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Abstract. When it comes to security, an interesting difference between
Java Card and regular Java is the absence of an on-card bytecode ver-
ifier on most Java Cards. In principle this opens up the possibility of
malicious, ill-typed code as an avenue of attack, though the Java Card
platform offers some protection against this, notably by code signing.
This paper gives an extensive overview of vulnerabilities and possible
runtime countermeasures against ill-typed code, and describes results of
experiments with attacking actual Java Cards currently on the market
with malicious code.

1 Overview

A huge security advantage of type safe language such as Java is that the low
level memory vulnerabilities, which plague C/C++ code in the form of buffer
overflows, are in principle ruled out. Also, it allows us to make guarantees about
the behaviour of one piece of code, without reviewing or even knowing all the
other pieces of code that may be running on the same machine.

However, on Java Card smartcards [9] an on-card bytecode verifier (BCV)
is only optional, and indeed most cards do not include one. This means that
malicious, ill-typed code is a possible avenue of attack.

Of course, the Java Card platform offers measures to protect against this,
most notably by restricting installation of applets by means of digital signatures
– or disabling it completely. Still, even if most Java Card smartcards that are
deployed rely on these measures to avoid malicious code, it remains an interesting
question how vulnerable Java Card applications are to malicious code. Firstly,
the question is highly relevant for security evaluations of code: can we evaluate
the code of one applet without looking at other applets that are on the card?
Secondly, the defence mechanisms of the Java Card platform are not so easy
to understand; for instance, there is the firewall as an extra line of defence,
but does that offer any additional protection against ill-typed code, and can it
compensate for the lack of BCV? And given the choice between cards with and
without BCV, are there good reasons to choose for one over the other? (As we
will show, cards with on-card BCV may still be vulnerable to ill-typed code!)

In this paper we take a serious look at the vulnerability of the Java Card
platform against malicious, ill-typed code. We consider the various ways to get
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ill-typed code on a smartcard, and various ways in which one applet could try
to do damage to another applet or the platform, and the countermeasures the
platform might deploy.

There is surprisingly little literature on these topics. The various defences
of the Java Card platform are only given rather superficial discussion in [6,
Chapter 8]. The only paper we know that discusses type flaw attacks on a Java
Card smartcard is [11].

We have experimented with attacks on eight different cards from four man-
ufacturers, implementing Java Card versions 2.1.1, 2.2, or 2.2.1. We will refer to
these cards as A 211, A 221, B 211, B 22, B 221, C 211A, C 211B, and D 211. The
first letter indicates the manufacturer, the numbers indicate which Java Card
version the card provides. Based on the outcome of the experiments, we can
make some educated guesses on which of the countermeasures the cards actually
implement.

The outline of the rest of this paper is as follows. Sect. 2 briefly reviews
the different lines of defence on the Java Card platform, including bytecode
verification and the applet firewall. The first step in any attack involving ill-
typed code is getting ill-typed code installed on the smartcard. More precisely,
we want to somehow create type confusion, or break the type system, by having
two pieces of code treat (a reference to) the same piece of physical memory as
having different, incompatible types. Sect. 3 discusses the various ways to create
type confusion and the success we had with these methods on the various cards.
Sect. 4 then discusses experiments with concrete attacks scenarios.

Sect. 5 discusses the various runtime countermeasures the platform could
implement against such attacks, some of which we ran into in the course of our
experiments. Finally, Sect. 6 summarises our results and discusses the implica-
tions.

2 Defences

In this section we briefly describe and compare the protection provided by the
various protection mechanisms on a Java Card platform.

2.1 Bytecode Verification

Bytecode verification of Java (Card) code guarantees type correctness of code,
which in turn guarantees memory safety. For the normal Java platform, code
is subjected to bytecode verification at load time. For Java Cards, which do
not support dynamic class loading, bytecode verification can be performed at
installation time (when an applet is installed on the smartcard). However, most
Java Card smartcards do not have an on-card BCV, and check a digital signature
of a third party who is trusted to have performed bytecode verification off-card.

Note that even if bytecode is statically verified, some checks will always
have to be done dynamically, namely checks for non-nullness, array bounds, and
downcasts. For Java Card, the applet firewall will also require runtime checks.
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Although typically bytecode verification is done statically, it is also possible to
do type checking dynamically, i.e. at runtime, by a so-called defensive virtual
machine. This requires keeping track of typing information at runtime and per-
forming type checks prior to the execution of every bytecode instruction. Clearly,
this has an overhead both in execution time and in memory usage. However, to
check downcasts the VM already has to record runtime types of objects anyway.

