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Abstract. We use the concept of delta-oriented programming to organize
FSM-based test models in an incremental structure. We then exploit
incremental FSM-based testing to make efficient use of this high-level
structure in generating test cases. We show how our approach can lead
to more efficient test-case generation, both by analyzing the complexity
of the test-case generation algorithm and by applying the technique to
a case study.
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1 Introduction

Software product lines (SPLs) have become common practice thanks to their
potential for mass production and customization of software. Testing software
product lines, and in particular, their model-based testing are topics of increasing
relevance in the research literature and also industrial practice [4, 10, 17]. In
this paper, we propose the formal foundations of a delta-oriented framework
for model-based testing. Delta-oriented programming (DOP) and in particular,
DeltaJava [14], is a framework for SPLs, in which a product line is specified in
terms of applications of a number of deltas (changes: additions, removals and
modifications of member objects, methods, and classes) from a core product.
The overall goal of the research commenced by this paper is to allow for efficient
test-case generation and test-case execution for delta-oriented models and their
corresponding programs. In this paper, we focus on test-case generation and show
whether and how test-case generation for delta-oriented model can be made more
efficient by benefiting from their incremental structure.

To this end, we use finite state machines (FSMs) as test models whose struc-
ture is based on DeltaJava: there is a test-model for the core product, which
includes abstraction of state valuations as its states and the method calls, their
return values and their effect on the abstract state as its transitions. Then, test
models for different products are obtained by incrementally modifying the de-
tails of the core model (e.g., adding models for classes, member objects and
methods). In this paper, we focus on the incremental subset of DeltaJava, in
which the core represents a minimal set of features and the deltas incrementally
add to the core or the composition of core with other deltas (but do not remove



anything from them). We also adopt the well-known Harmonized State Identifi-
cation (HSI) method [13] and adapt it to the delta-oriented structure of our test
models.

The remainder of this paper is organized as follows. In Section 2, we review
several pieces of related work and identify their similarities and differences with
the present paper. In Section 3, we recall some preliminary notions regarding
FSM-based testing and the syntax of delta-oriented models. We specify the syn-
tactic structure of our running example in Section 4, which we use throughout
the rest of the paper to illustrate various formal definitions. Subsequently, we
define the semantic domain of our test models in Section 5 and show how the
test models of various products can be obtained from the semantics of the core
model by applying a delta composition operator. In Section 6, we show how test
cases can be generated from the test models of various products and analyze
the complexity of test-case generation. In Section 7, we provide some empirical
results obtained from comparing the effectiveness of the application of the delta-
oriented testing method with the HSI-method for a case study. We conclude the
paper and present the directions of our ongoing research in Section 8.

2 Related Work

Incremental FSM-Based Testing The closest line of research to that of the
present paper is incremental FSM-based testing, which is extensively researched
in the past few years [3, 6, 9, 11, 15]. This line of research aims at modulariz-
ing the test-case generation and/or test-case execution process with respect to
changes such as adding, removing, or modifying transitions or states in test mod-
els. Such a modularization should eventually lead to saving time and effort in
re-generating or re-executing tests by focusing on those parts that are influenced
by the change. The approaches of [3, 6] differ from our approach in that they
assume that the behavior of the core implementation is unchanged after each
and every delta and focus on the effect of changes on the extended part of the
implementation; we have no assumption about the behavior of the implementa-
tion due to the application of a delta. Our focus in this paper is on test-model
semantics and test-case generation rather than test-case selection and execution.
The approach of [15] is different from ours in that it aims at completing a given
set of test cases, but does not per se address the changes in the test model. Our
approach is mostly based on [9, 11] and applies it at a higher level of abstraction
to delta-oriented models inspired by the DeltaJava framework of [14].

Model-Based Testing of SPLs In a recent survey, Oster et al. [10] observe that
there is a considerable gap regarding testing in the current software engineering
approaches to SPLs. Despite this gap, there is already some body of research
on the theory and application of model-based testing for SPLs (see, e.g., [4, 10,
17] for recent surveys). Among these approaches, the closest to our approach are
those developed by Malte Lochau, Ina Schaefer, et al. [8]. They propose a delta-
oriented and state-machine-based testing methodology for SPLs and instantiate

2



this methodology in a case study using IBM Rational Rhapsody and Automated
Test-case Generator (ATG). Our approach follows the same structure and for-
malizes the part that has been implemented in IBM Rhapsody, by means of
ideas from incremental FSM-based testing. This paves the way for further for-
mal analyses of the technique proposed in [8], as well as further improvements
by considering more relaxed fault models.

Object-Oriented Model-Based Testing There is a large body of literature re-
garding model-based testing of object-oriented programs by using sequence- or
state-diagrams as test models (see, e.g., [1, 12, 18]). We follow object-oriented
principles such as encapsulation and data-hiding in our modeling framework
and organize our test models based on specification of class instantiations and
dependencies. In this sense, our work builds upon earlier work in this direction
such as [5, 18]; in particular, our test models are reminiscent of class state ma-
chines (CSMs) introduced in [5]. Our work defers from this line of work in two
ways: firstly, our focus is on incremental changes in test models and not so much
on testing object oriented programs. Secondly, in our approach the system un-
der test need not be implemented as an object-oriented program; the abstract
test-cases from our test-models can be used to test different types of implemen-
tation. This is achieved by means of adapters that turn the abstract test-cases
into concrete test-cases for different programming languages and implementation
platforms.

