Institute of Software Technology " Grazm

Model-based Mutation Testing
The Science of Killing Bugs in a Black Box

Bernhard K. Aichernig

Institute of Software Technology
Graz University of Technology
Austria

8th Halmstad Summer School on Testing, HSST 2018,
Halmstad University, 11 June 2018

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

1/80

Institute of Software Technology

Ty

Research Areas

Specification
& Design

Formal Methods

Verification

» Precise abstraction
> Refinement

» Compositionality

Falsification

» Model-based testing
» Model learning

» Proof-based development
> Statistical model checking

Critical systems: automotive, railways, loT

' B.K. Aichernig

HSST 2018 Model-based Mutation Testing

2 /80

Institute of Software Technology " Grazm

FM Group Characteristics

Size: key researcher + 3 research assistants (PhDs)
EU projects: 4 in last 10 years

LEAD project: Dependable Things

Funding: EUR 192K per year (3 years avg.)
Expertise: falsification + verification + languages

vV v v v v Yy

Domains: automotive, railways, Internet of Things

o)

DEPENDABLE

OFHINES TruCoff

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

3/80

Institute of Software Technology " Grazm

Agenda

Mutation Testing
Model-based Testing
Model-based Mutation Testing

Transformational Systems
» Semantics
» Test Case Generation
» Reactive Systems

» Semantics
» Test Case Generation

vV v v.yY

» Model- and Test-Driven Development
» MoMuT Tools

» Tool Demo and Examples

' B.K. Aichernig HSST 2018 Model-based Mutation Testing
4 /80

Ty

Institute of Software Technology
Bugs?

9 o2 = ¢ 4 Gt 7 X
o6 Ondkom shadtol 0l S 2.
S B A
4 13’:‘}34 ne f‘: e o ﬂ/ry;;zijy(.g'j’
03y ‘an 3 2. 3oya6yis
S e =N
Part of engineering jargon for many ’ffq.i,é: e
gt T,"A(sm cheet)
DA . npg iy

1100 | Start:

decades:
» Moth trapped in relay of Mark |
(Hopper 1946)

Relan*70 B F

N
(GRS

Fr u“ = am\m case oo lm! L(...] {W.J

e

Relay #70 Panel F
(moth) in relay.
First actual case of bug being found.

HSST 2018 Model-based Mutation Testing
5/80

' B.K. Aichernig

Ty

Institute of Software Technology

Bugs?

Ya BEEEEE CFrTE

500 | Onckank LALUEH L e
By e 1 e
“ lz’v":‘}id He nd:“ LS e 91 Vv;y;izijs(.g'j’
03y ‘an 3 2. 3oya6yis
) - RNVAA :
Part of engineering jargon for many ’m;é: o ekl o b 1
decades: RRC i
Sl R, e
» Moth trapped in relay of Mark Il 155 B‘T\\ *w\ R
s
(Hopper 1946) L
) o) ,gu. = am\m case o-[1,..1 by Loand,
> Little faults and difficulties “*W if

(Edison 1878):

Relay #70 Panel F
(moth) in relay.

First actual case of bug being found.

Model-based Mutation Testing

' B.K. Aichernig HSST 2018
5/80

Institute of Software Technology " -IG-rla!-

Bugs?

A software bug is the common term

Part of engineering jargon for many used to describe an

decades:

» Moth trapped in relay of Mark Il
(Hopper 1946)

> Little faults and difficulties
(Edison 1878):

» Software bugs

> error, flaw, mistake, failure, or
fault in a computer program or
system

» that produces an incorrect or
unexpected result,

> or causes it to behave in
unintended ways.
(Wikipedia 2012)

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

5/ 80

Institute of Software Technology " Grazm

Some Bugs Become Famous!

> Ariane 5 test flight (1996)
» out of control due to
software failure
» controlled destruction!
» Loss of

» money and time
> satellites
» research (TU Graz)

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

0

Institute of Software Technology " Grazm

Some Bugs Become Famous!

> Ariane 5 test flight (1996)
» out of control due to
software failure
» controlled destruction!
» Loss of
» money and time
» satellites
» research (TU Graz)
» Dijkstra (EWD 1036):

» call it error, not bug
> a programmer created it

' B.K. Aichernig HSST 2018 Model-based Mutation Testing
6 / 80

Institute of Software Technology " Grazm

Some Bugs Hide for a Long Time!

Binary search bug in Java -

1 | public static

» JDK 1.5 library (2006) 2 | int binarySearch(int[] a,int key)
3 |41

» out of boundary access of 4 int low = 0;

|arge arrays g int high = a.length - 1;
> due to integer overflow 7 while (low <= high) {
9 8 int mid = (low + high) / 2; e

> 9 years undetected 9 int midVal = a[mid];
10
11 if (midVal < key)
12 low = mid + 1;
13 else if (midVal > key)
14 high = mid - 1;
15 else
16 return mid;
17 }
18 return -(low + 1);
19 |}

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

7 /80

Institute of Software Technology " Grazm

Some Bugs Hide for a Long Time!

Binary search bug in Java -
1 | public static
» JDK 1.5 library (2006) 2 | int binarySearch(int[] a,int key)
3 |1
» out of boundary access of 4 int low = 0;
5 int high = a.length - 1;
large arrays o
> due to integer overflow 7 while (low <= high) {
9 8 int mid = (low + high) / 2;«
> 9 years undetected 9 int midVal = a[mid];
10
11 if (midVal < key)
. 12 low = mid + 1;
Algorithm was proven correct! 13 else if (midVal > key)
. 1 high = mid - 1;
» Programming Pearls 15 else
[Bentley86, Bentley00] 16 return mid;
17 }
> assuming infinite integers 18 return -(low + 1);
(19 |}

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

7 /80

Institute of Software Technology

Ty

Some Bugs Hide for a Long Time!

Binary search bug in Java

1 | public static
» JDK 1.5 library (2006) 2 | int binarySearch(int[] a,int key)
3 |1
» out of boundary access of 4 int low = 0;
5 int high = a.length - 1;
large arrays o
> due to integer overflow 7 while (low <= high) {
9 8 int mid = (low + high) / 2; e
> 9 years undetected 9 int midVal = a[mid];
10
11 if (midVal < key)
. 12 low = mid + 1;
Algorithm was proven correct! 13 else if (midVal > key)
. 14 high = mid - 1;
» Programming Pearls 15 else
[Bentley86, Bentley00] 16 return mid;
17 }
> assuming infinite integers 18 return -(low + 1);
(19 |}
“Beware of bugs in the above code;
| have only proved it correct, not tried it.”
[Knuth77]
-t
' B.K. Aichernig HSST 2018

Model-based Mutation Testing

80

Institute of Software Technology

Ty

Some Bugs Hide for a Long Time!

Binary search bug in Java

1 | public static
» JDK 1.5 library (2006) 2 | int binarySearch(int[] a,int key)
3 |1
» out of boundary access of 4 int low = 0;
5 int high = a.length - 1;
large arrays o
> due to integer overflow 7 while (low <= high) {
9 8 int mid = (low + high) >>> 1; <ffemmm
> 9 years undetected 9 int midVal = a[mid];
10
11 if (midVal < key)
. 12 low = mid + 1;
Algorithm was proven correct! 13 else if (midVal > key)
. 14 high = mid - 1;
» Programming Pearls 15 else
[Bentley86, Bentley00] 16 return mid;
17 }
> assuming infinite integers 18 return -(low + 1);
:(19 |}
“Beware of bugs in the above code;
| have only proved it correct, not tried it.”
[Knuth77]
.
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

Institute of Software Technology " Grazm

Observations

» Verification failed (wrong assumption)
» Established testing strategies failed:

» statement coverage

» branch coverage fails

» multiple condition coverage

» MC/DC: standard in avionics [DO-178B/ED109]

» Long array needed: int[] a = new int[Integer.MAX_VALUE/2+2]

' B.K. Aichernig HSST 2018 Model-based Mutation Testing
8/ 80

Institute of Software Technology " -IG-rla!-

Observations

v

Verification failed (wrong assumption)
Established testing strategies failed:

» statement coverage

branch coverage fails

multiple condition coverage

MC/DC: standard in avionics [DO-178B/ED109]

Long array needed: int[] a = new int[Integer.MAX_VALUE/2+2]

v
vvyy

v

v

Concentrate on possible faults, not on structure.

v

Generate test cases covering these faults
Mutation Testing [Lipton71, Hamlet77, DeMillo et al.78]

v

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

8/ 80

Institute of Software Technology " Grazm

What |s Mutation Testing?