As we will see later, our experiments show that some Java Cards do a form
of runtime type checking, and this then offers an excellent protection against
ill-typed code.

2.2 Applet Firewall

The applet firewall is an additional defence mechanism implemented on all Java
Cards. The firewall performs checks at runtime to prevent applets from accessing
(reading or writing) data of other applets (of applets in a different security con-
text, to be precise). For every object its context is recorded, and for any field or
method access it is checked if it is allowed. In a nutshell, applets are only allowed
to access in their own context, but the Java Card Runtime Environment (JCRE)
has the right to access anything. In UNIX terminology, the JCRE executes in
root-mode, and some of the Java Card API calls, which are executed in JCRE
context, are ‘setuid root’.

Defence mechanisms can be complimentary, each providing different guaran-
tees that the other cannot, or defence in depth, each providing the same guar-
antees, so that one can provide a back-up in case the other fails. As defence
mechanisms, the firewall and bytecode verification are primarily complimentary.
The firewall provides additional guarantees that bytecode verification does not:
a carelessly coded applet might expose some of its data fields by declaring them
public, allowing other applets to read or modify them.1 Bytecode verification
cannot protect against this, but the firewall will. The firewall provides a strong
guarantee that an applet cannot be influenced by the behaviour of other (well-
typed!) applets, unless it explicitly exposes functionality via a so-called Shareable
Interface Object.

The firewall is not guaranteed to offer protection against ill-typed applets.
Still, for certain attack scenarios, the firewall does provide a useful second line
of defence. If a malicious applet manages to get hold of a ‘foreign’ reference to
an object belonging to another applet by breaking the type system, its access
to that object reference is still subject to runtime firewall checks, which may
prevent any harm.

Breaking the Firewall The firewall as specified in [9] is quite complicated.
This means that there is a real chance of implementation bugs, or unclarities
in the specs, which might lead to security flaws. We investigated the firewall
1 Indeed, security coding guidelines for Java such as [6, Chapter 7] or http:

//www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/java.html warn
against the use of public, package, and protected (!) visibility.
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specification and thoroughly tested cards for any flaws. Details are described
in a separate technical report [8]. We did find some minor deviations from the
official specification on some cards, but most of them ‘safe’, in the sense that the
cards were more restrictive than the specification demanded. The only ‘unsafe’
violation of the specifications we found was that card A 221 ignores the restric-
tion that access via a shareable interface should not be allowed when an applet
is active on another logical channel. This could lead to security problems in par-
ticular applications that use shareable interfaces. The tests in [8] only consider
well-typed code. However, a weak firewall implementation can be broken with
ill-typed code, as we will discuss in Sect. 4.2.4.

3 Getting Ill-Typed Code on Cards

We know four ways to get ill-typed code onto a smartcard: (i) CAP file ma-
nipulation, (ii) abusing shareable interface objects, (iii) abusing the transaction
mechanism, and (iv) fault injection. Note that an on-card BCV is only guaran-
teed to protect against the first way to break type safety (assuming the BCV is
correct, of course). These methods are discussed in more detail below, and for
the first three we discuss whether they work on the cards we experimented with.

3.1 CAP File Manipulation

The simplest way to get ill-typed code running on a card is to edit a CAP
(Converted APplet) file to introduce a type flaw in the bytecode and install it
on the card. Of course, this will only work for cards without on-card BCV and for
unsigned CAP files. One can make such edits in the CAP file or – which is easier
– in the more readable JCA (Java Card Assembly) files. For example, to treat a
byte array as a short array, it is enough to change a baload (byte load) opcode
into a saload (short load). Such a misinterpreted array type can potentially lead
to accessing other applets’ memory as we explain in Section 4. To further simplify
things, instead of editing JCA or CAP files, one could use some tool for this; ST
Microelectronics have developed such a tool, which they kindly let us use.

CAP file editing gives endless possibilities to produce type confusion in the
code, including type confusion between references and values of primitive types,
which in turn allows C-like pointer arithmetic.

Experiments As expected, all the cards without on-card BCV installed ill-typed
CAP files without problems. Apart from an on-card BCV, simply prohibiting
applet loading – common practice on smartcards in the field – or at least control-
ling applet loading with digital signatures are of course ways to prevent against
manipulated CAP files.