3 Preliminaries

3.1 FSM-Based Testing

In this section, we explain the basic concepts of FSM-based testing and delta-
oriented modeling techniques used throughout the rest of the paper. We use the
Harmonized State Identification (HSI) method [13] as the basis of our model-
based testing technique. In the HSI method, test models are Finite State Ma-
chines (FSMs), specifying the desired behavior of systems. The formal definition
of an FSM, borrowed from [2], is as follows.

Definition 1. (Finite State Machine) A Finite State Machine (FSM) M is a
6-tuple (S, s0, I, O, µ, λ), where S is a finite set of states, s0 ∈ S is the initial
state, I and O are, respectively, finite nonempty sets of input and output symbols,
µ : S×I → S is the transition function and λ : S×I → O is the output function.

Intuitively, whenever a machine receives input a at state s, it deterministically
traverses to state µ(s, a) and generates output λ(s, a). A transition from state
s to state s′ with input i and generated output o is represented by quadruple

(s, i, o, s′), or alternatively by s
i/o−−→ s′. For a sequence x ∈ I∗, we define µ(s, x)

and λ(s, x) in the standard manner to denote, respectively, the final state that
the machine ends in and the sequence of generated outputs, after receiving the
input symbols in x one by one. Furthermore, we also informally recall that two
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states are X-equivalent (X ⊆ I∗) if and only if the two states produce same
output for every input sequence σ ∈ X (see [2] for a formal definition). Lastly,
two machines M,M ′ are X-equivalent, denoted by M ≡X M ′, if and only if for
every state of M there is an X-equivalent state of M ′ and vice versa. Machine
M is said to conform to machine M ′ if and only if they are I∗-equivalent.

The main idea of the HSI method is to establish conformance between an
FSM test model M and an unknown machine M ′, modeling the implementation,
by generating a finite test case from M and applying it to M ′. There are a set
of assumptions that should hold for these machines, which are specified next.

Definition 2. (HSI method assumptions) The HSI method can be applied on ma-
chines M and M ′, which hold the following assumptions:

1. Both M and M ′ are deterministic, which means that the outgoing transitions
of one state may not have same input symbols.

2. Both M and M ′ are minimal, i.e., there are no distinct I∗-equivalent states
in either of them. Note that if M is not minimal, an equivalent minimal
machine can be generated using a minimization algorithm such as [7].

3. All states in M are reachable from its initial state s0.

4. Both machines M and M ′ have reliable reset sequences, which take the re-
spective machine from the current state to the initial state.

5. M ′ has at most as many states as M .

The HSI method consists of two phases. The first phase comprises checking
the existence of states in the implementation that are I∗-equivalent to the ones in
the test model. In the second phase, the output and the target of the transitions
for the corresponding states are tested for conformance. In order to reach all the
states in the machine, the HSI method uses a sequence of inputs, state cover set,
denoted by Q, which is defined below.

Definition 3. (State Cover Set) Consider an FSM M = (S, s0, I, O, µ, λ); a state
cover set of M , denoted by Q, is a set of sequences such that:

∀s∈S · ∃x∈Q · µ(s0, x) = s

A state cover set of an FSM can be obtained by building a spanning tree
such that, the nodes are states of the FSM and the edges are chosen from the
set of transitions in the FSM. The set of sequences obtained as the state cover
set are then the paths from the initial state to the nodes in the spanning tree.

As another ingredient of the first phase, i.e., checking the existence of test-
model states in the implementation, the HSI method uses a separating family
of sequences, which is denoted by Z and comprises sets of separating sequences
for all states. A set of separating sequences identifies and tests the target states
after running each element of the state cover set. The separating set for a state
is defined as follows.
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Definition 4. (Separating Sequences) Consider an FSM M = (S, s0, I, O, µ, λ);
the set of separating sequences for a state s ∈ S, is denoted by zs and includes
sequences that can distinguish s from all other states in S, that is:

∀s,s′∈S · s 6= s′ ⇒ ∃x∈Pref (zs)∩Pref (zs′ )
· λ(s, x) 6= λ(s′, x),

where Pref (.) denotes the set of prefixes of a set of sequences.

A separating family of sequences for an FSM, is a set comprising the separating
sequences of all states, that is Z =

⋃
s∈S{zs}.

Hence, the set of test cases executed in the first phase are generated as follows.
For each state s ∈ S, let qs and zs denote, respectively, the sequence in the state
cover set which leads to s and the set of separating sequences generated for s.
Then, the test cases generated in the first phase is given by

⋃
s∈S r.qs.zs, where

r is the reset sequence of the FSM and for two sets A and B of sequences, A.B
denotes the concatenation of two sets and is defined as {αβ|α ∈ A∧β ∈ B}. This
way, in addition to checking the existence of the states, the output and target
state of the transitions which are included in the spanning tree are checked for
conformance to the specification.

In the second phase of the HSI method, the output and the target state of
the remaining transitions, not visited while traversing the state cover set, are
checked using the following set of test cases. For each of the remaining transitions

such as s
i/o−−→ s′, the set of all r.qs.i.zs′ sequences is added to the set of test cases.

3.2 Delta-Oriented Syntactic Structure

Inspired by DeltaJava [14], our test-models for an SPL are structured into a core
model and a set of delta models. The core model describes the correct behavior
of a valid configuration in the SPL. The implementation of other products is
obtained by applying delta models to the core model. The structure of our models
is defined by the syntax of DeltaJava, which is described below.

