�� 7U : R�J$# 'N& U*� ���^���N��

Figure 3. GAMMA Program for the Elevator System

and a location for each external button. The distribution
function for the elevator system then looks like the follow-
ing:

� , ��,.-BJ+��-/��,DR �-,(.��TR�R(��3�, � , ��5 ' & U�'�$��^���^��$ U�UL��/.��4'0'*#10 � , ��,.-BJ+��-/��,DR �-,(.��TR�R	-/> � , ��5 'N& U�'�$��^���^��$ U�UL����*�4�('����E'0#& � , ��,.-BJ+��-/��,DR �-,(.��TR�J$#P' & U�U ��*���	�"'����^'*#& � , ��,.-BJ+��-/��,DR(��3�,A��� �0� ����,0U �/.��4'*'0#109$	�32 &�2 * �S3"! ���S� �T

and for each rule WI�5476 other than M��1L98 M;:/<@M�d�L :
� , ��,.-BJ+� -A�(,DR #0���4��U ��*���	�"'����^'*#&

This distribution policy defines where the GAMMA rules
C ��P�M�b � 5 K and C ��P�M62* must look for remote copies of
external request values from distributed locations.

From a verification point of view, some basic un-timed
properties of design can be verified using the semantics of
GAMMA and coordination. For example, it can be shown
that the elevator eventually honors all requests, using only
the functionality and the coordination aspect model. For
more complicated timed properties however, the reasoning
requires that the weaved model contains timing and distri-
bution.

In Figure 4, a fragment of the timed transition system
is given that results from weaving the computation, coordi-
nation, timing and distribution of this system as described
above. The transitions are labelled by the name of the
rule(s) that are executed, the timing estimation of the execu-
tion, and the communication cost. For simplicity, only the
relevant elements of the multi-set contents are represented
in this figure. It is assumed that the time cost for commu-
nicating data from one node to another is = < . In this tran-
sition system, communication time is only associated with
rules concerning moving up and down since they are the
only rules that have to fetch their required data from other
distributed nodes (e.g. request button status at other floors)
over the field-bus network.

The example given in this section illustrates how a dis-
tributed real-time embedded application can be developed
systematically. The proposed method is amenable to formal
verification techniques which increase the robustness of the
design. When the design is complete and verified, the sys-
tem engineer can proceed with an implementation.

5 Conclusion and Future Directions

In this paper, we presented the main ideas behind our
method for separation of concerns in the design of dis-
tributed real-time embedded systems. The proposed method
consists of separating the aspects of functionality, coordina-
tion, timing and distribution in the design phase, and pro-
viding a weaving mechanism to provide a formal semantics
for composed aspects. This weaving method enables us to
have localized reasoning about properties of aspect models
and their inter-relationships.

The main challenges in our future research are the fol-
lowing:

7 Extension of the method sketched in this paper to other
aspects such as hardware resources, power-awareness,
fault-tolerance, persistence, etc.

7 Developing/studying logics for expressing properties
of the aspect models and the weaving of those.

7 Performing case studies to validate the method.
7 Developing automated design methods and tools that

support the aspect weaving process, the reasoning in
the aspect models, and the refinement from aspect
specifications towards system implementation.

References

[1] J.-P. Banâtre, P. Fradet, and D. Le Métayer. Gamma
and the chemical reaction model: Fifteen years after.
In C. S. Calude, G. Paun, G. Rozenberg, and A. Sa-
lomaa, editors, Multiset Processing: Mathematical,
Computer Science, and Molecular Computing Points
of View, volume 2235 of Lecture Notes in Computer
Science, pages 17–44. Springer-Verlag, Berlin, 2001.

[2] J.-P. Banâtre and D. Le Métayer. Programming by
multiset transformation. Communications of the ACM
(CACM), 36(1):98–111, Jan. 1993.

[3] M. R. V. Chaudron. Separation of Correctness and
Complexity in Algorithm Design. Technical Report
94-36, Leiden, The Netherlands, 1994.

R�R(��3�, � , ��5L'���U�' ��> U
��3�,A�����0� ���(,���� � '���%�� � ��'��(%

R�R	-/> � , ��5 ';
SU�' ��> U
-A>���� �0� ����,�� � � '���%�� � ��'��(%

R�R	-/> � , ��5 '���U�'!� > U

R�R	-A> � , �(5 '���U�' � > U�'SR�J$# ';
SU

R�R	-/> � , ��5 '���U�' ��> U�'SR(��3�, � , ��5 ';
!U�'DR�J$# '���U

R(��3�, � , ��5 ';
!U�'!R�J$# '���U

-/>������0� ����,�� � ��'���%�� � ��'��(%

��/�����"5+� � � , � 5LN -/
 ��' � , � 5LN -/
���%����
	

��3�,A�M���0� ����, '0
���������5+��� � , � 5 N -/
 �&' � , � 5 N -/
 ��%����
	

� > ���S�&? � � *C-/> � �����S-BJ(�&'�* �S3 � �����S-.J���%�� � ��'��(%

Figure 4. Fragment of the Timed Transition System after Weaving.

[4] T. Elrad, R. E. Filman, and A. Bader, editors. Special
issue on aspect oriented programming. Communica-
tions of the ACM (CACM), 44(10). ACM Press, 2001.

[5] C. L. Hankin, D. Le Métayer, and D. Sands. A calcu-
lus of Gamma programs. In U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua, editors, Proceedings of the
Fifth International Workshop on Languages and Com-
pilers for Parallel Machines, volume 757 of Lecture
Notes in Computer Science, pages 342–355. Springer-
Verlag, Berlin, 1993.

[6] T. A. Henzinger, Z. Manna, and A. Pnueli. Timed
transition systems. In J. W. de Bakker, K. Huizing,
W. P. de Roever, and G. Rozenberg, editors, Proceed-
ings REX Workshop on Real-Time: Theory in Prac-
tice, Mook, The Netherlands, June 1991, volume 600
of Lecture Notes in Computer Science, pages 226–
251,.Springer-Verlag, Berlin, 1992.

[7] K. Keutzer, A. Newton, J. Rabaey, and
A. Sangiovanni-Vincentelli. System-level design:
orthogonalization of concerns and platform-based de-
sign. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 19(12):1523–
1543, December 2000.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-

Oriented Programming. In M. Aksit and S. Matsoka,
editors, Proceedings of the 11th European Conference
on Object-Oriented Programming, volume 1241 of
Lecture Notes in Computer Science, pages 220–242,
Berlin, June 1997. Springer-Verlag.

[9] M. Mousavi, T. Basten, M. Reniers, M. Chaudron,
and G. Russello. Separating functionality, behavior
and time in the design of reactive systems: (GAMMA
+ coordination) + time. Technical Report CSR 02-09,
Department Computer Science, Eindhoven University
of Technology, 2002.

[10] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton. N De-
grees of Separation: Multi-Dimensional Separation of
Concerns. In Proceedings of the International Confer-
ence on Software Engineering (ICSE99), Los Angeles,
CA, pages 107–199. ACM Press, May 1999.

[11] G. D. Plotkin. A structural approach to operational se-
mantics. Technical Report DAIMI FN-19, Computer
Science Department, Aarhus University, Aarhus, Den-
mark, Sept. 1981.