3.2 Abusing Shareable Interface Objects

The shareable interface mechanism of Java Card can be used to create type con-
fusion between applets without any direct editing of CAP files, as first suggested
in [11].
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Shareable interfaces allow communication between applets (or between secu-
rity contexts, to be precise): references to instances of shareable interfaces can
be legally used across the applet firewall. To use this to create type confusion,
the trick is to let two applets communicate via a shareable interface, but to
compile and generate CAP files for the applets using different definitions of the
shareable interface. This is possible because the applets are compiled and loaded
separately.

For example, suppose we have a server applet exposing a shareable interface
MyInterface and a second client applet using this interface. If we produce the
CAP file for the server applet using the following interface definition

public interface MyInterface extends Shareable {
void accessArray(short[] array); } // Server assumes short[]

and the CAP file for the client applet using

public interface MyInterface extends Shareable {
void accessArray(byte[] array); } // Client assumes byte[]

then we can make the server applet treat a byte array as a short array.
One last thing to take care of in this scenario is to circumvent the applet

firewall mechanism. Since the server and client applet reside in different contexts,
the server does not have the right to access the array it gets from the client.
Hence, to make this work the server has to first send its own byte array reference
to the client and then the client has to send it back to the server through the
ill-typed interface. This way the server can run malicious code on its own (in
terms of context ownership) data. Now, the shareable interface definition for the
server will for instance include

void accessArray(short[] array); // Server assumes short[]
byte[] giveArray(); // Server gives its array to client

whereas the one for the client includes

void accessArray(byte[] array); // Client assumes byte[]
byte[] giveArray(); // This array from server is sent back

// to the server with accessArray(...)

Obviously, this scenario is not limited to confusing byte arrays with short ar-
rays. Virtually any two types can be confused this way.

We should point out that the client and server applet usually need to be aware
of each other and actively cooperate to cause an exploitable type unsoundness.
So they both have to be malicious. To the best of our analysis it is not really
possible to type-attack an ‘unaware’ server which exports a shareable interface,
by crafting a malicious client applet, or vice versa.

Experiments This method to break the type system worked on all cards without
BCV, with the exception of D 211. Card D 211, without on-card BCV, refused
to load any code that uses shareable interfaces – for reasons still unclear to us.

Both cards with on-card BCV, C 211A and C 211B, also refuse to install code
that uses shareable interfaces, but that is understandable. An on-card BCV may
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have a hard time spotting type flaws caused by the use of incompatible inter-
faces definition, because just performing bytecode verification of an individual
applet will not reveal that anything is wrong. So cards C 211A and C 211B re-
sort to a simpler and more extreme approach: they simply refuse to load any
code that use shareable interfaces. This clearly avoids the whole issue with type
checking such code. (Strictly speaking, one can argue that these cards do not
implement the Java Card standard correctly, as there is no mention in the Java
Card specification of shareable interfaces being an optional feature.)

3.3 Abusing The Transaction Mechanism

The Java Card transaction mechanism, defined in [9], is probably the trickiest
aspect of the Java Card platform. The mechanism has been the subject of inves-
tigation in several papers [1, 5], and [4] demonstrated it as a possible source of
fault injections on one card. The transaction mechanism allows multiple byte-
code instructions to be turned into an atomic operation, offering a roll-back
mechanism in case the operation is aborted, which can happen by a card tear
or an invocation of the API method JCSystem.abortTransaction. The roll-
back mechanism should also deallocate any objects allocated during an aborted
transaction, and reset references to such objects to null [9, Sect. 7.6.3].

As pointed out to us by Marc Witteman, it is this last aspect which can
be abused to create type confusion: if such references are spread around, by
assignments to instance fields and local variables, it becomes difficult for the
transaction mechanism to keep track of which references should be nulled out.
(This problem is similar to reference tracking for garbage collection, which is
normally not supported on Java Cards.) For example, consider the following
program:

short[] array1, array2; // instance fields
...
short[] localArray = null; // local variable
JCSystem.beginTransaction();
array1 = new short[1];
array2 = localArray = array1;

JCSystem.abortTransaction();

Just before the transaction is aborted, the three variables array1, array2, and
localArray will all refer to the same short array created within the transaction.
After the call to abortTransaction, this array will have been deallocated and
all three variables should be reset to null.

However, buggy implementations of the transaction mechanism on some
cards keep the reference in localArray and reset only array1 and array2.
On top of this, the new object allocation that happens after the abort method
reuses the reference that was just (seemingly) freed. Thus the following code:

short[] arrayS; // instance field
byte[] arrayB; // instance field
...
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short[] localArray = null; // local variable
JCSystem.beginTransaction();
arrayS = new short[1]; localArray = arrayS;

JCSystem.abortTransaction();
arrayB = new byte[10]; // arrayB gets the same reference as arrayS

// used to have, this can be tested
if((Object)arrayB == (Object)localArray) ... // this is true!

produces two variables of incompatible types, arrayB of type byte[] and local-
Array of type short[], that hold the same reference, so we have ill-typed code.
Again, this trick is not limited to array types.