A core model comprises a set of Java classes and a set of interfaces, that is:

core 〈Feature names〉{〈Java classes and interfaces〉},

where feature names specify the set of features which are included in the config-
uration corresponding to the core model.

Delta models describe sets of changes to the core model. The structure of a
delta in the DeltaJava language is given in Figure 1. In this syntax, a delta model
may add/remove fields, methods, or interfaces from classes in the core model.
Also, it can modify the existing ones. A class can also be added or removed from
a core model by applying a delta model. The keyword after can be used in order
to specify the order of the application of a set of delta model to the core model.
The when keyword is used to specify that this delta can be applied when a set of
features are being included in the configuration. In the remainder of this paper,
we only consider incremental delta-oriented models, i.e., those models that only
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delta 〈 name 〉 [after 〈 delta names 〉]
when 〈application condition〉 {

removes 〈class or interface name〉
adds class 〈 name 〉 〈 standard Java class〉
adds interface 〈 name〉 〈standard Java interface〉
modifies interface 〈 name 〉

{ 〈 (remove | add| rename) method header clauses〉 }
modifies class 〈name〉

{ 〈 (remove | add | rename) field clauses〉 |
〈 (remove | add | rename) method clauses }〉 }

Fig. 1. DeltaJava syntax.

add model classes, methods or fields. In this paper, we focus on an incremental
subset of the syntax, designated in blue, which assumes a minimal core and
incremental additions by various deltas. Particularly, in Section 5, we provide
a semantic domain in terms of FSMs for a subset of these syntactic structures,
which covers adding classes, methods and fields to a core FSM mode.

4 Running Example

In this section, we present the syntax of a DeltaJava example, which is used
throughout the rest of this paper. The core model of this example consists of
one class, named Bridge. This class has a field that represents the availability of
the bridge and also a set of functions, which manipulate and report the value of
this field. The syntax of the core model is given in Fig. 2.

Core Bridge{
Class Bridge{

private boolean Avl;
public Bridge() {Avl=true;}
public void SetAvl(){Avl=true;}
public void ResetAvl(){Avl=false;}
public boolean CheckAvl(){return(Avl);}

}
}
delta DPedLight when pedestrian Light {

modifies Class Bridge{
adds boolean Psig
adds boolean CheckPsig(){return(Psig);}
adds void SetPsig(){Psig=true;}
adds void ResetPsig(){Psig=false;}

}
}

delta DController when controller {
adds Class Controller{

private boolean Lsig,Rsig;
public bridge b;
public controller(){
Lsig=false; Rsig=false;}
public int CheckLsig(){return(Lsig);}
public int CheckRsig(){return(Rsig);}
public void GetReq(int id){

if(b.CheckAvl()==true){
if(id==0){
Lsig=true;Rsig=false;}

else{
Rsig=true;Lsig=false;
b. ResetAvl();}
}
}
public void SetPassed(){

Lsig=false;Rsig=false;
b.SetAvl();}

}
}

Fig. 2. Core- and delta models of the running example.
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We consider two different delta models to be added to the core model given
in Fig. 2. The first delta model consists of the addition of a class. The class
controller controls the status of the lights in both side of the bridge in order to
guarantee a mutually exclusive access to the bridge. This delta is added when
the feature controller is included in a product. The second delta model is added
to the core model when the pedestrian light feature is included in the product.
This delta model consists of adding a field to the bridge class, which represents
the status of the pedestrian light, as well as two methods, which can set and
reset the value of the pedestrian light.

5 Delta-Oriented FSM Modeling

In this section, we define a semantic domain based on FSMs for the syntactic
structure of DeltaJava models. We assume that the transitions in our test models
concern the call / return behavior of a set of modules. The states in a test
model concern a symbolic aggregation of concrete states, where each concrete
state corresponds to a valuation of variables. The granularity of this abstraction
is modeler’s choice, as long as it respects the HSI assumptions. Moreover, it is
assumed that the set of fields used and manipulated by a method call, its possible
return values and its effect on the value of these fields are known.

To start with, we define the following basic concepts for our semantic domain.

Definition 5. (Abstract Valuations) Assume a set V of variables and a set D
of their possible values; for simplicity, we have left out typing information here
and throughout the paper. Then ValV ⊆ 2V→D, is an abstract valuation of V .
The set of all such abstract valuations of V is denoted by VALV . We remove
the superscript of an abstract valuation, if the set of variables is clear. For an
abstract valuation ValV ⊆ 2V→D and for V ′ ⊆ V , we write Val ↓ V ′ to denote
element-wise domain restriction of Val to V ′, that is leaving out the valuation
of those variables not mentioned in V ′.

Definition 6. (Object Structure) We formalize the structure of an object obj of
class c, as a 3-tuple (Id ,Flds,Mtds), where Id is the object’s unique identifier
and Flds and Mtds, respectively, denote the set of fields and methods in the
class c. (To avoid name clashes, we assume that all members of Flds and Mtds
are prefixed with Id.) A method is represented by a 5-tuple (Id , Inprms,Outprm,
Clds,UsedVars), where Id, Inprms and Outprm, respectively, denote the name
of the method and the list of the input parameters and the output returned by the
method; Clds denotes the set of methods that are called in the body of this method
and UsedVars is the set of variables read from or written to in the method.
Note that UsedVars may comprise both members of Flds and model variables.
The latter are variables that the test modeler has added to the model to capture
unspecified details, e.g., associations and dependencies, without cluttering the
model.