Originally: Technique to verify the quality of test cases

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

9 /80

Institute of Software Technology " Grazm

What |s Mutation Testing?

Originally: Technique to verify the quality of test cases

“There is a pressing need to address
the, currently unresolved, problem of
test case generation.” [Jia&Harman11]

Y Jia, M Harman: An analysis and survey of the development of mutation testing. |EEE
transactions on software engineering 37 (5), 2011. J

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

9 /80

Institute of Software Technology " Grazm

How Does It Work?

Step 1: Create mutants

)| \|utation Process

S

Source Code Mutant

Mutation Operator

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

10 / 80

Institute of Software Technology

Ty

Example: Transformational System

» Kind of triangles: 1 |object triangle {
2
> eqwlateralA 3 def tritype(a Int, b Int, c: Int) =
> isosceles AN\ ol (BoloE) naten o .
5 case _ if (a <= c-b) => "no triangle"
> scalene A 6 case _ if (a <= b-c¢) => "no triangle"
7 case _ if (b <= a-c) => "no triangle"
8 case _ if (a == b & b == c) =>
9 "equilateral"
10 case _ if (a == b) => "isosceles"
11 case _ if (b == c) => "isosceles"
12 case _ if (a == c) => "isosceles"
13 case _ => "scalene"
14 }
15 |}
Source code in Scala
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

11/80

Institute of Software Technology

Ty

Example: Transformational System

> Kind of triangles:

object triangle {

1
) 2
> eqwlateralA 3 def tritype(a Int, b Int, c: Int) =
> isosceles AN\ 4 (2, bl,1c)l match .
5 case _ if (a <= c-b) => "no triangle"
> scalene A 6 case _ if (a <= b-c¢) => "no triangle"
7 case _ if (b <= a-c) => "no triangle"
> Create mutants 8 case _ if (a >= b && b == c) =>
; 9 "equilateral"
>
mutation operator 10 — b) = g
= = >= \iﬂl_ == ¢c) => "isosceles"
» creates 5 mutants == ¢) => ‘"isosceles"
13 "scalene"
14
15
Mutant
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

11/ 80

Institute of Software Technology

Ty

Example: Reactive System

» Car Alarm System

» event-based
» controllable events
» observable events

Unlock
OpenAndUnlocked .ﬁ

Open ? $C\ose

Alarm
Lock Unlock
alss Activate Alarms /entry

CIosedAndUnIocked‘ l OpenAndLocked ‘

Deactivate Alarms /exit

Unlock T \L Lock

FlashAndSound

Close\L Tope"
30 / Deactivate Sound

\ ClosedAndLocked ‘

Unlock
Show Armed /entry

Close
SilentAndOpen
300

Show Unarmed /exit

Open

State machine model in UML

' B.K. Aichernig

HSST 2018

Model-based Mutation Testing

12 /80

Institute of Software Technology " -IG-rla!-

Example: Reactive System

AlarmSystem_StateMachine
» Car Alarm System

Unlock
OpenAnd| d
> event-based e P <9< L
» controllable events Ope"ﬁ ¢°'°59 (I\—J)Tumock

Lock Activate Alarms /entryy
Deactivate Alarms /exi

» observable events ClosedAndUnlocked ‘\'%Andmckeu eactivate Alarms fexit

» Mutate the model

FlashAndSound
Unlock Lock Close Open

30/ Deactivate Sound
ClosedAndLocked ‘

» mutation operator

— =)

» 17 mutants

|

Close
SilentAndOpen
300
Unlock
Show Armed /entryy

Show Unarmed /exit

Open

Mutated UML model

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

12/ 80

Institute of Software Technology " Grazm

How Does It Work?

Step 2: Try to kill mutants

A test case kills a mutant if its
run shows different behaviour.

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

13 / 80

Institute of Software Technology " -IG-rla!-

Example: Transformational System

» Mutant survives 1 |object triangle {
.2
path coverage (MC/DC) 3 def tritype(a : Int, b : Int, c: Int) =
trltype(O,l,l) 4 (a,b,c) match {
tr|typc(1,0,1) 5 case _ if (a <= c-b) => "no triangle"
trit 110 6 case _ if (a <= b-c¢) => "no triangle"
I’! ype(T) 7 case _ if (b <= a-c) => "no triangle"
trltype(l,l,l) 8 case _ if (a >= b && b == c) =>
trltpr(2,3,3) 9 "equilateral"
. 10 case _ if (a == b) => "isosceles"
trltype(3,2,3) 11 case _ if (b == c) => "isosceles"
tritype(3,3,2) 12 case _ if (a == ¢) => "isosceles"
: 13 case _ => "scalene"
tritype(2,3,4) 14 N
15 |}
Mutant
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

4/ 80

Institute of Software Technology

Ty

Example: Transformational System

» Mutant survives 1 |object triangle {
.2
path coverage (MC/DC) 3 def tritype(a : Int, b : Int, c: Int) =
trltype(O,l,l) 4 (a,b,c) match {
tr|typc(1,0,1) 5 case if (a <= ¢c-b) => "no triangle"
trit 110 6 case if (a <= b-c) => "no triangle"
I’! ype(T) 7 case if (b <= a-c) => "no triangle"
tritype(1,1,1) 8 case _ if (a >= b && b == c) =>
trltpr(2,3,3) 9 "equilateral"
. 10 case if (a == b) => "isosceles"
trltype(3,2,3) 11 case if (b == c) => "isosceles"
tritype(3,3,2) 12 case if (a == ¢c) => "isosceles"
: 13 case => "scalene"
tritype(2,3,4) 14 N
> Mutant killed by 15 173
tritype(3,2,2) Mutant
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

4/ 80

Institute of Software Technology

Ty

» Mutant survives

» function coverage
> state coverage

> transition
coverage

' B.K. Aichernig

Example: Reactive System

AlarmSystem_StateMachine

Unlock

o

OpenAnW

Unlock

d
Open Close
& /T \L (ook)Tunlcck

ClosedAndUnlocked ‘\'%Andmcked

Unlock w\ \LLock

Close\L Topen

ClosedAndLocked ‘

Show Armed /entryy
Show Unarmed /exit

Close
SilentAndOpen

Alarm

Activate Alarms /entryy
Deactivate Alarms /exit

FlashAndSound

30/ Deactivate Sound

300

Open

Mutated UML model

HSST 2018

Model-based Mutation Testing

15/ 80

Institute of Software Technology " -IG-rla!-

Example: Reactive System

AlarmSystem_StateMachine

» Mutant survives

Unlock
. OpenAnd| d }e’%
» function coverage i L
» state coverage OPE"T ¢°'°Se (u)TUnlcck

Lock Activate Alarms /entryy
S Deactivate Alarms /exit
> transition ClosedAndUnlocked ‘\'%Andmckeu

Coverage Unlock T \LLock Close\L Topen
. 30/ Deactivate Sound
> K ! I Ied by ’ ClosedAndLocked ‘
Lock();
Close(); o —
ilentAn pen
After(20); Unlock .
Show Armed /entryy
Show Unarmed /exit Open
Mutated UML model
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

15 / 80

Institute of Software Technology

Ty

Fault-Propagation in Models

Abstract 5-place buffer model:

(Buffer_StateMachine N
(N o (N =
Empty Enqueue / Normal Enqueue [n=4]/ Full
n=n+1 n=n+1
/entry /entry
OpaqueBehavior OpaqueBehavior
setEmptyOn setFullOn
/exit OpaqueBehavionl Dequeue [n=1]/ /exit OpaqueBehaviol
setEmptyOff n=n-1 EZ?:elue / setFullOff
U 2
Dequeue [n>1]/ Enqueue [n<4]/
n=n-1 n=n+1
- J

Counter variable n is internal!

