
1

Model-Based Testing

Jan Tretmans

TNO – ESI, Eindhoven, NL
and Radboud University, Nijmegen, NL

There is Nothing More Practical
than a Good Theory

Jan Tretmans

TNO
Embedded Systems Innovation

Eindhoven
The Netherlands

Radboud University
Nijmegen

The NetherlandsESI

RU

Consumer Electronics
Medical Systems
Research
Applied Technologies

Research cooperation with leading Dutch
high-tech multinational industries & SME’s

Research cooperation with all Dutch
universities with embedded systems research

Industrial
Network

Academic
Network

Research cooperation in EU projects

ESI

Overview

Model-Based Testing
Theory

Jan Tretmans

• MBT: What and Why

• MBT: A theory with labelled
transition systems and ioco

• Variations:
– Test selection
– Test-based modelling

4

Model-Based Testing
Practice

Machiel van der Bijl

• MBT: Practical exercises
with Axini Test Manager

• MBT: The difference between
theory and practice

5

Model-Based Testing

6

checking or measuring

some quality characteristics

of an executing object

by performing experiments

in a controlled way

w.r.t. a specification
tester

specification
SUT

System Under Test

(Software) Testing

7

Testing Complexity
testing effort grows exponentially with system size
testing cannot keep pace with development

x : [0..9]

y : [0..9]

x : [0..9]

x : [0..9]

y : [0..9]

z : [0..9]

10 ways that it can go wrong

10 combinations of inputs to check

100 ways that it can go wrong

1000 ways that it can go wrong

100 combinations of inputs to check

1000 combinations of inputs to check

Automation of testing is necessary

8

Trends in Software Development
• Increasing complexity

• more functions, more interactions, more options and parameters

• Increasing size
• building new systems from scratch is not possible anymore
• integration of legacy-, outsourced-, off-the shelf components
• abstract from details: models

• Blurring boundaries between systems
• more, and more complex interactions between systems
• systems dynamically depend on other systems, systems of systems

• Blurring boundaries in time
• requirements analysis, specification, implementation, testing,

installation, maintenance overlap
• more different versions and configurations

Testing Challenges

9

Model-Based Testing: Why

• Mastering increase in complexity, and quest for higher quality

– testing cannot keep pace with development

• Dealing with models and abstraction

– model-based development: UML, MDA, Simulink/Matlab

• Promises better, faster, cheaper testing

– algorithmic generation of tests and test oracles: tools

– maintenance of tests through model modification

Software bugs / errors cost US economy yearly:
$ 59.500.000.000 (www.nist.gov)
$ 22 billion could be eliminated…

10

system
model

SUT

TTCNTTCNTest
cases

pass fail

model-based
test

generation

test
execution

Model-Based Testing (MBT)

11

MBT : Black-Box Testing of Functionality

unit

integration

system

efficiency

maintainability

functionality

white box black box

phases

accessibility

aspects

usability

reliability

module

portability

Evolution of Testing

Manual Testing

Record & Playback

Scripted

Keyword-Driven

Model-Based Testing

13

SUT

System Under Test
pass fail

1. Manual testing

Testing 1 : Manual Testing

14

SUT

pass fail

test
execution

TTCNTTCNtest
cases

1. Manual testing

2. Scripted testing

Testing 2 : Scripted Testing

15

SUT

pass fail

test
execution

1. Manual testing

2. Scripted testing

3. Keyword testing

Testing 3 : Keyword-Driven Testing

high-level

test notation

16

system
model

SUT

TTCNTTCNTest
cases

pass fail

model-based
test

generation

test
execution

1. Manual testing

2. Scripted testing

3. Programmed
testing

4. Model-based
testing

Testing 4 : Model-Based Testing

17

Model-Based

Verification, Validation, Testing,

18

Validation, Verification, and Testing

SUT

model

informal world

real world

validation

(model-based) testing

verification

informal
requirements

19

formal
world

concrete
world

Verification is only as good as
the validity of the model on

which it is based

Verification is only as good as
the validity of the model on

which it is based

Verification and Testing

Model-based verification :
• formal manipulation
• prove properties
• performed on model