In the rest of the paper, we recognize the components of the above-given
tuples, by indexing the name of the intended component with the name of the

7



object or the method. For example, Inprmsm denotes the input parameters of
the method m. Next, we define the concept of post-condition for methods.

Definition 7. (Effect and Return Value Functions) The effect of calling a method
m is defined by a function Effectm : VALInprmsm∪UsedVarsm → VALUsedVarsm .
Similarly, its set of admitted return values is defined by:
RetValm : VALInprmsm∪UsedVarsm → 2D.

5.1 Core Model Semantics

In this section, we define the semantic domain for core models. The behavior
of a core model results from execution of the methods called in the objects
instantiated from the core model classes. (A conscious choice is to be made by
the modeler as to which methods from which abstract states are included in
the model.) Hence, the finite state machine describing the behavior of a set of
objects is defined as follows.

Definition 8. (Object FSM) An FSM M(O) = (S, s0, I, O, µ, λ) is a semantic
model for a set O of objects from the set C of classes, if it satisfies the following
conditions:

– S ⊆ VALV where V ⊆
⋃

o∈O,m∈Mtdso
UsedVarsm is a subset of model vari-

ables and fields in O; this means that each state in S is an abstract valuation
of a subset of model variables and fields.

– I ⊆
⋃

o∈O,m∈Mtdso
{Idm} × VALInprmsm ; this means that each input in the

input symbols set comprises a method name and a set of passed arguments.
– O ⊆ D is the set of possible return values of the method calls in I.
– µ : S × I → S, is a transition function satisfying the following conditions:

(1) ∀o∈O, m∈Mtdso , val∈VALInprmsm , i∈I, s,s′∈S · µ(s, i) = s′ ∧ i = (Idm, val)
⇒ Effectm(s ↓ UsedVarsm × val) ⊆ s′ ↓ UsedVarsm,

(2) ∀s∈S · ∃x∈I∗ · (s0, x) = s
(3) ∃r∈I∗ · ∀s∈S · µ(s, r) = s0

– λ : S × I → O is an output function satisfying the following condition:

∀o∈O, m∈Mtdso val∈VALInprmsm , i∈I, o∈O, s∈S · µ(s, i) = o∧
i = (Idm, val) ⇒ RetValm(s ↓ UsedVarsm × val) = o.

Regarding the transition function, condition (1) specifies that there can be a
transition from one state to another, labeled with a method call as input, only if
this method call maps one of the concrete evaluations of the used variables in the
source to another concrete valuation in the target state. Condition (2) requires
that all states included in the set of states are reachable from the initial state.
Condition (3) postulates that the given FSM has a reset sequence r. Regarding
the output function, the condition specifies that the output of the FSM for each
given input is exactly the set of admitted outputs for the corresponding method.

A test model for core, defined below, is then an object FSM comprising a set
of objects from the core model classes.
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Definition 9. (Test Model for Core) A test model for core is a minimal object
FSM M(O) such that each object in O is instantiated from a class in the core
model.

For example the FSM corresponding to the core model in the running ex-
ample is demonstrated in Fig. 3 (a). This FSM is minimal and it satisfies the
reachability condition. The reset sequence of this FSM is SetAvl().

 

 

SetAvl()/τ ResetAvl()/τ 

{Lsig=false, Rsig=false, xCheckAvl =true} 

{Lsig=true, Rsig=false, xCheckAvl =false }  {Lsig=false, Rsig=true, xCheckAvl =false} 

Setpassed()/τ 

GetReq(1)/τ GetReq(0)/τ 

Setpassed()/τ 

Setpassed()/τ 

GetReq({0},{1})/τ, GetReq({0},{1})/τ 

CheckLsig/f, 

CheckRsig/f, 

 

CheckLsig/f, 

CheckRsig/t 

 

CheckLsig/t, 

CheckRsig/f 

 

 
S0  

 
S1  

 
S2  

{Avl=false} 

  

ResetAvl()/τ, 

CheckAvl()/f 

 
S1  

{Avl=true} 

SetAvl()/τ 

CheckAvl()/t, 

 
S0  

(a) (b) 

Fig. 3. (a) FSM modeling the bridge class, (b) FSM modeling the controller class

5.2 Delta Application

In this section, we define the semantic domain for delta models and the applica-
tion of a delta to a core model. As mentioned in Sect. 3.2, a delta comprises a
set of operations applying changes to the core model. In order to give a practical
definition to a delta model and the type of changes that it can make to the core
model, we focus on adding a class, on one hand and adding a set of fields and
methods, on the other hand. The reason we combine adding fields and methods in
one step is that often adding new methods requires some additional fields. More-
over, in several cases the new abstract valuations (additional state-partitions)
due to the additional fields can only preserve minimality, if new methods are also
added to tell them apart. We leave the deltas concerning removals and modi-
fications of methods and removal of fields for future work. Hence, for now we
are assuming that the core model comprises the least mandatory set of features
and the model regarding each product is generated incrementally from the core
model.

We proceed by defining the effect of applying a delta containing each of the
above-mentioned changes on the core model’s FSM.
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Adding a Class The test model for the added class has the structure and abides
by the constraints of object FSMs given in Definition 8. Hence, we assume that
the test model for the added class c is given as a minimal object FSM Md(Od)
where Od only contains objects of class c with a fresh identifier (not mentioned
among the identifier of core objects and other deltas).

For example, the FSM describing the behavior of an object of the controller
class is depicted in Fig. 3 (b). In this figure, xCheckAvl is an extra model variable
included in the state, representing the returned value of CheckAvl() and cutting
the dependency with the core model. The result of adding a class to the core
model is defined as follows.