' B.K. Aichernig

HSST 2018

Model-based Mutation Testing

16 / 80

Institute of Software Technology ﬂ‘lﬁ-rla'!-
Fault-Propagation in Models

Let's inject a fault:

(Buffer_StateMachine h
" Normal) =
Empty Enqueue / Normal Enqueue [n=4]/ Full
n=n+1 n=n
/entry /entry
OpaqueBehavior OpaqueBehavior
setEmptyOn setFullOn
/exit OpaqueBehaviorl Dequeue [n=1]/ /exit OpaqueBehaviol
setEmptyOff e Siﬂfi”e / setFullOff
(. o
Dequeue [n>1]/ Enqueue [n<4]/
n=n-1 n=n+1
S

How does this fault propagate?

' B.K. Aichernig

HSST 2018

Model-based Mutation Testing

17 / 80

Institute of Software Technology

Ty

A Good Test Case

... triggers this fault and propagates it to a (visible) failure:

(Buffer_StateMachine)
e SN =
Empty Enqueue / Normal Enqueue [n=4]/ Full
n=n+1 n=n
/entry /entry
OpaqueBehavior OpaqueBehavior
setEmptyOn setFullOn
/exit OpaqueBehaviorl Dequeue [n=1]/ /exit OpaqueBehavio
setEmptyOff n=?1—1 E:?‘Lielue / setFullOff
N
Dequeue [n>1]/ Enqueue [n<4]/
n=n-1 n=n+1
-

(IsetEmptyOn, ?Enqueue, !setEmptyOff, 7Enqueue, ?Enqueue, ?Enqueue,
7Enqueue, !setFullOn, ?Dequeue, !setFullOff, ?Enqueue, !5etFuIIOn>

' B.K. Aichernig

HSST 2018

Model-based Mutation Testing

18 / 80

Institute of Software Technology " Grazm

From Analysis to Synthesis

State of art:

Analysis of test cases

How many mutants killed by test
cases?

#killed mutants

mutation score =
#mutants

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

19 / 80

Institute of Software Technology " Grazm

From Analysis to Synthesis

State of art: Research:
Analysis of test cases Synthesis of test cases
How many mutants killed by test Find test cases that maximise
cases? mutation score.
. killed mutants :
mutation score = ##mw Idea:
» Check equivalence between
original and mutant
» Use counter-example as test case.
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

19 / 80

Institute of Software Technology

Ty

From Analysis to Synthesis

State of art:

Analysis of test cases

Research:

Synthesis of test cases

How many mutants killed by test
cases?

#killed mutants

mutation score =
#mutants

Problem: equivalent mutants

Solution: review of surviving mutants

Find test cases that maximise
mutation score.

Idea:

» Check equivalence between
original and mutant

» Use counter-example as test case.

' B.K. Aichernig HSST 2018

Model-based Mutation Testing

19 / 80

Institute of Software Technology

Ty

From Analysis to Synthesis

State of art:

Analysis of test cases

Research:

Synthesis of test cases

How many mutants killed by test
cases?

#killed mutants

mutation score =
#mutants

Problem: equivalent mutants

Solution: review of surviving mutants

Find test cases that maximise
mutation score.

Idea:

» Check equivalence between
original and mutant

» Use counter-example as test case.
Problem: equivalence checking is hard
(undecidable in general)

Solution: generate from models
(abstraction)

— model-based mutation testing

' B.K. Aichernig HSST 2018

Model-based Mutation Testing

19 / 80

Institute of Software Technology " Grazm

Agenda

Mutation Testing
Model-based Testing
Model-based Mutation Testing

Transformational Systems
» Semantics
» Test Case Generation
» Reactive Systems

» Semantics
» Test Case Generation

vV v v.yY

» Model- and Test-Driven Development
» MoMuT Tools

» Tool Demo and Examples

' B.K. Aichernig HSST 2018 Model-based Mutation Testing
20 / 80

Institute of Software Technology " Grazm

Model-based Testing

Model-based testing (MBT) is
» the automatic generation of software test procedures,
» using models of system requirements and behavior
» in combination with automated test execution.

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

21 /80

Institute of Software Technology " Grazm

Objective

"Don't write test cases,
generate them!"

(John Hughes)

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

22/ 80

Institute of Software Technology " Grazm

Levels of Testing: Manual

e

B
J

d | SUT
—

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

23/ 80

Institute of Software Technology " Grazm

Levels of Testing: Manual

+ easy & cheap to start

+ flexible testing

— expensive every execution
— no auto regression testing
— ad-hoc coverage

— no coverage measurement

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

24/ 80

Institute of Software Technology " Irla!-

Levels of Testing: Capture & Replay

-y
-

SUT

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

25 / 80

Institute of Software Technology " Grazm

Levels of Testing: Capture & Replay

-+ auto regression testing

+ flexible testing

— expensive first execution
— fragile tests break easily
— ad-hoc coverage

— no coverage measurement

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

26 / 80

Institute of Software Technology

Ty

Levels of Testing: Scripts

test
execution

A

pass fail

—
—

SuT

' B.K. Aichernig

Model-based Mutation Testing

27 / 80

Institute of Software Technology " Grazm

Levels of Testing: Scripts

+ auto regression testing
+ automatic execution
+/— test impl. = programming

— fragile tests break easily?
(depends on abstraction)

— ad-hoc coverage
— Nno coverage measurement

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

28 / 80

Institute of Software Technology " Grazm

Levels of Testing: Test Scenarios

high-level
test
notation

test
execution

SuT

pass fail

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

29 / 80

Institute of Software Technology " Grazm

Levels of Testing: Test Scenarios

abstract tests
automatic execution
auto regression testing

+ + + +

robust tests

ad-hoc coverage
— Nno coverage measurement

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

30/ 80

Institute of Software Technology " Grazm

Levels of Testing: Model-Based Testing

) 4

-~
test case
: system model
generation
test i

execution « atll

pass fail
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

31/ 80

Institute of Software Technology " Grazm

Levels of Testing: Model-Based Testing

) 4

system model

test case
generation
o

¥

Y
test
execution
-

all tests pass

conformance

SUT

31

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

32/ 80

Institute of Software Technology " -IG-rla!-

Levels of Testing: Model-Based Testing

abstract tests
automatic execution
auto regression testing
auto design of tests
systematic coverage

+ 4+ + + 4

measure coverage of model and requirements
— modelling efforts

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

33 /80

Institute of Software Technology

Ty

requirements

1) model creation &

validation

model

MBT Workflow

test case
specification

2) test case generation

abstract
test case
l 3) concretion
SsuT
concrete (black-box)
test case

4) test case execution &
assignment of verdicts

test result

l 5) analysis

Manual tasks:

>

>

>

>

(requirements analysis)
model creation
model validation

concretion implementation

Automated tasks:

model verification

test-case generation
test-case concretion
test-case execution

assignement of verdicts

' B.K. Aichernig

HSST 2018

Model-based Mutation Testing

34 / 80

Institute of Software Technology

Ty

Taxonomy

M. Utting, A. Pretschner, B.

Legeard: A taxonomy of
model

model-based testing specification

approaches. Software
Testing, Verification and
Reliability, 22(5), 2012.

test

generation

test
execution

scope input- i tput

untimed/timed
haracteristi { inisti ministic
discrete/hybrid/continuous

pre-post or input domains
transition-based
history-based

paradigm functional

operational
stochastic
data flow

structural model coverage
data coverage
test selection requirements coverage
criteria test case specifications
random and stochastic
fault-based

random generation
search-based algorithms
model-checking
symbolic execution
theorem proving
constraint solving