The root cause of this problem is the subtle ‘feature’ of the transaction mech-
anism that stack-allocated variables, such as localArray in the example above,
are not subject to roll-back in the event of a programmatically aborted trans-
action (i.e. a call to JCSystem.abortTransaction). Apparently this potential
for trouble has been noticed, as the JCRE specification [9, Sect. 7.6.3] explicitly
allows a card to mute in the event of a programmatic abort after objects have
been created during the transaction.

Experiments Four cards (B 211, B 221, C 211A, D 211) have a buggy transaction
mechanism implementation that allows the type system to be broken in the way
described above. Note that an on-card BCV will not prevent this attack. Indeed,
one of the cards with an on-card BCV, C 211A, is vulnerable to this attack.

The obvious countermeasure against this attack is to correctly implement
the clean-up operation for aborted transactions. However, only one of our test
cards (B 22) managed to perform a full clean-up correctly.

Another countermeasure against this attack is for cards to mute when a
transaction during which objects have been created is programmatically aborted.
As mentioned above, this is allowed by the JCRE specifications. Three cards we
tested (A 211, A 221, C 211B) implement this option.

3.4 Fault Injections

Finally, fault injections, e.g. by light manipulations, could in theory be used to
change the bytecode installed on a card and introduce type flaws.

Fault injections do not provide a very controlled way to change memory, so
the chance of getting an exploitable type flaw is likely to be small. However,
following the ideas described in [3], for specially tailored code a fault injection
can be expected to produce an exploitable type flaw with a relatively high chance.

We did not carry out any experiments with this, since we do not have the
hardware to carry out fault injections.

4 Type Attacks on Java Cards

Using the various methods discussed in the previous section, we were able to
install ill-typed code on all but one of the smartcards we had (namely card
C 211B). We then experimented with various attacks on these cards.
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One idea was to exploit type confusion between primitive arrays of different
types, a byte array with a short array, to try and access arrays beyond the array
bounds. Another basic idea was to exploit type confusion between an array and a
object that was not an array, where there are several opportunities for mischief,
such as redefining an array’s length – reportedly successful on some cards [11]
– or writing object references to perform pointer arithmetic or spoof references.
Whether confusion between arrays and other objects can be exploited depends
on the exact representation of objects in memory.

4.1 Accessing a Byte Array as a Short Array [byte as short array]

The first attack is to try to convince the applet to treat a byte array as a short
array. In theory this would allow one to read (or write) twice the size of the
original byte array. For instance, accessing a byte array of length 10 as a short
array size might allow us to access 10 shorts, i.e. 20 bytes, with the last 10 bytes
possibly belonging to another applet.

We considered three kinds of byte arrays: global arrays (i.e. the APDU
buffer), persistent context-owned arrays, and transient context-owned arrays.
There was no difference in behaviour between these different kinds of arrays, i.e.
each card gives the same result for all three array types. However, different cards
did exhibit different behaviour, as described below.

Cards C 211A and D 211 gave us the result we were hoping for, as attackers. It
was possible to read beyond the original array bound. In particular, we managed
to access large parts of the CAP file that was later installed on the card. This
is clearly dangerous, as it means an applet could read and modify code or data
of another applet that was installed later. NB C 211A is the card with on-card
BCV where the buggy transaction mechanism allowed us to run ill-typed code.
This highlights the danger of putting all one’s trust in an on-card BCV!

Cards from manufacturer B did not let us read a single value from an ill-
typed array. Cards B 211 and B 221 muted the current card session whenever
we tried this, and B 22 returned a response APDU with status word 6F48. This
suggests that these cards perform runtime type checking (at least enough to
detect this particular type confusion). Indeed, all attacks we tried on B 211
and B 221 were ineffective in that they always gave this same result, i.e. the
cards muted whenever an ill-typed instruction was executed. For card B 22 some
attacks did give more interesting results.