Assume that the test models for the core and the delta models are object
FSMs M(O) = (S, s0, I, O, µ, λ) and Md(Od) = (Sd, s

d
0, Id, Od, µd, λd), respec-

tively. In order to define the composition of the core and the delta, we first
specify the possible connections between the model variables of delta and core.
Assuming that V and Vd, respectively, denote the variables in the domain of the
states in S and Sd, then, the (partial) composition function γ : Vd → V specifies
which (model) variables in Vd should match which variables in V . Moreover, the
methods of the delta class can initiate method calls to instances of the core class
included in the delta class (if any). Here, for the sake of simplicity, we consider
that each delta method can contain at most one method call to the core, but the
generalization to a sequence of core method calls is straightforward. We assume
that the set of methods in the core model and the set of methods in the delta
model are denoted, respectively, by MTD and Mtds.

Definition 10. The result of composing the above-given models M and Md with
regards to γ is an FSM M ′(O′) = (S′, s′0, I

′, O′, µ′, λ′), where:

– S′ = {val ∈ VALV ∪Vd | val ↓ V ∈ S ∧ val ↓ Vd ∈ S′ ∧ ∀vd∈Vd, v∈V · γ(vd) =
v ⇒ val ↓ {vd} = val ↓ {v}}; for the composition to be well-defined, we
assume V and Vd to be disjoint,

– s′0 is the initial state such that s′0 ↓ V = s0 and s′0 ↓ Vd = sd0,
– I ′ = I ∪ Id
– O′ = O ∪Od

– µ′ : S′ × I ′ → S′, is the transition function. For each i ∈ I ′, we distinguish
the following three cases:
• i ∈ I concerns a method call from the core; then, the following condition

should be satisfied

∀m∈MTD, s′1,s
′
2∈S′ · i = (Idm, val)⇒

(
µ′(s′1, i) = s′2 ⇔

∃s1,s2∈S · s1 ↓ UsedVarsm = s′1 ↓ UsedVarsm∧
s2 ↓ UsedVarsm = s′2 ↓ UsedVarsm ∧ µ(s1, i) = s2

)
• i ∈ Id concerns a method call from delta that does not have any nested

call to the core; then, the following condition should be satisfied

∀m∈Mtds, s′1,s
′
2∈S′ · i = (Idm, val)⇒

(
µ′(s′1, i) = s′2 ⇔

∃sd1 ,sd2∈Sd
· sd1 ↓ UsedVarsm = s′1 ↓ UsedVarsm∧

sd2 ↓ UsedVarsm = s′2 ↓ UsedVarsm ∧ µd(sd1, i) = sd2
)
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• i ∈ Id concerns a method call from delta that has a nested method call
ni to the core; then the following condition should hold:

∀m∈Mtds,n∈MTD,s′1,s
′
2∈S′ · i = (Idm, val) ∧ ni = (Idn, valn) ⇒

µ′(s′1, i) = s′2 ⇔ ∃sd1 ,sd2∈Sd · sd1 ↓ UsedVarsm = s′1 ↓ UsedVarsm∧
sd2 ↓ UsedVarsm = s′2 ↓ UsedVarsm ∧ µd(sd1, i) = s2

d∧
∃s1,s2∈S · s1 ↓ UsedVarsn = s′1 ↓ UsedVarsn∧
s2 ↓ UsedVarsn = s′2 ↓ UsedVarsn ∧ µ(s1, ni) = s′2

– λ′ : S′ × I ′ → O′ is the output function; for each i ∈ I ′, we distinguish the
following two cases:
• either i ∈ I, then the following condition should hold:

∀m∈MTD, o∈O′,s′∈S′ · i = (Idm, val) ⇒ λ′(s′, i) = o⇔
∃s∈S · s ↓ UsedVarsm = s′ ↓ UsedVarsm ∧ λ(s, i) = o

• or i ∈ Id, then the following condition should hold:

∀m∈Mtds, o∈O′,s′∈S′ · i = (Idm, val)⇒ λ′(s′, i) = o⇔
∃sd∈Sd

· sd ↓ UsedVarsm = s′ ↓ UsedVarsm ∧ λd(sd, i) = o

In the definition of transition function, a case distinction is made based on
whether the method calls (in the delta model) have a nested method call or
not. In the former case the valuations of the variables belonging to both core
and delta models can change in the target state while in the latter case only
the valuation of the variables belonging to the delta model can change. In the
definition of output function these two cases are defined as one since the effect
of the output of the inner method calls, if any, of a method call in the delta
model is captured by the corresponding model variables which are included in
the states of the delta model.

Fig. 4. (a) demonstrates the FSM resulting from the addition of the con-
troller class to the bridge class. Note that the γ function is defined to match the
valuation of the model variable xCheckAvl in the delta with the variable Avl in
the core.

Theorem 1. Based on the assumptions made about the core model and the delta
model, the resulting FSM of Definition 10 satisfies the assumptions (1)-(4) of
Definition 2.

Proof. 1. Determinism of the composition follows from the determinism of the
core and the delta and the distinctness of object identifiers, which leads to
disjointness of input symbols in the core and the delta.