technology

online
———— online/offline { N
offline

' B.K. Aichernig HSST 2018

Model-based Mutation Testing

35 / 80

Institute of Software Technology " Grazm

Agenda

Mutation Testing
Model-based Testing
Model-based Mutation Testing

Transformational Systems
» Semantics
» Test Case Generation
» Reactive Systems

» Semantics
» Test Case Generation

vV v v.yY

» Model- and Test-Driven Development
» MoMuT Tools

» Tool Demo and Examples

' B.K. Aichernig HSST 2018 Model-based Mutation Testing
0

Institute of Software Technology " -IG-rla!-

Model-Based Testing

Test Case
Generator

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

37 / 80

Institute of Software Technology " Grazm

Model-Based Testing

=

Test Case
Generator

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

37 / 80

Institute of Software Technology " -IG-rla!-

Model-Based Testing
Test Case

T
Generator

Abstract Test Case

Y

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

37 / 80

Institute of Software Technology " Grazm

Model-Based Testing
Test Case

T
Generator

Abstract Test Case

Y

SUT H@—» pass / fail

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

37 / 80

Institute of Software Technology

Ty

Model-Based Testing

Model

if conforms

SuT

Test Case
Generator

Abstract Test Case

Y

H@—» then pass

' B.K. Aichernig

HSST 2018

Model-based Mutation Testing

37 / 80

Institute of Software Technology

Ty

Model-Based Testing

Model

if =conforms

SuT

Test Case
Generator

Abstract Test Case

Y

H@—» then pass/fail

' B.K. Aichernig

HSST 2018

Model-based Mutation Testing

37 / 80

Institute of Software Technology " -IG-rla!-

Model-Based Mutation Testing

Mutation

Test Case
Generator

Abstract Test Case

Y

HSST 2018

' B.K. Aichernig

Model-based Mutation Testing
37 / 80

Ty

Institute of Software Technology

Model-Based Mutation Testing

Model iligzeR Model Mutant
Tool

Test Case
Generator

Abstract Test Case

Y

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

37 / 80

Ty

Institute of Software Technology

Model-Based Mutation Testing

Model iligzeR Model Mutant
Tool

Test Case
Generator

Abstract Test Case
\

SuT H@—» then pass/fail

if =conforms

' B.K. Aichernig HSST 2018 Model-based Mutation Testing
37 / 80

Ty

Institute of Software Technology

Model-Based Mutation Testing

Mutation
Tool

Model

Test Case
Generator

Abstract Test Case

Y

if =conforms

> Test Driver

Model Mutant

if conforms

then fail

HSST 2018

' B.K. Aichernig

Model-based Mutation Testing
37 / 80

Institute of Software Technology

Ty

Model-Based Mutation Testing

Model

if =conforms

SuT

then — conforms

Mutation
Tool

Model Mutant

Test Case
Generator

Abstract Test Case

Y

H@» then fail

if conforms

' B.K. Aichernig

HSST 2018 Model-based Mutation Testing

37 / 80

Institute of Software Technology " Grazm

Non-Conformance & Test Cases

Given a transitive conformance relation T, then

(Model Z SUT) A (Mutant C SUT) = (Model Z Mutant)

» What are the cases of non-conformance?
» Test these cases on the SUT!
» These test cases will detect if mutant has been implemented.

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

38 / 80

Institute of Software Technolo " Grla!-

Test Cases as Partial Specifications

> A test case can be interpreted as a partial specification (model)
» defines output for one input case, rest undefined.

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

39 /80

Institute of Software Technology " Grazm

Test Cases as Partial Specifications

> A test case can be interpreted as a partial specification (model)
» defines output for one input case, rest undefined.

» If a SUT (always) passes a test case, we have conformance:

Test case C SUT

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

39 / 80

Institute of Software Technology " Grazm

Test Cases as Partial Specifications

> A test case can be interpreted as a partial specification (model)
» defines output for one input case, rest undefined.

» If a SUT (always) passes a test case, we have conformance:

Test case C SUT

> If we generate a test case from a model, we have selected a partial
behaviour such that

Test case T Model

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

39 / 80

Institute of Software Technology " Grazm

Test Cases as Partial Specifications

v

A test case can be interpreted as a partial specification (model)
» defines output for one input case, rest undefined.

v

If a SUT (always) passes a test case, we have conformance:

Test case C SUT

v

If we generate a test case from a model, we have selected a partial
behaviour such that

Test case T Model

If SUT conforms to the model:

v

Test case C Model C SUT

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

39 / 80

Institute of Software Technology " Grazm

Fault-Detecting Test Case

» Generated from the model

Test case ©& Model

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

40 / 80

Institute of Software Technology " Grazm

Fault-Detecting Test Case

» Generated from the model
» Kills the mutant

Test case C Model N\ Test case I Mutant

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

40 / 80

Institute of Software Technology " Grazm

Fault-Detecting Test Case

» Generated from the model
» Kills the mutant

Test case C Model N\ Test case I Mutant

» |t is a counter-example to conformance, hence
Model IZ Mutant
iff
3 Test case : (Test case © Model A Test case L Mutant)

Bernhard K. Aichernig. Mutation Testing in the Refinement Calculus. Formal Aspects of
Computing, 15(2-3):280-295, 2003. J
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

40 / 80

Institute of Software Technology " Grazm

vV v v.yY

Agenda

Mutation Testing
Model-based Testing
Model-based Mutation Testing

Transformational Systems

» Semantics
» Test Case Generation

Reactive Systems

» Semantics
» Test Case Generation

Model- and Test-Driven Development
MoMuT Tools

Tool Demo and Examples

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

21 /80

Institute of Software Technolo " Grla!-

Transformational Systems: Semantics

» Model and Mutant interpreted as predicates Model(s, s") and
Mutant(s, s") describing state transformations (s — s’)

» Conformance:

Model © Mutant =, Vs,s’ : Mutant(s,s’) = Model(s,s")

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

42 /80

Institute of Software Technolo " Grla!-

Transformational Systems: Semantics

v

Model and Mutant interpreted as predicates Model(s,s") and
Mutant(s,s') describing state transformations (s — s)

Conformance:

v

Model © Mutant =, Vs,s’ : Mutant(s,s’) = Model(s,s")

» Non-conformance:

Model Z Mutant = 3s,s’: Mutant(s,s’) A =Model(s,s")

v

Read: a behaviour allowed by mutant but not by original model?

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

42/ 80

Institute of Software Technolo " Grla!-

Transformational Systems: Semantics

v

Model and Mutant interpreted as predicates Model(s,s") and
Mutant(s,s') describing state transformations (s — s)

v

Conformance:

Model © Mutant =, Vs,s’ : Mutant(s,s’) = Model(s,s")

» Non-conformance:

Model Z Mutant = 3s,s’: Mutant(s,s’) A =Model(s,s")

v

Read: a behaviour allowed by mutant but not by original model?

v

This is a constraint satisfaction problem!

Bernhard K. Aichernig and Jifeng He. Mutation testing in UTP. Formal Aspects of Computing,
21(1-2):33-64, 20009. J

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

42/ 80

Institute of Software Technolo " Grla!-

Transformational Systems: Example

Triangle semantics:

Mutant(a, b, c, res’) A =Model(a, b, c, res") =4
~(a<c—bva<b-—cVvb<a-—c)A(a>bAb=cAres’ =equilateral)
LA

(...
“(a<c—bva<b—-cvb<a—c)A(a=bAb=cAres = equilateral)

)

» Simplifies to a > b A b = ¢ A res’ = equilateral
» Solver produces solution: a =3,b=2,c = 2, res’ = equilateral
» Test case with expected result: a=3,b=2,¢c =2, res’ = isosceles

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

43 /80

Institute of Software Technology " Grazm

Transformational Systems: Tools

Implemented with different solvers:

Bernhard K. Aichernig and Percy Pari Salas,
>
OCL con_tracts . Test Case Generation by OCL Mutation and
(Constraint Handling Rules) Constraint Solving, QSIC 2005.
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

24/ 80

Institute of Software Technology

Ty

Transformational Systems: Tools

Implemented with different solvers:

» OCL contracts
(Constraint Handling Rules)

Test Case Generation by OCL Mutation and

Bernhard K. Aichernig and Percy Pari Salas,
Constraint Solving, QSIC 2005. J

» Spec# contracts (Boogie, Z3)

Case Generation by Contract Mutation in

Willibald Krenn and Bernhard K. Aichernig, Test
Spec#, MBT 2009. J

' B.K. Aichernig

HSST 2018 Model-based Mutation Testing

24/ 80

Institute of Software Technology " -IG-rla!-

Transformational Systems: Tools

Implemented with different solvers:

Bernhard K. Aichernig and Percy Pari Salas,
>

OoCL Con_traCtS . Test Case Generation by OCL Mutation and
(Constraint Handling Rules) Constraint Solving, QSIC 2005.

» Spec# contracts (Boogie, Z3)

» Reo connector language Willibald Krenn and Bernhard K. Aichernig, Test
e . Case Generation by Contract Mutation in
(rewriting in JTom) Spec, MBT 2000.