Results on cards from manufacturer A were hardest to understand. Card
A 221 allowed us to run the ill-typed code. However, it does not let us read data
outside the original array bounds. What happens is that one byte value is treated
as one short value (exactly as if bytes were in fact implemented as shorts in the
underlying hardware). For positive byte values each value is prepended with a
00, for negative values with FF:

Read as byte[] 00 01 02 03 04 ... 80 81 ...
Read as short[] 0000 0001 0002 0003 0004 ... FF80 FF81 ...
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Card A 211 allowed us to run the ill-typed code and reads two subsequent bytes
as one short value:

Read as byte[] 00 01 02 03 04 05 06 07 ...
Read as short[] 0001 0203 0405 0607 ...

However, it was not possible to go outside of the range of the original byte
array: even though the presumed short array reports to be of size n, it is only
possible to access the first n/2 elements, allowing access to the original n bytes.
Attempts to access array elements beyond this yielded an ArrayIndexOutOf-
BoundsException.

What appears to be happening on A 211 is that array bounds checks are done
in terms of the physical memory size of the arrays (in bytes), not in terms of
the logical size of the arrays (in number of elements). We will call this physical
bounds checking.

4.2 Accessing an Object as an Array [object as array]

Instead of confusing two arrays of different type, one can more generally try
to confuse an arbitrary object with an array. This opens the following attack
possibilities.

4.2.1 Fabricating Arrays Witteman [11] describes a type attack which ex-
ploits type confusion between an array and an object of the following class Fake:

public class Fake { short len = (short)0x7FFF; }

The attack relies on a particular representation of arrays and objects in memory:
for the attack to succeed, the length field of an array has to be stored at the
same offset in physical memory as the len field of a Fake object. If we can then
trick the VM in treating a Fake object as an array, then the length of that array
would be 0x7FFF, giving access to 32K of memory. The fact that we can access
the len field through the object reference could allow us to set the array length
to an arbitrary value.

Although setting the length of the array was not possible as such on the cards
we tested, this attack gave us interesting results nevertheless.

As before, cards B 211 and B 221 refused to execute the ill-typed code, as in
all other attack scenarios. Card A 211 also refused to execute the code, returning
the 6F00 status word. Apparently A 211 has some runtime checks that prevent
type confusion between objects and arrays.

On the cards where running our exploit code was possible (A 221, B 22,
C 211A, D 211), the object representation in memory prevents us from manip-
ulating the array length. Still, we noticed two different behaviours. For cards
A 221 and B 22, the length of the “confused” array indicates the number of
fields in the object, i.e. an instance of the Fake class gives an array of length
1 containing the element 0x7FFF. For the two other cards, C 211A and D 211,
the length of the confused array has some apparently arbitrary value: the length
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is not the number of instance fields, but it probably represents some internal
object data. For C 211A this value is large enough (actually negative when the
length is interpreted as a signed short) to freely access any forward memory
location on the card.

A slight modification of this attack allows us to read and write object refer-
ences directly as we describe next.

4.2.2 Direct Object Data Access The results of the previous attack sug-
gests that it would be possible to treat object fields as array elements on cards
A 221, B 22, C 211A, and D 211. Reference fields could then be read or written
as numerical values, opening the door to pointer arithmetic.

This is indeed possible for all these cards. For example, an instance of this
class

public class Test {
Object r1 = new Object();
short s1 = 10; }

when treated as a short array a on card A 221 gives the following array contents:

a.length: 2 # of fields, read only
a[0]: 0x09E0 field r1, read/write
a[1]: 0x000A field s1, read/write

By reading and writing the array element a[0] it was possible to directly read
and write references. Similar results were obtained on the three other cards (B 22,
C 211A, D 211), although in the case of C 211A we did not manage to effectively
write a reference.

Pursuing this attack further we tried two more things: switching references
around and spoofing references.

4.2.3 Switching References [switch] Once we have a direct access to a
reference we can try to replace it (by direct assignments) with another reference,
even if these have incompatible types. Our test results show that if the new value
is a valid reference (i.e. existing reference) this is perfectly possible. Assume, for
example, that we have these two field declarations in some class C:

MyClass1 c1 = new MyClass1();
MyClass2 c2 = new MyClass2();

Accessing an object of class C as an array, we should be able to swap the values
of c1 and c2. This in turn introduces further type confusion: field c1 points to
a reference of type MyClass2 and field c2 to a reference of type MyClass1.

Two cards, A 221 and B 22, allowed us to do it. It was possible to read in-
stance fields of such switched references, but only as long as the accessed fields
stayed within the original object bounds. This suggests that these cards per-
form dynamic bounds checks when accessing instance fields, analogous to the
dynamic bounds checks when accessing array elements. We will call this ob-
ject bounds checking. Indeed, given the similarity of memory layout for arrays
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and other objects on these card, the code for accessing instance fields and ar-
ray elements might be identical. Such object bounds checking prevents reference
switching from giving access beyond original object bounds, and hence prevents
access to another applet’s data.