Model-based testing :
• experimentation
• show error
• concrete system

Testing can only show the
presence of errors, not their

absence

Testing can only show the
presence of errors, not their

absence

20

Models

21

Models
?coin

?button

!alarm ?button

!coffee

22

Models: Labelled Transition Systems

states

output actions

transitions

initial state

? = input
! = output

?coin

?button

!alarm ?button

!coffee

Labelled Transition System: 〈〈〈〈 S, LI, LU, T, s0 〉〉〉〉

input actions

23

A Theory of Model-Based Testing

with Labelled Transition Systems

24

system
model

SUT

TTCNTTCNTest
cases

pass fail

model-based
test

generation

test
execution

Model-Based Testing

25

SUT passes tests

SUT
conforms to

model

⇔⇔ ⇔⇔
system
model

SUT

TTCNTTCN
Test

cases

pass fail

test
execution

model-based
test

generation

MBT : Validity

SUT
conforms to

model

26

test
case

model
! coin

! button

?alarm

?coffee ---

pass

specification
model

Models: Generation of Test Cases

?coin

?button

!alarm ?button

!coffee

fail fail

27

specification
model

Models: Generation of Test Cases

?coin

?button

!alarm ?button

!coffee

test
case

model
! coin

! coin

? alarm

? coffee ---

fail pass fail

MBT : Abstract from Scheduling Details

• Four components in parallel, in any order

28

start?

ready!

task(start?, ready!) taskA := task (startA?, readyA!)

taskB := task (startB?, readyB!)

taskC := task (startC?, readyC!)

taskD := task (startD?, readyD!)

model := taskA ||| taskB ||| taskC ||| taskD

29

MBT : Abstract from Scheduling Details

30

MBT : Abstract from Scheduling Details

31

? x (x >= 0)

! y

(| y x y – x| < ε)

specification
model

! √√√√x

? x (x < 0)

? x (x >= 0)

SUT models

? x

• non-determinism

• under-specification

• specification of properties

rather than construction

MBT : Nondeterminism, Underspecification

! -√√√√x

? x (x < 0)

? x (x >= 0)
? x

!error

32

LTS
model

SUT
behaving as

input-enabled LTS

TTCNTTCN
Test

cases

pass fail

LTS
test

execution

ioco
test

generation

input/output
conformance

ioco

set of
LTS tests

SUT passes tests

SUT ioco model

⇔⇔ ⇔⇔sound ⇓⇓⇓⇓ ⇑⇑⇑⇑ exhaustive

MBT with LTS and ioco

33

MBT : Argue about Validity of Tests

i ioco s

i fails t

!coffee

?dime

!tea

specification
model

s

?coffee

!dime

?tea ?choc
-

pass failpass fail

generated
test case

t

!choc

?dime

!tea

implementationi

There is Nothing More Practical

than a Good Theory

34

Model-Based Testing

with Labelled Transition Systems

Overview

• MBT: Tools

• MBT: Under-specification

• MBT: Test selection

• MBT: Towards test selection for ioco

• Refinement for ioco

• Test-based modelling = Automata learning

35

36

Model-Based Testing

Tools

37

system
model

SUT

pass fail

model-based
test

generation

test
execution

MBT : Off-Line - On-Line

38

system
model

SUT

pass fail

model-based
test

generation

test
execution

MBT : Off-Line = Batch

TTCNTTCNtest
cases

TTCNTTCNtest
cases

39

system
model

SUT

pass fail

model-based
test

generation

test
execution

MBT : On-Line = On-the-Fly

40

Model-Based Testing :

Variations for Underspecification

41

Variations on a Theme
• i ioco s ⇔ ∀σ ∈ Straces(s) : out (i after σ) ⊆ out (s after σ)

• i ≤ior s ⇔ ∀σ ∈ (L ∪ {δ})* : out (i after σ) ⊆ out (s after σ)

• i ioconf s ⇔ ∀σ ∈ traces(s) : out (i after σ) ⊆ out (s after σ)

• i iocoF s ⇔ ∀σ ∈ F : out (i after σ) ⊆ out (s after σ)

• i uioco s ⇔ ∀σ ∈ Utraces(s) : out (i after σ) ⊆ out (s after σ)

• i mioco s multi-channel ioco

• i wioco s non-input-enabled ioco

• i eco e environmental conformance

• i sioco s symbolic ioco

• i (r)tioco s (real) timed tioco (Aalborg, Twente, Grenoble, Bordeaux,.....)