Sun Meng, Farhad Arbab, Bernhard K.
Aichernig, Lacramioara Astefanoaei, Frank S. de
Boer, and Jan Rutten. Connectors as designs:
Modeling, refinement and test case generation.
Science of Computer Programming, 77(7-8):
799-822, 2012.

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

44 /80

Institute of Software Technology " Grazm

vV v v.yY

Agenda

Mutation Testing
Model-based Testing
Model-based Mutation Testing

Transformational Systems

» Semantics
» Test Case Generation

Reactive Systems

» Semantics
» Test Case Generation

Model- and Test-Driven Development
MoMuT Tools

Tool Demo and Examples

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

45 / 80

Institute of Software Technology

Ty

Reactive Systems

» React to the environment - Uniook
OpenAndUnlocked

» Do not terminate o oo t] e R T

CIo!edAndUnlocked‘ ‘ OpenAndLocked ‘ Deactivate Alarms fexit
» Servers and Controllers

Unlock Lock Close Open

30/ Deactivate Sound
» Events: controllable and \ ClosedAndLocked |
observable communication events L J
©% | SilentAndopen g

> Test cases: sequences of events sl s

Show Unarmed /exit Open

obs AcousticAlarm_SetOff

=
2
8
< S
: 2
2 %

obs aftpr(270)

abs Acousticlarm_SetOff
obs Acoustichlarm_SetOn
obs OpticalAlarm_SetOn

obs affer(20)

Adaptive test cases: trees branching at non-deterministic observations

' B.K. Aichernig

HSST 2018

Model-based Mutation Testing

46 / 80

Institute of Software Technology " Grazm

Semantics

» Operational semantics
e.g. Labelled Transition Systems

obs OpticalAlarm_SetOff

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

47/ 80

Institute of Software Technology

Ty

Semantics

» Operational semantics
e.g. Labelled Transition Systems

» Input-output conformance (ioco)
[Tretmans96]

SUT ioco Model =4

Vo € traces(Model) :
out(SUT after o) C out(Model after o)

out ... outputs + quiescence
after ... reachable states after trace

obs OpticalAlarm_SetOff

' B.K. Aichernig HSST 2018

Model-based Mutation Testing

47 / 80

Institute of Software Technology

Ty

Semantics

» Operational semantics
e.g. Labelled Transition Systems

» Input-output conformance (ioco)
[Tretmans96]

SUT ioco Model =4

Vo € traces(Model) :
out(SUT aftero) C out(Model after o)

out ... outputs + quiescence
after ... reachable states after trace

Model:

IsoundOn
Sum—]

IflashOn

_____ >4 ———0
IsoundOn !flashOn

SUT:
IsoundOn
—e
IflashOn
————— > o— - — - >
?unlock

SUT ioco Model v

' B.K. Aichernig

HSST 2018

Model-based Mutation Testing

47 / 80

Institute of Software Technology " Grazm

Explicit Conformance Checking

» Model and Mutant — LTS

» Determinisation

Model:
IsoundOn
L]
IflashOn
_____ >4 ———— 0
IsoundOn !flashOn
Mutant:
IsoundOff
—e
IflashOn
----- o— - — - >
7unlock
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

48/ 80

Institute of Software Technology

» Model and Mutant — LTS

Ty

Explicit Conformance Checking

» Determinisation

Model:

IflashOn

————— >

Mutant:

————0
IsoundOn !flashOn

IflashOn

' B.K. Aichernig

7unlock

IsoundOn
—e

IsoundOff
—e

» Build synchronous product modulo

joco
» |f mutant has additional
» loutput: — fail sink state
> ?input: — pass sink state

Model Xjoco Mutant:

IsoundOn
— e pass

IflashOn

HSST 2018

Model-based Mutation Testing

48 / 80

Institute of Software Technology

» Model and Mutant — LTS

Ty

Explicit Conformance Checking

» Determinisation

Model:

IflashOn

————— >

Mutant:

————0
IsoundOn !flashOn

IflashOn

' B.K. Aichernig

7unlock

IsoundOn
—e

IsoundOff
—e

» Build synchronous product modulo
joco

» |f mutant has additional
» loutput: — fail sink state
> ?input: — pass sink state

Model Xjoco Mutant:

IsoundOn
— e pass

IflashOn

> Extract test case covering fail state

HSST 2018

Model-based Mutation Testing
48 / 80

Institute of Software Technolo " Grla!-

Applications of Explicit Conformance Checking

>
HTTP Server (LOTOS) Bernhard K. Aichernig and Corrales Delgado.

From Faults via Test Purposes to Test Cases:
On the Fault-Based Testing of Concurrent
Systems, FASE 2006.

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

49/ 80

Institute of Software Technolo " Grla!-

Applications of Explicit Conformance Checking

> HTTP Server (LOTOS) Bernhard K. Aichernig and Corrales Delgado.

» S|P Server (LOTOS) From Faults via Test Purposes to Test Cases:
On the Fault-Based Testing of Concurrent
Systems, FASE 2006.

Martin Weiglhofer, Bernhard K. Aichernig, and
Franz Wotawa. Fault-based conformance
testing in practice. International Journal of
Software and Informatics, 3(2-3):375-411,
2009. Chinese Academy of Science.

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

49 /80

Institute of Software Technolo " Grla!-

Applications of Explicit Conformance Checking

| 4
HTTP Server (LOTOS) Bernhard K. Aichernig and Corrales Delgado.

» S|P Server (LOTOS) From Faults via Test Purposes to Test Cases:
On the Fault-Based Testing of Concurrent

» Controllers (UML) Systems, FASE 2006.

Martin Weiglhofer, Bernhard K. Aichernig, and
Franz Wotawa. Fault-based conformance
testing in practice. International Journal of
Software and Informatics, 3(2-3):375-411,
2009. Chinese Academy of Science.

Bernhard K. Aichernig, Harald Brandl, Elisabeth
Jobstl, and Willibald Krenn. Efficient mutation
killers in action, ICST 2011.

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

49 /80

Institute of Software Technolo " Grla!-

Applications of Explicit Conformance Checking

HTTP Server (LOTOS) Bernhard K. Aichernig and Corrales Delgado.

SIP Server (LOTOS) From Faults via Test Purposes to Test Cases:
On the Fault-Based Testing of Concurrent
Controllers (UML) Systems, FASE 2006.

Hybrid Systems (Action System)

vV vV.v Y

Martin Weiglhofer, Bernhard K. Aichernig, and
Franz Wotawa. Fault-based conformance
testing in practice. International Journal of
Software and Informatics, 3(2-3):375-411,
2009. Chinese Academy of Science.

Bernhard K. Aichernig, Harald Brandl, Elisabeth
Jobstl, and Willibald Krenn. Efficient mutation
killers in action, ICST 2011.

Harald Brandl, Martin Weiglhofer, and Bernhard
K. Aichernig. Automated conformance
verification of hybrid systems, QSIC 2010.

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

49 /80

Institute of Software Technolo " Grla!-

Applications of Explicit Conformance Checking

» HTTP Server (LOT
Serve (O OS) Bernhard K. Aichernig and Corrales Delgado.
» S|P Server (LOTOS) From Faults via Test Purposes to Test Cases:
On the Fault-Based Testing of Concurrent
» Controllers (UML) Systems, FASE 2006.)
> Hybrid Systems (Action System)

I . Martin Weiglhofer, Bernhard K. Aichernig, and
Scalability: abstractions for Franz Wotawa. Fault-based conformance
data-intensive models testing in practice. International Journal of

Software and Informatics, 3(2-3):375-411,
2009. Chinese Academy of Science.

o
Bernhard K. Aichernig, Harald Brandl, Elisabeth
Jobstl, and Willibald Krenn. Efficient mutation
killers in action, ICST 2011.

v
Harald Brandl, Martin Weiglhofer, and Bernhard
K. Aichernig. Automated conformance
verification of hybrid systems, QSIC 2010.