Another way in which reference switching might give access to another ap-
plet would be setting a field in one applet to point to an object belonging to
another applet. However, here the firewall checks prevent illegal access via such
a reference.

Also, methods can be called on the switched references, as long as calling such
methods did not cause object bounds violations or referring to stack elements
below the stack boundary.

4.2.4 AID Exploitation [AID] The possibility to switch references could be
abused to manipulate system-owned AID objects. An AID (Applet IDentifier)
object is effectively a byte sequence that is used to identify applets on a card.
An AID object has a field which points to a byte array that stores the actual
AID bytes. Changing the value of this field would change the value of an AID,
whereas AIDs are supposed to be immutable.

An obstacle to this attack might be the firewall mechanism; indeed, if we
try to change the field of a system-owned AID object from an applet this is
prevented by the firewall. However, if we access the AID object as an array, then
on cards A 221 and B 22 we could change the values of system-owned AIDs. This
has serious consequences: a hostile applet can corrupt the global AID registry,
and try to impersonate other applets. This attack is a much stronger version of
the one described in e.g. [7].

Because of the privileged nature of system-owned AID objects – they are
JCRE entry points – further exploits might be possible.

4.2.5 Spoofing References [spoof] Going one step further than switching
references, we tried spoofing references, i.e. creating a reference from a numerical
value by assigning a short value to a reference.

Any way we tried this, cards A 221, B 22, and C 211A refused to use such
references: the card session was muted or an exception was thrown.

Card D 211, an older generation card, did let us spoof references. It was
possible to write a small applet that effectively let us “read” any reference from
the card by using the techniques we just described and a little bit of CAP
file manipulation trickery. By “read” we mean that it is possible to get some
value that supposedly resides at the memory address indicated by the reference.
However, composing a sequence of such reads (going through all the possible
reference values) did not really give a valid memory image of the card. That is,
it was not possible to recognise parts of bytecode that should be on the card, or
any applet data we would expect to find.

Cards can detect spoofing of references by keeping track of additional data in
their representation of objects or references in memory and refusing to operate
on (references to) objects if this data is not present or corrupted.
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For instance, analysing our failed attempts to spoof references on A 221 we
noticed that each allocated object (even the simplest one) takes up at least 8
bytes of memory. That is, the values of references to subsequently allocated
objects, when read as numerical values, differ by at least eight. An array of
length 1 would even take up 16 bytes. It is clear that two bytes are used to
store the number of fields (or array length, in case of an array). However, it is
not clear what the other six bytes (or more in case of arrays) are used for: it
will include information about the runtime type and the firewall context, but it
could also contain additional checksums to check the integrity of a reference. If
it would be possible to reconstruct the structure of this data (difficult because
of the number of combinations to try) we believe constructing a fake reference
could be considered a possibility, although an unlikely one.

We also tested references of arrays of different memory type (persistent and
transient). The values of references to different kinds of arrays seem to be ‘next to
each other’, which would indicate that the value of the reference has little to do
with the actual memory address. Apparently there is an additional mechanism
in the VM to map these reference to physical addresses.

4.3 More Type Confusion Attacks

Obviously, the attacks we have just described do not exhaust all possibilities.
Many more are possible. For example, by changing the number of parameters
in the shareable method one could try to read data off the execution stack, but
this did not succeed on any of our cards.

Another example is that it is possible to reverse the type confusion between
arrays and objects, and access an array as an object, with the aim to try accessing
an array beyond its array bounds. Such an ‘array as object’ attack produced
similar results as the object as array attack in Sect. 4.2.2, except that it was
also possible on A 211, albeit harmless in the sense that it did not allow access
beyond the original array bounds there.

5 Dynamic Countermeasures

Our experiments show that some VMs are much more defensive than others
when it comes to executing ill-typed code. The Java Card specifications leave a
lot of freedom for defensive features in the implementation of a VM. As long as
the executed code is well-typed the defensive features should go undetected; the
specifications are meant to guarantee that well-typed code executing on different
smartcards always results in the same behaviour. However, ill-typed code is
effectively out of scope as far as the Java Card specifications are concerned;
when running ill-typed code as we have done, there are no guarantees that the
same behaviour is observed on different cards, and additional defences can come
to light. Below we give on overview of possible dynamic runtime checks a VM
might implement.2

2 The fact that Java Cards take so many clock cycles for each individual bytecode
instruction [10] already suggests that Java Cards do quite a lot of runtime checks.
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Runtime Type Checking Two cards from manufacturer B, cards B 211 and B 221,
appear to do runtime type checking, making them immune to all ill-typed code we
tried. Card A 211 also performs enough runtime type checks to make it immune
to all our attacks. Still, because we were able to confuse byte and short arrays,
albeit without being able to do actual harm, card A 211 apparently does not do
complete type checking at runtime.