2. In order to see that the result of the composition is minimal, consider two
distinct states s and s′ in the composition. Their abstract valuations cannot
be the same; the difference is either due to their difference in the abstract
valuations in the core, or in the delta, or in both. Without loss of generality,
assume that the difference is in the abstract valuation of the core variables.
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Fig. 4. (a) FSM resulted from adding the delta model DController , to the core model,(b)
FSM resulting from adding delta DPedLight to the core model

Hence, the projection of s and s′ on core variables denotes abstract states in
the core and due to minimality of the core, they can be distinguished by a
separating sequence in the core. Due to the first items in definitions of µ′ and
λ′ in Definition 10, the same sequence can be traversed in the composition
of the core and the delta and will produce the same output as the core and
hence, can distinguish s and s′ in the composition.

3. Using a similar line of reasoning, all states in the composition are reachable
from the initial state of the composition

4. Based on the reason same as above, the reset sequence of the composition is
the concatenation of the reset sequences of the core and the delta models.

Note that the last constraint of Definition 10 is implementation-dependent
and hence, it can only proven without sufficient assumptions on the implemen-
tation. This is out of the scope of the present paper.

Adding Fields and Methods In this section, we discuss the effect of adding a set
of fields and methods to the core module.

Let X and E, respectively, denote the set of fields and methods added by a
delta. Also, assume that V denotes the variables in the domain of the states in
the core model, and that a method can comprise method calls. The addition of
X and E to the core FSM results in another FSM in which the abstract states
and transitions accommodate X and E. The formal definition of the application
function is given below.

12



Definition 11. Let X and E, respectively, denote the set of fields and methods
added by a delta. Assuming that V denotes the variables in the domain of the
states in the core model, and that a method can comprise method calls (we again
assume that a method can comprise only one method call but the generalization
is straight forward). Assume for a method call added by a delta such as i, that
the inner method call, if any exists, is denoted by ni. Assuming that the core
model is an object FSM M(O) = (S, s0, I, O, µ, λ), and MTD denotes the set
of all methods in the classes included in the core. Then, the addition of these
sets to the classes in the core module, results in another FSM such as M ′(O′) =
(S′, s′0, I

′, O′, µ′, λ′), where:

– S′ = {val ∈ VALV ∪X |val ↓ V ∈ S}.
– s′0 is the initial state such that s′0 ↓ V = s0 ↓ V .

– I ′ = I ∪ Id, where Id =
⋃

m∈E
Idm ×VALUsedVarsm

– O′ ⊆ D′, where D′, denotes the set of possible values of variables in V ∪X.
– µ′ : S′ × I ′ → S′. We divide the definition of the transition function for

two different set of input symbols. First, we define the transition function
considering the input symbols in I.

∀m∈MTD,i∈I,s′1,s′2∈S′ · i = (Idm, val) ⇒ µ′(s′1, i) = s′2 ⇔ ∃s1,s2∈S ·
s1 ↓ UsedVarsm = s′1 ↓ UsedVarsm ∧ s2 ↓ UsedVarsm =
s′2 ↓ UsedVarsm ∧ µ(s1, i) = s2 ∧ @s′3∈S′ · s

′
3 6= s′2 ∧ µ′(s′1, i) = s′3

We define the transition function considering the set of new symbols, included
in Id, as follows.

∀m∈E,n∈MTD,i∈Id,ni∈I,s′1,s′2∈S′ · i = (Idm, val) ∧ ni = (Idn, valn)⇒
µ′(s′1, i) = s′2 ⇔ (a) ∧ (b) where:

(a) : Effectm(s′1 ↓ UsedVarsm × val) ∈ s′2(v)
(b) : Effectni

(s′1 ↓ UsedVarsni
× valn) ∈ s′2(v) ∧ @s′3∈S′ · s

′
3 6= s′2∧

µ′(s′1, i) = s′3

– λ′ : S′ × I ′ → O′, is the output function such that,

∀m∈MTD∪E,s′∈S′,i∈I′,o′∈O′ · λ′(s′, i) = o′ ∧ i = (Idm, val)⇔
RetValm(s′ ↓ UsedVarsm × val) = o′

To keep the resulting test models valid, we define a set of constraints upon a
delta comprising above changes as follows:

– In order to keep the resulting FSM deterministic we require:

@m,m′∈E · Idm = Id ′m ∧ Inprmsm = Inprms ′m,

this way the addition of new set of methods will not lead to adding outgoing
transitions with the same input label from one state.
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– The addition of the new set of fields and methods may result in additional
states. We require that in the additional states, the partitioning of the values
of the core variables should not change:

∀s′∈S′∃s∈S · s ↓ V = s′ ↓ V ∧ ∀s∈S · ∃s′∈S′ · s ↓ V = s′ ↓ V,

Hence, the new set of states may contain two states in which the evaluation
of the variables in V is the same and the difference is in the evaluation of
some of the new added variables.

– Each two states in which evaluation of the core variables is the same should
be distinguished by some transition. This means that either there should be a
new method which has a different effect on the evaluation of the variables in
these two sates or there should be a method which is defined for the evaluation
of variables only in one of the states. This constraint is formalized as follows:

@s′1,s′2∈S′ · s
′
1 ↓ V = s′2 ↓ V ∧ ∀i∈I′ · µ′(s′1, i) = µ′(s′2, i) ∧ λ′(s′1, i) = λ′(s′2, i)

– Based on the definition of µ′, from all the states which have abstract valu-
ations the same as one of the states in the core mode, only one has all the
incoming transitions that the state in the core model has. To make sure that
all other states in this group are reachable, we have:

∀s′1,s′2∈S′ · s
′
1 ↓ V = s′2 ↓ V ⇒ ∃i∈I′\I,s′∈S · µ′(s′1, i) = s′ ∨ µ′(s′2, i) = s′

Theorem 2. Assumptions (1)-(4) of Definition 2 are preserved under the addi-
tion a set of fields and methods to a core FSM model.