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

49 /80

Institute of Software Technology

Ty

Action Systems

> Action Systems [Back83]

vV vV v Vv

Non-deterministic choice of
actions

Actions are guarded commands
Loop over Actions
Terminates if all guards disabled

Actions are labelled and represent
events

Two semantics:

» Labelled Transition Systems
» Predicative semantics

var closed : Bool := false;
locked : Bool := false;
armed : Bool := false;
sound : Bool := false;
flash : Bool := false;
actions
Close :: ~closed — closed := true;

Open :: closed — closed := false;

SoundOn :: armed A —closed A —sound —
sound := true;

FlashOn :: armed A —closed A —flash —
flash := true

do Close
O
Open
O
SoundOn; FlashOn
O
FlashOn; SoundOn

od

' B.K. Aichernig

HSST 2018

Model-based Mutation Testing

50 / 80

Institute of Software Technology " Grazm

Predicative Semantics of Action Systems

The transition relation (one step) is
» translated to a constraint over state variables s and event-traces tr:

/29— B = g AN B A tr'=tr"]l
I(X):9g — B =g 3IX:g A B A tr' =tr [I(X)]
X:i=e =4 X =e ANy =y AN.NZ=z
g—B =¢ g N B

B(s,s'); B(s,s’) =ar 3 s0:B(s,5) A B(so,s’)

B, OB, =4 B1 V B

» then simplified (DNF + quantifier elimination)

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

51/ 80

Institute of Software Technology " Grazm

Symbolic Conformance Checking

Js,8', tr, tr' : reachable(s, tr) A Mutant(s,s', tr, tr') A =Model(s,s', tr, tr")

» |s non-conformance reachable?

» Fast, but stronger than ioco.

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

52 /80

Institute of Software Technology " -IG-rla!-

Symbolic Conformance Checking

Js,8', tr, tr' : reachable(s, tr) A Mutant(s,s', tr, tr') A =Model(s,s', tr, tr")

» |s non-conformance reachable?
» Fast, but stronger than ioco.

» loco for complete models:

3 51,81, %, 5, tr, la : reachable(Mutant, tr,s1) A reachable(Model, tr, s,)
A
Mutant(s1,s1’, tr,tr ~1a) A —Model(s2,s2', tr, tr " 1a)

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

52 /80

Institute of Software Technology " Grazm

Symbolic Conformance Checkers

» Two implementations for

. Bernhard K. Aichernig and Elisabeth Jobstl.
Action Systems 9

Towards symbolic model-based mutation

» Constraint LOgiC testing: Combining reachability and refinement
. . checking, MBT 2012.
Programming: Sicstus)
Prolog
» SMT solving: Scala + Z3 Bernhard K. Aichernig and Elisabeth Jobstl.

Efficient Refinement Checking for Model-Based
Mutation Testing, QSIC 2012.

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

53 /80

Institute of Software Technology " Grazm

Symbolic Conformance Checkers

» Two implementations for

. Bernhard K. Aichernig and Elisabeth Jobstl.
Action Systems 9

Towards symbolic model-based mutation

» Constraint Logic testing: Combining reachability and refinement
. . checking, MBT 2012.
Programming: Sicstus y
Prolog
» SMT solving: Scala + Z3 Bernhard K. Aichernig and Elisabeth Jobstl.
. Efficient Refinement Checking for Model-Based
» Timed Automata: Scala + Z3 Mutation Testing, QSIC 2012.
. y
(tioco)

Bernhard K. Aichernig, Florian Lorber and Dejan
Nickovic. Time for Mutants: Mutation testing
with timed automata, TAP 2013

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

53 /80

Institute of Software Technology " Grazm

Symbolic Conformance Checkers

» Two implementations for

. Bernhard K. Aichernig and Elisabeth Jobstl.
Action Systems 9

Towards symbolic model-based mutation

» Constraint Logic testing: Combining reachability and refinement
. . checking, MBT 2012.
Programming: Sicstus y
Prolog
» SMT solving: Scala + Z3 Bernhard K. Aichernig and Elisabeth Jobstl.
. Efficient Refinement Checking for Model-Based
» Timed Automata: Scala + Z3 Mutation Testing, QSIC 2012.
. v
(tioco)
» After optimisations: Bernhard K. Aichernig, Florian Lorber and Dejan

Nickovic. Time for Mutants: Mutation testing

Prolog and SMT equally fast! with timed automata, TAP 2013)

Bernhard K. Aichernig, Elisabeth Jobstl and
Matthias Kegele. Incremental refinement
checking for test case generation, TAP 2013

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

53 /80

Institute of Software Technology " Grazm

Optimisations

Performance gains for checking 207 mutants of the Car Alarm System.

65s

Explicit
Checker

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

54 / 80

Institute of Software Technology " Grazm

Optimisations

Performance gains for checking 207 mutants of the Car Alarm System.

108s

65s

Explicit 1°tSymbolic
Checker Checker

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

54 / 80

Institute of Software Technology " Grazm

Optimisations

Performance gains for checking 207 mutants of the Car Alarm System.

108s

65s

41s

Explicit 1°tSymbolic ~ Quantifier
Checker Checker Elimination

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

54 / 80

Institute of Software Technology " Grazm

Optimisations

Performance gains for checking 207 mutants of the Car Alarm System.

108s

65s

41s
27s

Explicit 1°tSymbolic ~ Quantifier Variable/

Checker Checker Elimination Value
Selection
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

54 / 80

Institute of Software Technology

Ty

Optimisations

Performance gains for checking 207 mutants of the Car Alarm System.

65s

108s

41s
I 275

19s
Explicit 1%t Symbolic ~ Quantifier Variable/ Syntactic
Checker Checker Elimination Value Mutation
Selection Localisation
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

54 / 80

Institute of Software Technology

Ty

Optimisations

Performance gains for checking 207 mutants of the Car Alarm System.

108s
65s
41s
27s
19s
. 2 .85

—
Explicit 1°tSymbolic ~ Quantifier Variable/ Syntactic Incremental
Checker Checker Elimination Value Mutation Solving

Selection Localisation
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

54 / 80

Institute of Software Technology

Ty

Optimisations

Performance gains for checking 207 mutants of the Car Alarm System.

108s
65s
41s
27s
19s
. 2.8s 2.6s
— —
Explicit 1°tSymbolic ~ Quantifier Variable/ Syntactic Incremental Reachability
Checker Checker Elimination Value Mutation Solving Once
Selection Localisation
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

54 / 80

Institute of Software Technology " Grazm

Agenda

Mutation Testing
Model-based Testing
Model-based Mutation Testing

Transformational Systems
» Semantics
» Test Case Generation
» Reactive Systems

» Semantics
» Test Case Generation

vV v v.yY

» Model- and Test-Driven Development
» MoMuT Tools

» Tool Demo and Examples

' B.K. Aichernig HSST 2018 Model-based Mutation Testing
0

Institute of Software Technology " Grazm

Agile Development

Refactor Model
Impl.
Implement Generate
Test Cases Test Cases
\ Verify Test /
Cases
» Model-driven development » Formal verification
» Model-based test case generation » Test-driven development
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

56 / 80

Institute of Software Technology " Grazm

Agenda

Mutation Testing
Model-based Testing
Model-based Mutation Testing

Transformational Systems
» Semantics
» Test Case Generation
» Reactive Systems

» Semantics
» Test Case Generation

vV v v.yY

» Model- and Test-Driven Development
» MoMuT Tools

» Tool Demo and Examples

' B.K. Aichernig HSST 2018 Model-based Mutation Testing
0

Institute of Software Technology " Grazm

MoMuT Tools

MoMuT
> is a family of tools implementing Model-based Mutation Testing.
> is jointly developed and maintained by AIT and TU Graz
» supports different modelling styles:

MoMuT::UML
MoMuT::O0AS
MoMuT:: TA
MoMuT::Reqgs

| 4
>
>
| 4

www.momut.org

' B.K. Aichernig HSST 2018 Model-based Mutation Testing
58 / 80

http://www.momut.org/

Institute of Software Technology

Ty

MoMuT ::UML

> Test-case generator of AIT and TU Graz

> Implementing model-based mutation testing for UML state machines

UML model
Papyrus MDT/
Visual Paradigm

Java

frontend

Il

MoMuT::UML
backend

1 Enumerative TCG

UML200AS
Java

>

Prolog
EELEy :» |
Java

Symbolic TCG

Prolog

SMT Solver
Z3

AS ... Action Systems [Back83]
OOAS ... Object-Oriented Action Systems

Architecture of the MoMuT::UML tool chain

abstract test cases
Aldebaran aut format

' B.K. Aichernig

HSST 2018

Model-based Mutation Testing

59 / 80

Institute of Software Technology " Grazm

MoMuT ::UML

Coffee
I

machine.giveCoffee0;

Tea

/
machine giveTea0;

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

60 / 80

Institute of Software Technology " -IG-rla!-

MoMuT ::UML

Coffee

machine.giveCoffee0;

NoCredit
Coin

Tea

/
machine.giveTea(;

» Enumerative back-end: ioco

» Symbolic back-end supports two
conformance relations:

» State-based Refinement
» Event-based ioco

' B.K. Aichernig

HSST 2018 Model-based Mutation Testing

60 / 80

Institute of Software Technology " Grazm

MoMuT ::UML

Goffee Bernhard Aichernig, Harald Brandl, Elisabeth
machine giveCoffecd Jobstl, Willibald Krenn, Rupert Schlick and
Stefan Tiran. MoMut: : UML Model-Based
Mutation Testing for UML, ICST 2015.