Object Bounds Checking Any VM is required to do runtime checks on array
bounds when accessing array elements. A VM could do some similar runtime
checks of object bounds when accessing instance fields and invoking methods on
objects that are not arrays, if it records the ‘size’ – the number of fields – of
each object in the same way it records the length of an array. In the conversion
of bytecode into CAP file format, names are replaced by numbers – 0 denotes
the first field, 1 the second, etc. – which makes such a check easy to implement.

Two of the cards appear to do object bounds checking, namely A 221 and
B 22, as explained in Sect. 4.2.3.

Physical Bounds Checks Bounds checks on arrays (or objects) can be done using
the ‘logical’ size of an array (i.e. its length and the array index), but can also
be done using the ‘physical’ size of the array contents in bytes and the actual
offset of an entry. For example, the contents of a short array a of length 10
takes up 20 bytes. When accessing a[i], one could do a runtime check to see
if 0 ≤ i ≤ 10, or a runtime check to see if 0 ≤ 2*i ≤ 20. If the VM uses the
physical offset 2*i to look up the entry, one may opt for the latter check.

Our experiments suggests that card A 211 performs physical bounds checks,
as explained in Sect. 4.1.

Firewall Checks Firewall checks have to be done at runtime.3 Our successful
attacks on C 211A and D 211 by confusing byte and short arrays in Sect. 4.1
as well as two successful AID object exploits (A 221, B 22) demonstrate that
the firewall does not really provide defence-in-depth in the sense that it can
compensate for the absence of a bytecode verifier.

Still, in some attacks the firewall is clearly a formidable second line of defence.
For instance, attacks where we try to switch references are essentially harmless
if the firewall prevents us from accessing object belonging to other contexts: at
best an applet could then attack its own data, which is not an interesting attack.
However, as the AID attack show, the firewall does not prevent all such attacks,
as by accessing object as arrays we might be able to circumvent firewall checks.
This shows that firewall implementations are not defensive, in the sense they do
not make additional checks to catch type confusion, but then the specification
of the firewall does not require them to be defensive.

It is conceivable that a defensive implementation of the firewall could prevent
the attacks on C 211A and D 211 described in Sect. 4.1, namely if firewall checks
3 A system to statically check most of the firewall access rules is proposed in [2]. How-

ever, performing checks statically, at load time, is not necessarily an improvement
over doing them at runtime, as our results with bytecode verification show.
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A 211 A 221 B 211 B 22 B 221 C 211A C 211B D 211

CAP file manipulation [§3.1] + + + + + − − +
Abusing shareable interfaces [§3.2] + + + + + − − −
Abusing transactions [§3.3] − − + − + + − +
Static protection BCV BCV CL

BCV – On-card static bytecode verifier
CL – class loader disallowing use of shareable interfaces

Table 1. Loading ill-typed code

are performed on the ‘physical’ rather than the ‘logical’ level, as discussed above
for array bound checks. Checking firewall rules at the ‘physical level’ would
require that the VM can somehow tell the context for every memory cell, not
just every reference. One way to do this would be to allocate a segment of
memory for each security context, and then use old-fashioned segmentation as
in operating systems as part of enforcement of the firewall. We found no evidence
that any cards do this.

Integrity Checks in Memory Our experiments with spoofing references suggest
that most cards provide effective integrity checks on references. To perform dy-
namic checks for array bounds, downcasting, and the firewall, the VM has to
record some meta-data in the memory representation of objects, such as array
lengths, runtime types and the context owning an object. Clearly, by recording
and checking additional meta-data in objects (and possibly references) the VM
could detect and prevent switching or spoofing of references.

6 Discussion

Table 1 summarises the result of Sect. 3, and shows which of the ways to get
ill-typed code succeeded on which of the cards.

CAP file manipulation (CAP) and Shareable Interface Objects (SIO) did not
succeed on C 211A and C 211B, because the on-card BCV does not allow ill-typed
code or any code that uses shareable interfaces. The loader on D 211 also refuses
to load code that uses shareable interfaces.