• i rioco s refinement ioco

• i hioco s hybrid ioco

• i qioco s quantified ioco

• i poco s partially observable game ioco
• i stiocoD s real time and symbolic data
•

?a
?b

?b ?a

!y!z

Underspecification: ioco and uioco

i ioco s =def ∀∀∀∀ σσσσ ∈∈∈∈ Straces (s) : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σσσσ)

?a
?a

?b

!z

?b?a

!y!x

Implementation i Specification s

42

i uioco s

i ioco s

?a
?a

?b

!z

?b?a

!y!x

Utraces (s) =

{ σσσσ ∈∈∈∈ Straces (s) |

∀∀∀∀ σσσσ1 ?b σσσσ2 = σσσσ :

s after σσσσ
1111

must must must must ?b?b?b?b }

ioco ⊂⊂⊂⊂ uioco

Underspecification: uioco

i ioco s =def ∀∀∀∀ σσσσ ∈∈∈∈ Straces (s) : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σσσσ)

i uioco s =def ∀∀∀∀ σσσσ ∈∈∈∈ Utraces (s) : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σσσσ)

?a ?a ∈∈∈∈ Straces (s)

?a ?a ∉∉∉∉ Utraces (s)

43

44

Test Selection

in Model-Based Testing

Test Selection

• Exhaustiveness never achieved in practice

• Test selection = select subset of exhaustive test suite,

to achieve confidence in quality of tested product

– select best test cases capable of detecting failures

– measure to what extent testing was exhaustive : coverage

• Optimization problem

best possible testing ↔↔↔↔ within cost/time constraints

45

Test Selection: Approaches

1. random

2. domain / application specific: test purposes, test goals, …

3. model / code based: coverage

– usually structure based

46

test: a! x?

a?
x!

a?
x!

a?
x!

100% 50%
transition coverage

Towards Test Selection

in the ioco Framework

47

Test Selection for uioco

48

i uioco s =def ∀∀∀∀ σσσσ ∈∈∈∈ Utraces (s) : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σσσσ)

Selection of Sub-Set of UTraces

• Select: M ⊂⊂⊂⊂ Utraces (s)

• Test for: i uioco M s

⇔⇔⇔⇔ ∀∀∀∀ σσσσ ∈∈∈∈ M : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σσσσ)

• Coverage: # M
Utraces (s)

49

s

!cof

?but

!tea

δ δ

?but

?but

?but
!tea

?but

out (s after ?but) = { !cof, !tea, δ }

i.e. everything is allowed -
what shall be tested then ?

out (s after ?but δ δ ?but) = out (s after ?but δ ?but)

i.e. if already tested for ?but δδδδ ?but
what does testing for ?but δδδδ δδδδ ?but add ?

The set Utraces is not minimal,
i.e., elements are dependent

Test Selection for uioco

Test Selection for uioco

50

i uioco s =def ∀∀∀∀ σσσσ ∈∈∈∈ Utraces (s) : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σσσσ)

Take weaker specification s’
= inverse of refinement

SUTs

SUT(s)SUT(s)

SUT(s)

s

s’

s s s s ≤≤≤≤ s’s’s’s’

⇔⇔⇔⇔ SUT (s) ⊆⊆⊆⊆ SUT (s’)

⇔⇔⇔⇔ { i | i uioco s } ⊆⊆⊆⊆ { i | i uioco s’ }

≤≤≤≤

Test Selection for uioco

51

i uioco s =def ∀∀∀∀ σσσσ ∈∈∈∈ Utraces (s) : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σσσσ)

SUTs

SUT(s’)SUT(s’)

SUT(s)

s

s’s s s s ≤≤≤≤ s’ s’ s’ s’ ⇔⇔⇔⇔ SUT (s) ⊆⊆⊆⊆ SUT (s’)