Coin

Tea

/
machine.giveTea(;

Bernhard K. Aichernig, Jakob Auer, Elisabeth
Jobstl, Robert Korosec, Willibald Krenn, Rupert
Schlick and Birgit Vera Schmidt. Model-Based

» Enumerative back-end: ioco Mutation Testing of an Industrial Measurement
Device, TAP 2014.

» Symbolic back-end supports two

conformance relations:
) Bernhard K. Aichernig, Harald Brandl, Elisabeth
» State-based Refinement Jabstl, Willibald Krenn, Rupert Schlick, and
» Event-based ioco Stefan Tiran. Killing strategies for model-based
mutation testing, Software Testing, Verification
and Reliability, 2014

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

60 / 80

Institute of Software Technology

Ty

MoMuT ::UML

Coffee
I

machine.giveCoffee0;

Coin

Tea

/
machine.giveTea(;

» Enumerative back-end: ioco

» Symbolic back-end supports two
conformance relations:

» State-based Refinement
» Event-based ioco

Combined conformance checking:

Bernhard Aichernig, Harald Brandl, Elisabeth
Jobstl, Willibald Krenn, Rupert Schlick and
Stefan Tiran. MoMut: : UML Model-Based
Mutation Testing for UML, ICST 2015.

Bernhard K. Aichernig, Jakob Auer, Elisabeth
Jobstl, Robert Korosec, Willibald Krenn, Rupert
Schlick and Birgit Vera Schmidt. Model-Based
Mutation Testing of an Industrial Measurement
Device, TAP 2014.

Bernhard K. Aichernig, Harald Brandl, Elisabeth
Jobstl, Willibald Krenn, Rupert Schlick, and
Stefan Tiran. Killing strategies for model-based
mutation testing, Software Testing, Verification
and Reliability, 2014

> Refinement checker searches for faulty state (fast)

> loco checker looks if faulty state propagates to different observations

' B.K. Aichernig HSST 2018

Model-based Mutation Testing

60 / 80

Institute of Software Technology

Ty

Case Study 1: Car Alarm System

X CAS UML
OpenAndUniocked Zriock actions [#] 51
] o o (Aarm) state variables [#] 35
o Tim ¢ T“"“’“ TR possible states [#] 1.7 - 10'®
CIosedAndllnlocked‘ ‘ ‘OpenAndLocked ‘ S reachable states [#] 229
" || e Close | | open - required exploration depth 17

ClosedAndLocked ‘

g

Unlock

Show Unarmed /exit

Close
SilentAndOpen

Show Armed /entry

300

Open

State machine model in UML

Metrics of Generated Action System

W e« ac

hernig

HSST 2018

Model-based Mutation Testing

61 /80

Institute of Software Technology " Irla!-

Case Study 1: TCG

¥ not conforming
(non-ref. & not ioco)

" conforming “ unique TCs
(refining) duplicate TCs
conforming

(non-ref., but ioco)

(a) Breakup into conforming and (b) Breakup into unique and
not conforming model mutants. duplicate test cases.
6

«

IS

~

unique test cases [#]
w

.

0
12 3 4 5 6 7 8 9 10 11 12 13
length
(c) Lengths of the unique test cases.
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

62 / 80

Institute of Software Technology " -I(;la!-

Case Study 1: Fault Propagation

mutants [#]

ioco depth

Figure: Number of steps from fault to failure (ioco depths)

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

63 / 80

Institute of Software Technology

Ty

Case Study 1: Run-times

... for combined conformance checking (in sec., max. depth 20+20) :

conforming conforming not conforming total
(refining) (non-ref., but ioco) (non-ref. & not ioco)
mutants [#] 13 4 145 162
> 4.03 1.63 56.41 62.07
ref. check ¢ 0.31 0.41 0.39 0.38
max 0.41 0.44 0.53 0.53
> - 17.71 1.9 min 2.2 min
ioco check) - 4.43 0.79 0.81
max - 4.48 2.01 4.48
pN - - 1.3 min 1.3 min
tc constr. ¢ - - 0.55 0.49
max - - 1.48 1.48
total > 4.25 19.4 4.2 min 4.6 min
without logging ¢ 0.33 4.85 1.74 L7
max 0.43 4.89 2.77 4.89

Comparison to stand-alone ioco-check with depth 20: 5.1 min

' B.K. Aichernig

HSST 2018

Model-based Mutation Testing

64 / 80

Institute of Software Technology " -IG-rla!-

Case Study 2: AVL489 Particle Counter

» One of AVL's automotive
measurement devices

» Measures particle number
concentrations in exhaust gas

» Focus: testing of the control logic

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

65 / 80

Institute of Software Technology " -IG-rla!-

Case Study 2: Test Model of AVL489

PC UML
actions [#] 109
state variables [#] 74
possible states [#] 1.2 - 10%
reachable states [#] > 850700
required exploration depth > 25
Metrics of Generated Action System
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

66 / 80

Institute of Software Technology " Irla!-

Case Study 2: TCG

¥ not conforming
(non-ref. & not ioco)

 conforming unique TCs
(refining) duplicate TCs.
conforming
(non-ref., but ioco)
817
(a) Breakup into conforming and (b) Breakup into unique and
not conforming model mutants. duplicate test cases.
=
§
3
g
v
g
H
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
length
(c) Lengths of the unique test cases.
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

67 / 80

Institute of Software Technology " Grazm

Case Study 2: Fault Propagation

H
(4]
N

500

423
400 -
£
P 300 -
c
8 200 -
g
100 - 44
6 3
0 -
1 2 3 4 5

ioco depth

Figure: Number of steps from fault to failure (ioco depths)

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

68 / 80

Institute of Software Technology " -IG-rla!-

Case Study 2: Run-times

... for combined conformance checking (in min., max. depth 15+5) :

conforming conforming not conforming total
(refining) (non-ref., but ioco) (non-ref. & not ioco)
mutants [#] 189 68 928 1185
> 6.1h 7.7 7.1h 13.3 h
) 1.9 6.8 sec 27 sec 40 sec
ref. check max 4.3 1.8 3.9 4.3
> - 0.7 h 1.7 h 2.4 h
ioco check) - 38 sec 7 sec 7.4 sec
max - 2 27 sec 2
> - - 22.9 22.9
tc constr. ¢ - - 1.5 sec 1.2 sec
max - - 3.7 sec 3.7 sec
> 6.1h 0.9 h 9.2 h 16.2 h
total) 1.9 0.8 0.6 0.8
without logging max 4.3 2.2 4.1 4.3
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

69 / 80

Institute of Software Technology

Ty

Case Study 2: Run-times

. comparison to stand-alone ioco check (in min., max. depth 10):

not ioco ioco total
mutants [#] 719 466 1185
> 9.8 h 22.8 h 32.6 h
L ¢ 0.8 2.9 1.7
time — ioco check max 39 50 50
> 19 - 19
time — tc constr. ¢ 1.6 sec - 1 sec
max 5.8 sec - 5.8 sec
> 10.1 h 22.8 h 329 h
. . 1) 0.8 2.9 1.7
total without logging max 39 55 50
appr. 16h vs. 33h
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

70 / 80

Ty

Institute of Software Technology

Abstract Test Case of AVL489

Abstract test cases — concrete C#

| obs StatusReady(0) .
NUnit test cases.