Abusing the transaction mechanism works on cards B 211, B 221, C 211A, and
D 211, which indicates that the implementation of the transaction mechanism is
faulty when it comes to clearing up after aborted transactions.

Card C 211B was the only one on which we were unable to load any ill-typed
code.

However, being able to load ill-typed code on a card does not guarantee
success (from an attacker’s point of view), as defensive features of the VM can
still prevent the loaded code from doing any harm or executing at all. Things do
not necessarily degenerate to the hopeless situation one has in C/C++, where
you can basically do anything with malicious code.

Table 2 summarises the results of Sect. 4, listing which attacks succeeded in
running and doing harm.
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A 211 A 221 B 211 B 22 B 221 C 211A D 211

Dynamic protection PBC OBC RTC OBC RTC
byte as short array [§4.1] � � − − − � �
Object as array [§4.2.1] − � − � − � �
Reference switching [§4.2.3] − � − � − − NA
Reference switching in AIDs [§4.2.4] − � − � − − NA
Reference spoofing [§4.2.5] − − − − − − �
Array as object [§4.3] � � − � − � �
− impossible, � possible but harmless, � possible and harmful
PBC – Physical Bounds Checks, OBC – Object Bounds Checks,
RTC – Runtime Type Checking, NA – Not attempted

Table 2. Executing ill-typed code. No information is included for card C 211B, since
we could not load ill-typed code on it.

Some attacks can do real damage. For cards C 211A and D 211 two different
attacks are possible to access another applet’s data, namely accessing a byte
as a short array and accessing an array as an object. The latter attacks allows
unrestricted forward memory access on C 211A. Switching references on A 221
and B 22 is possible but mostly harmless, since the firewall prevents access to
data of another applet. The notable exception is using this attack to access the
internals of AID objects, where the attack becomes harmful as it allows a hostile
applet to alter any system-owned AIDs and redefine the entire AID registry of
the card. Spoofing references on D 211 also allowed unrestricted memory access;
even though the memory still seemed to be scrambled, and we could not exploit
access to it in a meaningful way, we do regard this as dangerous.

One interesting conclusion is that having an on-card BCV is not all that it is
cracked up to be: one of the vulnerable cards we identified has an on-card BCV. A
single bug, in this case in the transaction mechanism, can completely undermine
the security provided by the on-card BCV.4 Also, cards with an on-card BCV
rule out any use of Shareable Interfaces, which in retrospect is understandable,
but we never realised this before we tried.

As a defensive mechanism, runtime type checking is therefore probably a more
robust protection mechanisms than a static BCV. Indeed, another interesting
conclusion of our work is that runtime defensive mechanisms go a long way
to protect against ill-typed code, as results with card A 211, B 211, and B 221
show. The obvious disadvantage of runtime checks is the decreased performance
of the JVM. However, we did not notice any considerable performance differences
between our cards. More factors play a role in smartcard performance (such as
the underlying hardware), so more testing would be required to establish what
is the actual impact of runtime checks on performance.

We should repeat that the vulnerabilities found are of course only a problem
on cards allowing the installation of additional applets. On most, if not all, Java

4 One hopes that Sun’s Technology Compatibility Kit (TCK) for Java Card includes
test cases to detect this bug. Unfortunately, the TCK is not public so we cannot
check that it does.
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Card smartcards in the field, post-issuance download of additional applets will be
disabled or at least restricted by digital signatures. Still, for security evaluations
it can be extremely useful (and cost-saving) to have confidence in the fact that
there are no ways for different applets to affect each other’s behaviour, except
when explicitly allowed by shareable interfaces.
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Approaches to Software Engineering (FASE) Conference 2003, Warsaw, Poland,
volume 2621 of LNCS, pages 246–260. Springer, April 2003.

2. Werner Dietl, Peter Müller, and Arnd Poetzsch-Heffter. A type system for checking
applet isolation in Java Card. In Construction and Analysis of Safe, Secure and
Interoperable Smart devices (CASSIS 2004), volume 3362 of LNCS, pages 129–150.
Springer, 2004.

3. Sudhakar Govindavajhala and Andrew W. Appel. Using memory errors to attack
a virtual machine. In IEEE Symposium on Security and Privacy, pages 154–165,
2003.

4. Engelbert Hubbers, Wojciech Mostowski, and Erik Poll. Tearing Java Cards. In
Proceedings, e-Smart 2006, Sophia-Antipolis, France, September 20–22, 2006.
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