⇔⇔⇔⇔ { i | i uioco s } ⊆⊆⊆⊆ { i | i uioco s’ }

Coverage: # SUT (s)
SUT (s’)

≤≤≤≤

SUTs

Test Selection: Lattice of Specifications

52

s1 is stronger than s2 ⇔⇔⇔⇔
s1 ≤≤≤≤ s2 ⇔⇔⇔⇔
{ i | i uioco s1 } ⊆⊆⊆⊆ { i | i uioco s2 }

CS
1

CS
1

S1

S2

if specs are input-enabled
then ioco is preorder
then ≤≤≤≤ ≡≡≡≡ uioco`

S3

ST ST

≡ top element
≡ allows any impl.
≡≡≡≡ chaos χ

LI ?

Lu !

ττττ

Test Selection for uioco

53

i uioco s =def ∀∀∀∀ σσσσ ∈∈∈∈ Utraces (s) : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σσσσ)

SUTs

SUT(s’)SUT(s’)

SUT(s)

s

s’s s s s ≤≤≤≤ s’ s’ s’ s’ ⇔⇔⇔⇔ SUT (s) ⊆⊆⊆⊆ SUT (s’)

⇔⇔⇔⇔ { i | i uioco s } ⊆⊆⊆⊆ { i | i uioco s’ }

Coverage: # SUT (s)
SUT (s’)

≤≤≤≤

Requires refinement preorder
≤≤≤≤ on specifications.

ioco / uioco are not refinement
preorders and are only defined for
input-enabled implementations

54

Set of Required Traces

Rtraces (s) =def { σσσσ ∈∈∈∈ Utraces (s) |

δ is not a substring of σσσσ,

σσσσ does not end with δ,,,,

out (s after σσσσ) ≠ LU ∪∪∪∪ { δ } }

s

!cof

?but

!tea

δ δ

?but

?but

?but
!tea

?but

?but δ δ ?but

?but

δδδδ

∉∉∉∉ Rtraces (s)

∈∈∈∈ Utraces (s)

Set of Required Traces

Rtraces throw away superfluous traces, and only those

i uioco s =def ∀∀∀∀ σσσσ ∈∈∈∈ Utraces (s) : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σσσσ)

⇔⇔⇔⇔ ∀∀∀∀ σσσσ ∈∈∈∈ Rtraces (s) : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σσσσ)

1. For input enabled implementations:

2. Rtraces is “minimal” : For A ⊂⊂⊂⊂ Rtraces (s) and A ≠ Rtraces (s) ,

there exists an input-enabled i such that

∀∀∀∀ σσσσ ∈∈∈∈ A : out (i after σσσσ) ⊆⊆⊆⊆ out (s after σσσσ)

and i uioco s

55

From Required Traces to wioco

s wioco s’ =def ∀∀∀∀ σσσσ ∈∈∈∈ Rtraces (s’) :

1. out (s after σσσσ) ⊆⊆⊆⊆ out (s’ after σσσσ)

2. ∀∀∀∀ σσσσ1 ≤≤≤≤ σσσσ : in (s after σσσσ1) ⊇⊇⊇⊇ Rin (s’ after σσσσ1)

Refinement preorder ≤≤≤≤ is given by wioco ,
considering superfluous traces and non-input enabledness

in (s after σσσσ1) =def { a? ∈∈∈∈ LI | s after σσσσ1 must a? }

Rin (s’ after σσσσ1) =def

{ a? ∈∈∈∈ in (s after σσσσ1) | ∃∃∃∃ σσσσ2 ∈∈∈∈ Rtraces (s’) : σσσσ1 a? ≤≤≤≤ σσσσ2 }

56

57

s

!cof

?but

!tea

δ δ

?but

?but

?but
!tea

?but

!cof

?but

!tea

δ δ

?but
?but !tea

!cof

A Weaker Specification through wioco

s’

s’ is a weaker than s:
- remove inputs
- add outputss wioco s’ ⇔⇔⇔⇔ SUT SUT SUT SUT ((((s)))) ⊆⊆⊆⊆ SUT (s’)