gobs SPAU _state(0)

obs Offline(0)

ctr SetStandby(0)
| obs StatusBusy(0)
] obs STBY _state(0)

obs Online(0)

obs StatusReady(30)

ctr StartMeasurement(0)
gobs StatusBusy(0)

obs SMGA _ state(0)
%obs StatusReady(30)

ctr StartIntegralMeasurement(0)

?obs SINT _state(0)
;ctr SetStandby(0) ctr ... controllable event (input)
pass O.Obs STBY_state(0) obs ... observable event (output)

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

71/ 80

Institute of Software Technolo " Grla!-

Test Execution on Particle Counter

We found several bugs in the SUT:
» Forbidden changes of operating state while busy

» Pause — Standby
» Normal Measurement — Integral Measurement

» Ignoring high-frequent input without error-messages

» Loss of error messages in client for remote control of the device

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

72 /80

Institute of Software Technology " Grazm

MoMuT::UML Reimplementation

Motivation: Railway Interlocking System (Thales)
» Reimplementation of enumerative TCG in C by AIT
» Assuming deterministic systems
» joco checking = ioco testing (random)
» Short lived mutants: create mutants while exploring

' B.K. Aichernig HSST 2018 Model-based Mutation Testing
73 / 80

Institute of Software Technology " Grazm

MoMuT::O0AS

Object-Oriented Action Systems:

1 types
» Textual model programs 2 f CoffeeMachine = autocons system
3 var
» Guarded Actions in do-od loop 4 paid : Boolean = false ;
5 coffee sel : Boolean = false
» Modularization via objects 6 actions
. . . 7 ctr coin =
» Communication via methods s requires true :
» Mutation directly on OOAS lcg) end: paid = true
11 ctr coffeebutton =
12 requires paid
13 coffee sel := true;
14 paid := false ;
15 end ;
16 obs coffee =
17 requires coffee sel
18 skip
19 end ;
20 do
21 coin() [] coffeebutton () [] coffee ()
22 od

23]| system CoffeeMachine

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

74 / 80

Institute of Software Technology " Grazm

MoMuT::O0AS

Object-Oriented Action Systems:

1 types
» Textual model programs 2 CoffeeMachine = autocons system
3 |[var
» Guarded Actions in do-od loop 4 paid : Boolean = false ;
L . . 5 coffee _sel : Boolean = false
» Modularization via objects 6 actions
. . . 7 ctr coin =
» Communication via methods s requires true :
. . 9 paid := true
» Mutation directly on OOAS 0 end:
11 ctr coffeebutton =
- . 12 requires paid
Willibald Krenn, Rupert Schlick, and Bernhard 13 coffee sel ‘= true:
K. Aichernig. Mapping UML to labeled 14 paid := false ; v
transition systems for test-case generation - a 15 end : '
translation via object-oriented action systems, % obs coffee =
FMCO, 2009 17 requires coffee sel
18 skip
19 end ;
20 do
21 coin() [] coffeebutton () [] coffee ()
22 od
23]| system CoffeeMachine
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

74 / 80

Institute of Software Technology " Grazm

MoMuT:: TA

Timed Automata:

» Modelling in UPPAAL model checker
» Finite-state machines with real-valued clock variables
» Time passage in locations
» Time restrictions on locations and guards

3<x<5 2<x<3

coffee! tea!

coffeebutton? teabutton?
x=0 x=0
' B.K. Aichernig HSST 2018 Model-based Mutation Testing

75/ 80

Institute of Software Technology

Ty

MoMuT::TA (cont.)

» tioco-conformance: M tioco S
> out(M) Cout(S)
» time delay is an output

» Conformance check via language
inclusion

» Requires deterministic automata
» SMT-Solver Z3

» Determinization

Application: Crystal Usecase (Volvo)

' B.K. Aichernig HSST 2018

Model-based Mutation Testing
7 0

Institute of Software Technology " -IG-rla!-

MoMuT::TA (cont.)

» tioco-conformance: M tioco S _ _)
Bernhard K. Aichernig, Florian Lorber and

> out(M) Cout(S) Dejan Nickovic. Time for Mutants:
> time delay is an output Mutation testing with timed automata,
' TAP 2013
» Conformance check via language ’
inclusion

. L Bernhard K. Aichernig and Florian Lorber.
» Requires deterministic automata Towards generation of adaptive test cases
» SMT-Solver Z3 from partial models of determinized timed

automata, A-MOST 2014.

» Determinization

Application: Crystal Usecase (VOlVO) Florian Lorber, Amnon Rosenmann, Dejan
Nickovic and Bernhard K. Aichernig.
Bounded Determinization of Timed
Automata with Silent Transitions,
FORMATS 20157

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

76 / 80

Institute of Software Technology " -IG-rla!-

MoMuT ::REQs

Contract-based Requirement Interfaces:

» Synchronous assume-guarantee pairs

» Combined via conjunction

» No model-based mutation testing yet
Application: Airbag Chip (Infineon)

Inputs coin, teabutton, coffeebutton;
Outputs coffee, tea;
Internals paid;

{I} not paid and not coffee and not tea

{R1} assume coin’
guarantee paid’

{R2} assume paid and teabutton’ and not coffeebutton’
guarantee tea’ and not paid’

{R3} assume paid and coffeebutton’ and not teabutton’
guarantee coffee ' and not paid’

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

77 / 80

Institute of Software Technology

Ty

MoMuT ::REQs

Contract-based Requirement Interfaces:
» Synchronous assume-guarantee pairs
» Combined via conjunction
» No model-based mutation testing yet

Application: Airbag Chip (Infineon)

Inputs coin, teabutton, coffeebutton;
Outputs coffee, tea;
Internals paid;

{I} not paid and not coffee and not tea

{R1} assume coin’
guarantee paid’

{R2} assume paid and teabutton’ and not coffeebutton’
guarantee tea’ and not paid’

{R3} assume paid and coffeebutton’ and not teabutton’
guarantee coffee ' and not paid’

{R4} assume teabutton’ and coffeebutton’
guarantee skip

Bernhard K. Aichernig, Klaus

Hormaier, Florian Lorber, Dejan
Nickovic, Stefan Tiran. Require,
Test and Trace IT, FMICS 2015

Bernhard K. Aichernig and Dejan
Nickovic and Stefan Tiran.
Scalable Incremental Test-case
Generation from Large Behavior
Models, TAP 2015.

Bernhard K. Aichernig, Klaus
Hormaier, Florian Lorber, Dejan
Nickovic, Rupert Schlick, Didier
Simoneau, Stefan Tiran.
Integration of Requirements
Engineering and Test-Case
Generation via OSLC, QSIC 20141

' B.K. Aichernig HSST 2018

Model-based Mutation Testing
77 /80

Institute of Software Technology " Grazm

Agenda

Mutation Testing
Model-based Testing
Model-based Mutation Testing

Transformational Systems
» Semantics
» Test Case Generation
» Reactive Systems

» Semantics
» Test Case Generation

vV v v.yY

» Model- and Test-Driven Development
» MoMuT Tools

» Tool Demo and Examples

' B.K. Aichernig HSST 2018 Model-based Mutation Testing
0

Institute of Software Technology " Grazm

Tool Demo

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

79 / 80

Institute of Software Technology " Grazm

Conclusions

v

Model-based Testing + Mutation Testing

v

Formal semantics — test case generators — industry

v

Novelty: general theory + tools for non-deterministic models +
different modelling styles

Future:

v

» domain-specific models
» non-functional fault models (resource limitations)

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

80 / 80

Institute of Software Technology " Grazm

Conclusions

v

Model-based Testing + Mutation Testing

v

Formal semantics — test case generators — industry

v

Novelty: general theory + tools for non-deterministic models +
different modelling styles

Future:

v

» domain-specific models
» non-functional fault models (resource limitations)

Testing cannot show the absence of bugs [Dijkstra72].

' B.K. Aichernig HSST 2018 Model-based Mutation Testing
8 80

Institute of Software Technology " Grazm

Conclusions

v

Model-based Testing + Mutation Testing

v

Formal semantics — test case generators — industry

v

Novelty: general theory + tools for non-deterministic models +
different modelling styles

Future:

v

» domain-specific models
» non-functional fault models (resource limitations)

Testing cannot show the absence of bugs [Dijkstra72].

Testing can show the absence of specific bugs [Aichernig15].

' B.K. Aichernig HSST 2018 Model-based Mutation Testing

80 / 80