Proof. 1. Determinism of the resulting model follows from the determinism of
the core model and the definition of the transition function: considering a
state such as s′, a subset of the outgoing transitions from this state are
the same as the outgoing transitions from an state in the core model which
is obtained by projection of s′ on core variables. Hence, for this subset of
transitions the inputs are distinct. The rest of the transitions are added as a
result of adding new methods and based on the definition of the transition
function, non of these transitions, which are labeled with the new input
symbols in I ′, can have the same inputs.

2. The new model is minimal since, considering two states such as s and s′,
either these two states have different abstract valuations for the core variables
or the added ones. In the first case, by projection of s and s′ on the core
variables we obtain two distinct states in the core model that, followed from
the minimality of the core model, there exists a (or a set of) separating
sequence(s) that can distinguish between these states. Based on the definition
of λ′ and µ′, this sequence can be traversed in the new model and can
distinguish between s and s′. In the second case, these states have different
abstract valuations for the new variables, then they are distinguishable based
on the third constraint defined above.
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3. All the new states in the core model are reachable. Each state such as s′

that has abstract valuations such as s ∈ S, is reachable with a sequence as s
is reachable with (all sequences in the core can also be traversed in the new
FSM), or if it is not reachable with this sequence the last constraint makes
sure that there exists a trace that reaches s′.

4. The reset sequence of the new FSM is the same as the reset sequence of the
core FSM since based on the definition of µ′, this sequence can be traversed,
in the new FSM, ending in s′0.

As an example, Fig.4. (b) demonstrates the FSM resulting from the addition
of the delta DPedLight, to the core model. This delta adds a new field, namely,
Psig , and two methods, namely, SetPsig and ResetPsig , to the class Bridge.

6 Delta-Oriented Testing

In this section, we explain the incremental test-case generation method. In the
remainder of this section, we assume that the core model is an object FSM such
as M(O) = (S, s0, I, O, µ, λ) and the set of all methods of the classes in this core
model are denoted by MTD . The state cover set and the separating family of
sequences computed for M are, respectively, denoted by Q and Z. We assume
that qs ∈ Q denotes a sequence in the state cover set that ends in state s and
zs denotes the set of sequences which separate s from other states. For example,
the state cover set and the separating family of sequences for the core model
represented in Fig. 3 are, respectively, Q = {ε, ResetAvl()} and Z = {zs0 , zs1}
= {{CheckAvl()}, {CheckAvl()}}.

6.1 Test-Case Generation for Class Addition

Let Md(Od) = (Sd, s
d
0, Id, Od, µd, λd), be the FSM that is composed with core

model, with regards to the composition function γ, as a result of adding the new
class to the core module. We assume that the state cover set and the family of
separating sequences for this FSM are, respectively, denoted by Qd and Zd. The
resulting object FSM is M ′(O′) = (S′, s′0, I

′, O′, µ′, λ′), as defined in Sect. 5.2,
and the set of test cases for this FSM are computed as follows.

In order to compute the new state cover set, denoted by Q′, we need to build
the spanning tree of M ′. Assuming that Pd(Sd, Ed) is the spanning tree built
for Md, where Sd denotes the set of vertices and Ed ⊆ Sd× Id×Sd, denotes the
set of edges in this tree, and P (S,E) is the spanning tree built for M , where S
and E ⊆ S × I × S, are, respectively, the set of vertices and edges in this tree.
Moreover, we assume that V and Vd, respectively, denote the set of variables
included in S and Sd. The spanning tree for M ′, denoted by P ′(S′, E′), where
E′ ⊆ S′×I ′×S′, is built using P and Pd as follows. Note that each state s′ ∈ S′
can be represented by (s, sd), where s ∈ S and sd ∈ Sd, that is s′ ↓ V = s ↓ V
and s′ ↓ Vd = sd ↓ Vd.

Starting from the root of the tree, that is (s0, s
d
0), for each state such as

(s, sd), we add the following child nodes:
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1. (s′, sd), where for some i ∈ I, we have (s, i, s′) ∈ E
2. (s, s′d), where for some i ∈ I ′ which is corresponding to a method call that

does not contain any bested method calls, we have (sd, i, s
′
d) ∈ Ed

3. (s′, s′d), where for some i ∈ I ′ that contains a method call denoted by j ∈ I,
we have (sd, i, s

′
d) ∈ E and µ(s, j) = s′.

Assuming that |S| = n, |Sd| = m and |S′| = n′, then the worst-case com-
plexity of computing the spanning tree is O(n ′(m + n)). The state cover set is
computed by traversing the resulting spanning tree.

The family of separating sequences Z ′ is defined as
⋃

s′∈S{z′s′}, where for
each state s′ = (s, sd) ∈ S′, we have that z′s′ = zs ∪ zsd .

For example, the state cover set and the family of separating sequences for
the FSM corresponding to the controller class in Fig.4. (b) are as follows: Qd =

{ε,GetReq(0 ),GetReq(1 )}, Zd =
⋃2

i=0

(
zsi = {CheckLsig(),CheckRsig()}

)
.

Hence, the state cover set and the family of separating sequences for the
FSM resulted adding the class are: Q′ = Q = {ε,ResetAvl()}, Z ′ =

⋃2
i=0

(
zsi =

{CheckAvl(),CheckLsig(),CheckRsig()}
)
, respectively.