58

Required Traces Automaton

!cof
?but

!tea

δ

δ

?but

?but

!cof !teaRTA(s’)σσσσ ∈∈∈∈ Rtraces (s)

⇔⇔⇔⇔ σσσσ accepted by RTA(s)

59

• AETG

• Agatha

• Agedis

• All4Tec MaTeLo

• Autolink

• Axini Test Manager

• Conformiq Qtronic

• Cooper

• G∀st

• Gotcha

• JTorX

• NModel

• ParTeG

• Phact/The Kit

• QuickCheck

• Reactis

• RT-Tester

• SaMsTaG

• SeppMed MBTsuite

• Smartesting CertifyIt

• Spec Explorer

• Statemate

MBT : Some Tools

• STG

• TestGen (Stirling)

• TestGen (INT)

• TestComposer

• TGV

• TorX

• TorXakis

• T-Vec

• Uppaal-Cover

• Uppaal-Tron

• Tveda

•

- ioco

60

• AETG

• Agatha

• Agedis

• All4Tec MaTeLo

• Autolink

• Axini Test Manager

• Conformiq Qtronic

• Cooper

• G∀st

• Gotcha

• JTorX

• NModel

• ParTeG

• Phact/The Kit

• QuickCheck

• Reactis

• RT-Tester

• SaMsTaG

• SeppMed MBTsuite

• Smartesting CertifyIt

• Spec Explorer

• Statemate

MBT : Some Tools - commercial

• STG

• TestGen (Stirling)

• TestGen (INT)

• TestComposer

• TGV

• TorX

• TorXakis

• T-Vec

• Uppaal-Cover

• Uppaal-Tron

• Tveda

•

61

Learning

Test-Based Modelling

Models
?coin

?button

!alarm ?button

!coffee

(Klaas Smit)

• Everybody wants models

• Doing nice things with models
– model checking,

simulation,

• How to get these models?
– in particular for:

legacy, third-party, out-sourced,
off-the-shelf, components

• Does the model correspond with
the real system?

?button

!coffee

?button?coin !alarm

Models

system

pass fail

model-based
test

generation

test
execution

Testing : Model-Based Testing

model

system

pass fail

model-based
test

generation

test
execution

model
Model

Learner

Test-Based Modeling

Test-Based Modeling

systemtest
execution

model
Model

Learner

Automatically learning a model of the behavior
of a system from observations made with testing

• test-based modeling

• automata learning

• black-box
reverse engineering

• observation-based
modeling

• behavior capture
and test

• grammatical inference

Teacher Learner
Equivalence Queries

Membership Queries

Yes / No

Yes / No + Counterexample

� Active learning is an active research area:
� D. Angluin (1987) : L*-algorithm
� LearnLib : Tool for FSM learning
�

Learning Finite Automata with L* :

Learning Models of Automata

• Tool for active learning of Finite State Machines : LearnLib
• Developed by group B. Steffen (U. Dortmund)
• Able to learn models with up to 10.000 states

• Learner:
formulate
a hypothesis FSM

• Equivalence query
replaced by
model-based testing
of hypothesized model

Learning Models of Reactive Systems

• EMV =
Europay, Mastercard and Visa

• Models from black-box implementations

• Learn behaviour blindly

• Security: absence of unwanted functionality

• Correctness/conformance:
presence of required functionality

Application: Banking Cards:
Learning the EMV protocol
Fides Aarts, Erik Poll, and Joeri de Ruiter

Model of Maestro app on Dutch banking card

• Dutch vs. German banking card:
different handling of errors

Model of Maestro app on German banking card

Learned Model of OCE Printer Module

repair
system

systemmodel

MBT

conformingconforming

yes

no

learn
model

no

satisfiedsatisfied

more
tests

yes

no

refine
model

no

model world physical world

Model-Based Testing & Test-Based Modeling

χχχχ

LI ?

Lu !

ττττ

chaos χχχχ

74

S : precise, expensive

χχχχ : not precise, cheap

SUTs

A
BB

S’’

S’

S

SUT

Test Coverage = Learning Precision

75

Model-Based Testing

There is Nothing More Practical

than a Good Theory