A special case of adding a class is when there are no nested method calls. In
such a case the state cover set is equal to the state cover set of the core model
that is Q = Q′. The computation of separating sequences remains intact with
respect to the general case.

Complexity Analysis The difference of complexity of the delta-oriented testing
approach compared to the HSI method, in this case, is in the computation of the
family of separating sequences. As explained above, in this case the delta-oriented
approach obtains the family of the separating sequences for the new FSM, just
using Zd and Z. Hence, defining m = |Sd|, and q = |Id|, the complexity of
computing Z ′, using the delta-oriented approach, is O(qm2) + fu. Assuming
that the delta has n′ states where n′ ≤ m · n, and p = |I ′|, the complexity of
computing the family of separating sequences, using the HSI method, for this
FSM is O(pn′2). It should be noticed that this computation is done for each
product in a product line separately, where the number of the products can
increase exponentially in terms of the features. Practically, in a product line we
have m � n, hence O(qm2) + fu � O(pn′2). In other word, there can be a
substantial gain in calculating the separating sequences using the delta-oriented
approach. 1

7 Empirical Results

In order to check the efficiency of the proposed algorithm, we applied our method
to a software system from the health-care domain. In order not to reveal the
structure of the commercial system, we dispense with the details that are not

1 Due to space limitation we included the complexity analysis for adding fields and
methods in an online version which is available via http://ceres.hh.se/.
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necessary for understanding the experimental results. The core logic of this sys-
tem includes six classes and its main functionality is to detect devices in the
surroundings and control users’ access to them . Each user can create and com-
plete a set of tasks after accessing a device. We considered the proportion of
time required to generate test cases for 4 different models in two cases: using the
delta-oriented approach, and using the plain monolithic HSI method.

In order to compute the test-case generation time, we performed the algo-
rithms in both methods in a step by step manner and manually while counting
the basic computation steps in these algorithms. Because these basic steps are
common to both methods and consume a constant amount of time, we could
hence come up with a precise comparison of the time required for test-case gen-
eration.

First, we considered a core FSM with 11 abstract states and 74 transitions.
This core model included a set of objects, which model a group of users, devices
and tasks created by users. Then, we applied a delta which comprised the addi-
tion of a method to a class in order to enable modification of a field in the core
model. The result of applying this delta is another FSM with the same number
of states and 85 transitions. Using the delta-oriented approach for generating
test cases resulted in a 50-percent reduction in test-case generation time. This
difference is due to that the spanning tree and the family of separating sequences
are computed anew in the HSI method, while the delta oriented approach reuses
the sequences computed for the core model.

We also applied a delta concerning the addition of an object of a task to the
core model which resulted in another FSM with 16 states and 89 transitions. In
this case, applying the delta-oriented approach resulted in a 40-percent reduction
in test-case generation time. (For more detailed data, we refer to Fig. 5.)

Subsequently, we considered another core model including 21 abstract states
and 167 transitions. We applied a delta comprising the addition of the same
method as above to the core model, which resulted in the same number of states
and 188 transitions. Applying the delta-oriented approach results in a 50-percent
reduction in the test-case generation time.

The last delta in this software product line comprised the addition of an
object of a device to the last core model, with 37 states and 215 transitions. The
reduction in the test-case generation time in this latter case is 30 percent.

The results show that in cases that we can reuse the separating sequences and
the state cover set of the core model, such as the addition of a set of methods
that do not change the number of states, the delta-oriented approach can be
very efficient. The above-mentioned results are summarized in Fig. 5.

8 Conclusions and Future Work

In this paper, we introduced test models and test-case generation methods for
delta-oriented FSM-based testing, based on the DeltaJava syntax. Our test-case
generation method is a lifting of the incremental test-case generation for the
HSI method, using a higher level of abstraction suitable for our DeltaJava-based
models. We showed, both using complexity analysis and by application to a case
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50 388 194 85 11 74 11 

40 421 253 89 16 74 11 

50 824 419 188  21 167 21 

30 1043 731 215 37 167 21 

 

Fig. 5. Results obtained from test-case generation for the case study

study, that the delta-oriented approach can increase the efficiency of test-case
generation.

We are studying realistic, yet more relaxed fault models (than those underly-
ing the HSI method). Such a fault model can capture the possible mutual effects
of different behavior in deltas and core. Then, we will identify parts of test cases
that need not be re-executed and also independent pieces of behavior that can
be reduced, e.g., using partial-order reduction [16]. Moreover, we intend to ex-
tend our approach to the full syntax of DeltaJava and in particular, consider
modifying and removing methods, building upon the results of [9, 11]. Finally,
we plan to implement our approach in a programming environment and organize
more extensive experiments with our industrial partner.

References

1. R. Binder. Testing object-oriented systems: models, patterns, and tools. Addison-
Wesley, 2000.

2. M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner. Model-Based
Testing of Reactive Systems: Advanced Lectures, vol. 3472 of LNCS. Springer, 2005.

3. K. El-Fakih, N. Yevtushenko, and G. von Bochmann. FSM-based incremental
conformance testing methods. IEEE TSE, 30(7):425–436, 2004.

4. E. Engström and P. Runeson. Software product line testing - a systematic mapping
study. Inf. Softw. Technol., 53(1):2–13, 2011.

5. H. S. Hong, Y. R. Kwon, and S. D. Cha. Testing of object-oriented programs based
on finite state machines. In Proc. of APSEC 1995, pp. 234–241. IEEE CS, 1995.
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